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ABSTRACT  

Multiclass problem, such as detecting multi-steps behaviour of Advanced Persistent Threats (APTs) have 

been a major global challenge, due to their capability to navigates around defenses and to evade detection for a 

prolonged period of time. Targeted APT attacks present an increasing concern for both cyber security and 

business continuity. Detecting the rare attack is a classification problem with data imbalance. This paper 

explores the applications of data resampling techniques, together with heterogeneous ensemble approach 

for dealing with data imbalance caused by unevenly distributed data elements among classes with our focus 

on capturing the rare attack. It has been shown that the suggested algorithms provide not only detection 

capability, but can also classify malicious data traffic corresponding to rare APT attacks. 
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1. INTRODUCTION  

The ability of an intrusion detection system to detect every possibility of an active attack on a system is a 

global security challenge. There have been a number of successful breaches of critical infrastructure.  

Stuxnet is one example of a sophisticated APT attack purposefully launched to target critical nuclear 

infrastructure in Iran as highlighted in (McAfee Labs, 2011) and (Chen et al., 2011).  

 

    There are diverse views as to what makes a threat an APT. Some believe that an APT is nation-state 

sponsored attack (Ahmad, Webb, Desouza, & Boorman, 2019), as a term that is frequently been used in 

security threat discussions (Smiraus & Jasek 2011), while (Five, 2011) and (ISACA, 2014) retain their 

definition, “APT is often aimed at the theft of intellectual property or espionage as opposed to achieving 

immediate financial gain and are prolonged, stealthy attacks”. However, (Cressey, 2012), (Micro, 2013) 

and (Chen et al., 2018) view APT as a highly sophisticated combination of different techniques to achieve 

a specifically targeted and highly valuable goal. 

 

    This type of attack has drawn special attention to the possibilities of APT attacks on the Industrial Control 

System (ICS) such as Supervisory Control and Data Acquisition (SCADA) network. It has also led to 

research in developing methods to detect intrusions within a network and isolated devices at any level. Due 

to the dynamic and diverse nature of techniques used by attackers to implement an APT attack, these yielded 

to uneven distribution different classes. Hence, learning from imbalanced data has notable challenges for 

machine learning algorithms, since they need to deal with uneven distribution among examples of different 

classes in the training set (Krawczyk, 2016a) and (Zhou & Liu 2005). Handling imbalanced data distribution 

in multi classification problem based on ensemble supervised learning and problem decomposition with 

cost-sensitive learning are still an active research area in machine learning community as demonstrated by 

the authors (Nguyen et al., 2019), (Nguyen et al., 2018) and (Krawczyk, 2016b).  

 

    However, most of these proposed works has led to a significant pool of solutions geared towards 

addressing both binary and multiclass imbalance problem (Weiss, 2004). Majority of this solutions where 

mainly for binary imbalanced problem (Krawczyk, 2016a); hence, there is every need for research direction 

towards developing reliable solutions to deal with multiclass scenario problem. This paper focuses on the 

implementation of diverse data resampling techniques in combination with heterogeneous ensemble 

learning approach for handling multiclass imbalanced datasets with special interest on capturing the 

minority class. 

 

The contribution of this paper can be summarised as follows: 

• Implementation of several oversampling and undersampling approaches for handling binary and 

multiclass imbalance datasets with main focus on minority class in multiclass label.  

• Analysing the impact of these approaches that could be used to improve the results obtained, 

without proposing a new algorithm or technique for handling imbalance data. 

• Implementation of oversampling techniques for the multi-class imbalanced classification on two 

datasets (KDDCup991 and UNSW-NB152), with close attention on the impact and knowledge of 

the minority class and imbalance distribution factors. 

• Carried out series of experiments to: evaluate the impact of resampling imbalance data and 

ensemble deep neural networks to (i) accurately detect and classify an attack as abnormal and (ii) 

classify multiclass label into different type of attacks family. 

 

    The remainder of this paper is organised as follows. In the background section 2, we covered classification of 

imbalance data, techniques for learning from imbalance data and application in security domain together with an 

overview of deep neural network and ensemble learning approach as applicable to this study are discussed. 



Experimental data, evaluation metrics and analysis results are discussed in Section 3. The conclusion of this 

study and future work are presented in section 4 and 5 respectively. 

2.   BACKGROUND  

This section contains a brief background of imbalance data and applicable technique for handling 

imbalance distribution with respect to security domain based on literature review of few approaches 

and basic definition. This section also contains an overview of deep neural network and ensemble 

learning approaches as implemented on this study are discussed. 

2.1 Learning from Multiclass Imbalance Data  
Threats to network security remain one of the biggest challenges facing organisations and industries at 

various levels of operation. One of the major forms of such threats is referred to as APTs, which exploit 

multiple ways to open the system to malware. Classification and prediction has become an important task 

for pattern recognition as these events are rarely observed in any given network, making the classification 

and prediction task suffers from imbalanced data as stated by authors (Haixiang et al., 2017). This problem 

of imbalance data is not limited to security domain, but also applicable in detection of fraudulent transaction 

or call (Dal Pozzolo et al., 2014), text classification (Cardie & Howe, 1997) and several other domains. 

Hence the need for a classification model that will yield a high detection rate including identifying the rare 

class of interest. 

 

    The uneven distribution among examples of different attacks categories in classification tasks is known 

as the problem of imbalanced data whereby instances of certain classes occur more frequently than others 

(the minority class). This identified problem makes it difficult for learning algorithms as mentioned in (Sun 

et.al, 2009). Several studies have demonstrated that uneven data distribution is not the only factor that 

affects performance of diverse modelling classifiers as discussed by arthurs (Sáez et.al, 2016), (Batista et.al, 

2004) and (Sun et al., 2009). Other factors may include the number of minority class, this could result to 

not enough data for training the model, minority class forming small distributed groups which leads to class 

separability problem, this is the main problem with minority class as highlighted by (Sun et al., 2009). Also, 

a high classification error may as well contribute to poor performance of the validation matrix implemented 

in any a given problem (Sáez et al., 2016). Again, class overlap as pointed out by (Vuttipittayamongkol 

et.al, 2018) is also known to have a higher impact on the classification of imbalanced datasets than the 

dominance of the majority class, although their proposed approach “new undersampling method that 

eliminates negative instances from the overlapping region” (Vuttipittayamongkol et al. 2018) has only been 

tested on binary class. 

 

    Diverse techniques have been proposed and successfully applied in handling imbalance data distribution 

problem, among which are but not limited to (i) data preprocessing, such as oversampling and 

undersampling techniques, decomposition of original problem into binary problem (Hoens et.al, 2012),  

however,  implementing multiclass problem as binary may lead to loss of important information, (ii) cost-

sensitive learning (Zhou & Liu 2005), implementing MetaCost (Domingos 1999), one-versus- one approach 

(OVO) and one-versus-all approach (OVA) based on decomposition schemes (Haixiang, et al., 2017) and 

implementation of ensemble modelling (Nguyen  et.al, 2018) and (Nguyen et.al, 2019). 

 

    As an example, let us consider the multi-steps APTs detection problem, in which the percentage of the 

different dynamically generated transactions steps of APTs scenario comparing to the legitimate transaction 

of 99.98% is very low, as limited to 0.02 %.  As the case of KDDCup99 dataset used in this study that 

contains four attacks categories with records of denial-of-service (DOS) as 391458, surveillance (Probe) as 

4107, remote-to-local (R2L) as 1126 and user-to-root (U2R) as 52 of which R2L and U2R in essence are 

very rare (see Figure 2. for visual representation). However, any approaches which do not take into 



consideration the imbalance distribution of class elements, may lead to increase difficulty of the 

classification task as observed in the previous study (Eke et al., 2019).  

 

    During the training, it was observed that LSTM-RNN appear to be more suitable for classifying high-

frequency attacks and also the low frequency attacks with lower confidence prediction of 62.50%, 56.20% and 

37.50% for LSTM, GRU and RNN respectively on multi-class attack detection task, while achieving a very 

significant average accuracy of 99.99% for LSTM (Eke et.al, 2019), although accuracy is not a 

recommended performance matrix for such task.  

 

    APT attack has affected many organisations, some of the victims of this modern attack do not provide 

any details about the attacks against them. As far back as 1998 with the first public recorded targeted attack 

named Moonlight Maze, that targeted Pentagon, NASA, the US Energy Department research laboratories 

and private universities and successfully compromised Pentagon computer networks and access tens of 

thousands of files (Smiraus & Jasek 2011). When examining the APT and the new methods being used to 

breach today’s security controls, it distilled down to a basic understanding that attackers, especially those 

who have significant financial motivation, have devised effective attack strategies cantered on penetrating 

some of the most commonly deployed security controls (largely signature-based antivirus and signature-

based intrusion prevention), most often by using custom or dynamically generated malware for the initial 

breach and data-gathering phase.  

 

    The advanced and persistent are major features that make APT differ from basic and traditional attacks 

(TA). These characteristics made APTs ideal for campaigns against enterprises as the perfect tool that easily 

penetrates defences, avoided detection for lengthy periods of time and stole sensitive information. Hence, 

the need for further investigation into handling imbalance data distribution in view to finding a better 

approach that could be considered to improve the achieved results. 

 

2.2  Imbalance Learning Techniques  
Diverse algorithms and techniques have been proposed and implemented for handling imbalance data 

problem. The basic strategies for dealing with imbalanced learning as described in (Das et.al, 2018), 

(Haixiang et al., 2017) and (Sáez, et al., 2016) are discussed in this section. 

 

2.2.1 Data-level approach  

This level involves application of preprocessing techniques such as resampling method in other to rebalance 

sample data distribution point so as to improve the accuracy of the learning process. Resampling method is 

classified into three group, undersampling instances from the majority class or oversampling instances from 

the minority class such that at the end, the number of labelled instances from both classes become 

comparable and hybrid methods (combination of oversampling and undersampling approaches) 

 

• Resampling Methods  

Resampling methods are statistical procedures that use value of information from the observed data 

and modifying the class distribution of the data to draw certain conclusions about the data as 

described in (Chernick, 2012), (López et al., 2012) and (Sinharay, 2010). This resampling technique 

can be achieved through means of undersampling / oversampling and nonparametric statistical 

methods. More information about nonparametric methods can be find in (Chernick, 2012) and 

(Sinharay, 2010). 

o Oversampling techniques - such as Random Oversampling (ROS) and Synthetic Minority 

Oversampling Technique (SMOTE), involves process of oversampling instances from the 

minority class thereby creating new synthetic instances of that minority class (Chawla et 

al., 2002), (Dendamrongvit, & Kubat 2009) and (Giraldo-Forero et al., 2013). 



o Undersampling techniques – example Random Undersampling (RUS): - undersampling 

instances from the majority class by discards examples from the majority classes until the 

effect of imbalance is significantly mitigated (Chawla et al., 2002), (Dendamrongvit, & 

Kubat 2009) and (Giraldo-Forero et al., 2013). 

o Hybrid Methods – this method involves combination of oversampling and underrsampling 

approach. Example of such approach is SMOTETomek. In terms of computational time, a 

situation where within a given dataset, there are hundreds of minority instances, 

underrsampling method appear to be a better option to an oversampling method, while in 

a case of fewer observation of minority instances, the oversampling method SMOTE 

appear to be a better option (Haixiang et al., 2017). 

 

• Feature Selection (FS) and Extraction (FE) - FS can be divided into filters, wrappers, and 

embedded methods, this method of data preprocessing select a subset of k features from the 

existing feature that will enable a classifier to achieve optimal performance, where k is a user-

defined. Examples of FE techniques are PCA (Principal Component Analysis), SBD (Singular 

Value Decomposition) and NMF (f Non-negative Matrix Factorization), more details can be found 

in (Yijing, Haixiang., Xiao, Yanan, & Jinling, 2016). 

 

2.2.2 Algorithm-Level Approaches  

These methods adopt the existing learning algorithms and make a modification so as to reduce bias towards 

the majority class in favour of the minority class. These approaches can be viewed as 

• Boundary Shifting Methods – this method uses disparate costs with the aim at artificially moving 

the decision boundary towards the majority class (Haixiang et al., 2017). 

• Discriminative regression based supervised learning models - this approach was proposed and 

implemented by author in (Peng et.al, 2017). 

• Cost-Sensitive Learning - in these methods, the minority class is assigned a higher cost of miss-

classification compared to the majority class (López et.al, 2012), (López et.al, 2013) and (López 

et.al, 2015). 

• Active Learning – active learning forms a part of the semi- supervised machine learning paradigm 

where the learner is allowed to interact with the user (or some equivalent source of information) to 

obtain the desired outputs at new data points, under the assumption that labelling can be expensive 

for large unlabelled datasets (Attenberg, & Ertekin, 2013). 

2.2.3 Hybrid Approach 

These methods involve the combination of various preprocessing techniques and algorithm-based approach 

so as to improve the robustness of this approach with respect to the nature of data imbalance distributions 

of the minority classes. Few examples of this approach as adopted for imbalance data classification are as 

follows. 

• Sampling Based Approaches with Cost-Sensitive Learning – this approached involves combination 

of presprocessing data resampling techniques either by underrsampling or oversampling the 

imbalance data before implementing a classifier with cost-sensitive turning. Some remarkable work 

was carried out by authors (Chawla et.al, 2002), combined oversampling and underrsampling with 

C4.5 and Naïve Bayes clarifier, (López et al., 2012), combined cost-sensitive learning classifiers 

such as C4.5 with oversampling and underrsampling while (Akbani et.al, 2004) combined SMOTE 

with cost-sensitive SVM. 



• Sampling and Data Balancing Approaches with Classifier Ensembles – these approach uses diverse 

oversampling, underrsampling together with data ensemble classifier mostly bagging and boosting 

such as SMOTEBoost with some balancing techniques while dealing with imbalance data. The 

authors (Nguyen, et al., 2018) combined ensemble classifier through class prototypes. 

2.3.   Imbalance Learning Classification Algorithms 

2.3.1 Ensemble learning approaches  
Can be seen as combination of multiple classifiers within a classification learning system. It is believed that 

within a wider range of applications and under a diverse scenario, combining several base classifiers has 

shown to yields a better performance to those of single classifier (Polikar, 2006), (Zhang & Duin, 2011) 

and (Nguyen et al., 2019). These approaches have been successfully used to address problem of imbalance 

data among other applications are: the main purpose of implementing ensemble systems is to reduce the 

chances of choosing a single poor performance classifier, or to improve a single poor performance classifier 

by using an intelligently combined ensemble of classifiers (Polikar, 2006). 

 

Few examples of different taxonomy of ensemble learning methods are discussed below. 

• Iterative / Incremental Based Ensemble Learning – These approaches involves the ability of a 

classifier to adopt to learn from new introduced class instances without forgetting the previously 

acquired knowledge. Examples are: Boosting, Adaboost. The advantage of using Adaboost is that 

it updates its weight distribution based on the performance of hypothesis ht generated in the 

previous iteration. Any samples that fail to be assigned to the correct class are given higher weights, 

this forces the future classifier to focus on learning these failed classified samples (Polikar, 2006) 

and (Haixiang et al., 2017). Incremental approach is proposed in (Parikh et al., 2004). 

• Parallel Based Ensembles – Examples of parallel based ensemble methods include resampling-

based ensembles, bagging and feature selection-based ensembles. In these methods, each base 

classifier can be trained in parallel, hence an advantage as time saving and ease of development, 

thus for dealing with practical problems (Haixiang et al., 2017). 

• Data Fusion – these methods can be viewed in form 

o Homogeneous Ensemble Methods, where the same learning algorithm uses different 

training sets obtained from diverse data source to generate a set of classifiers, the 

combined outputs of these classifiers are used to make an informed decision about the 

phenomenon generating underlying data distributions (Haixiang et al., 2017), (Nguyen et 

al., 2018) and ((Nguyen et al., 2019). 

o Heterogeneous Ensemble Method: in these methods diverse learning algorithms are 

learned on the same training set to generate different base classifiers. It mainly involves 

combination of different techniques on the meta-data, aimed at achieving a high accuracy 

and the desired data fusion (Polikar, 2006), (Polikar et.al, 2006), (Nguyen, et al., 2018) 

and (Nguyen et al., 2019). Proposed Learn ++ in (Parikh, et al., 2004) and implemented 

on (Polikar et al., 2006), where Lean++ was used to generate an ensemble of classifiers 

that are been trained on available data to achieve a significant and constant output.  

2.3.2 Recurrent Neural Network 

Recurrent neural network (RNN) is an effective class of artificial neural network (ANN) that is used when 

dealing with complex supervised and unsupervised tasks ( KP, 2019) and (Muñoz et al., 2019). Recently, 

deep learning techniques have been applied in cyber security (Eke et al., 2019) and (McDermott et.al, 2019). 

RNN and its variants has the capability to detect the cyber attacks by learning the complex underlying 

structure and hierarchical feature representations from a huge set of networks traffic data. The authors (Eke et al., 

2019), proposed a novel   approach and implemented using deep neural networks for APT multi-step 



− 

detection which takes stacked LSTM- RNNs networks to automatically learn features from the raw data to 

capture the malicious patterns. Although this approach achieved a significant average accuracy of 99.99% 

for LSTM, GRU and RNN on differentiating attacks from normal instances but the model tends to be more 

suitable for classifying high-frequency (majority classes) attacks and also the low frequency attacks (minority 

classes) with lower confidence prediction of 62.50%, 56.20% and 37.50% for LSTM, GRU and RNN 

respectively on multi attack detection. Also ( KP, 2019). Proposed and evaluated RNN model against 

classical support vector machine classifier (SVM) for cybersecurity in Android malware classification, incident 

detection, and fraud detection. 

    RNN emerged as a powerful approach for deep learning architecture generally applicable for time-series data 

modelling. Despite the RNN and its variant networks remarkable performance in long standing AI sequence data 

modelling tasks such as time-series analysis, speech recognition and machine translation (Eke et al., 2019) and 

(LeCun et.al, 2015), applying the same in cyber security task is in early stage of development (Vinayakumar 

et.al, 2017). 

 

Figure 1.  Schema of Unfolded Basic Recurrent Neural Network, modified after (Eke et al., 2019) 

 

RNN were developed in the 1980s and it is similar to a feed- forward network (FFN) with an additional 

internal feedback loop (short-term memory to store and retrieve past information over time scales and 

thereby execute the temporal task) which is a circular connection between higher- and lower-layer neurons 

and optional self-feedback connections. These feedback connections enable RNNs to propagate data from 

earlier events to current processing steps which is in contrasts to FFN. The formulated mathematical 

representations of the RNN computational flow are represented in Equations 1 and 2 

                                  𝑠𝑡  =  𝑓𝑤(𝑠𝑡−1, 𝑥𝑡)                            (1) 

 

    Equation 1 represent the basic recursive formula of RNN where 𝑓𝑤 is the recursive function. The network 

has an input layer x, hidden layer s (also known as hidden state) and output layer o. The current observed 

input to the network at time step t is denoted as 𝑥𝑡  , the hidden state at time step t is denoted as 𝑠𝑡  and 𝑠𝑡−1  
represent the previous hidden state 

                                  𝑠𝑡  =  𝑓(𝑈𝑥𝑡 +  𝑊𝑠𝑡−1 )              (2) 

 

𝑠𝑡 is calculated based on the previous hidden state  𝑠𝑡−1  and the input at the current step 𝑥𝑡 as shown in 
Equation 2.  𝑠𝑡 is the short-term "memory" of the network which captures information about what 
happened in all the previous time steps, this can further be fed to other stacked recurrent layer or final 



layer where the layer has nonlinear activation function such as softmax function sf as represented in 
Equation 3. 

                                    𝑜𝑡  =  𝑠𝑓(𝑉𝑠𝑡 )                          (3) 

𝑜𝑡 is the output at time step t and the vector of probabilities of initial hidden state is set to V.  

f denotes the nonlinearity mapping function from the input features to the output labels such as tanh or 

ReLU, where the weight matrices of the previous state weight at time step t and input state weight at time 

step t are represented as 𝑈𝑥𝑡 and 𝑊𝑠𝑡−1  respectively. 𝑠𝑡−1   is required to calculate the first hidden state 

and is usually initialised to zeroes. 

Understanding the dynamics of RNN entirely is difficult due to its cyclic connection. To overcome this 

an RNN structure input sequence of length is transformed to an FFN structure by unfolding over time-steps 

as represented in Figure 2. FFN consist of hidden layers. This new structure can be analysed and also is 

adaptable to the backward propagation (BP) of errors, at this point the predefined error function are computed by 

comparing the output values with correct values and then distributed back throughout the network layers. 

This process is often used to train deep neural networks (DNN). An unfolded RNN at any given time t is 

defined as a function ℎ𝑇 Equation 4. 

ℎ𝑇  =  𝑆𝑇(𝑥2 𝑥1)   (4) 

 

Where 𝑆𝑇 represents the unfolded graph of time-steps t. 

The sum of all input-output pairs in a sequence over all the time- steps is referred to as the loss L function 

represented in Equation  

           𝐿 =  𝑑(𝑡𝑟, 𝑝𝑟)  =  ∑𝑑
𝑡=1

𝑇

(𝑡𝑟, 𝑝𝑟)                         (5) 

The schema of unfolding of RNN in time of the computation is shown in Figure 1. In RNN cyclic 

connections, each layer represents per time information. The unfolded RNN shares weight parameters W 

across time-steps as represented in Equation 2. This indicates the fact that network performs the same task 

with various inputs over time-steps. In addition to learning the temporal patterns with cyclic connections, 

unfolding allows the RNN model to learn the association of static features between the input and output 

sequences. In order to apply the feedback concept, the BP is used to compute the gradients for weight 

parameters across time-step t. 

 

To find the recurrent weights, the computation of gradient at 𝑡 = 2 will involve back propagating 1 step 
and add them to find and update the recurrent weight. This technique is known as back propagation through time 
(BPTT) employed by RNN to reduce network cumulative error. However, modelling large scale data 
sequence with RNN and BPTT is not efficient due to vanishing and exploding gradient problem as stated 
in (Bengio et.al, 1994) which usually occurs when we BP the error back in many time-steps in the deep 
unrolled RNNs network models. 

Since RNN shares the parameters across all time step reducing the amount of parameter to be trained, this is 

utilised to calculate the gradient at each time t as in Equation 6 and  

 

           𝑠𝑡  = tanℎ (𝑊𝑥𝑠 𝑥𝑡  +   𝑊𝑠𝑠𝑠𝑠𝑡−1 + 𝑏𝑠)           (6) 

           𝑜𝑡  = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊𝑠𝑜 𝑠𝑡  +  𝑏𝑜)                          (7) 

where st is the hidden layer, tanh is the hidden layer nonlinear activation function, the softmax function 

sf is used at the last layer as, 𝑏𝑠 and bo are the bias terms for the hidden state and prediction at time step 𝑡 . 



Where the prediction at time step t is denoted as 𝑜𝑠  while the weight shared between the hidden layer s 

and output o across all the time sequence are 𝑊𝑜𝑠  and 𝑊𝑠𝑠  respectively 

 

2.3.3      Long Short-Term Memory (LSTM) 

LSTM is a second order RNNs that is augmented by recurrent gates known as Forget Gates (FG) 

(Hochreiter & Schmidhuber, 1997). LSTM has the capability to remember information for long periods 

of time. It contains a memory block which is a complex processing unit that is composed of one or more 

memory cell and a pair of multiplicative gates known as input and output gate with in-built recurrent 

connection value 1 as constant error carousel (CEC). This value will be active across the time-step and 

triggered when a memory block has not received any value from outside signals (Ostaszewski et.al, 2006). In 

order to combat the issue of vanishing gradient that prevents RNN from learning long term dependencies 

through gating mechanism, the computation of recurrent hidden state St can be seen as mean elementwise 

multiplication as shown in Equation  

 

                            𝑖 =  𝜎(𝑥𝑡𝑈𝑖  + 𝑠𝑡−1𝑊𝑖) 

                           𝑓 =  𝜎(𝑥𝑡𝑈𝑓  +  𝑠𝑡−1𝑊𝑓) 

                    𝑜 =  𝜎(𝑥𝑡𝑈𝑜  + ( 𝑠𝑡−1𝑜𝑟)𝑊𝑜)                (8) 

                 𝑔 = tanh(𝑥𝑡𝑈𝑔  +  𝑠𝑡−1𝑜𝑟𝑊𝑔) 

                                       𝑐𝑡  =  𝑐𝑡−1  +  𝑔𝑜𝑖 

                                      𝑠𝑡  =  tanℎ(𝑐𝑡 )𝑜𝑜 

 

LSTM comprises of one cell state c and three gates. The input 𝑖 forget f and output gates o used to 

illustrate interaction within LSTM architecture as represented within Equation 8. These gates are composed 

out of a sigmoid function σ that generate output vectors between 0 and 1 through elementwise multiplication 

operation o used in Equation 8 with another vector to decide how much of the newly computed state for the 

current input you want to let through by input gate 𝑖, the forget gate f defines how much of the previous state 

you want to let through. The output gate defines how much of the internal state to expose to next layer in 

time t step. 

The candidate value д is calculated based on the current input and the previous hidden state, the input 

gate 𝑖 will decide which part of this information to store in cell state memory 𝑐𝑡 as the new hidden state д. 

The internal memory of the unit is denoted as 𝑐𝑡, this is the combination of the previous memory 𝑐𝑡−1  

multiplied by the forget gate 𝑓 and the newly computed hidden state 𝑔, multiplied 𝑦 the input gate. 

Finally, the hidden state output state 𝑠𝑡 can be computed by multiplying the internal memory 𝑐𝑡  with 

output gate o.  

 

2.3.4 Gated Recurrent Unit (GRU) 

GRUs are gating mechanism in recurrent neural networks. Its performance on polyphonic music modelling 

and speech signal modelling are similar to that of LSTM with fewer parameters due to lack of output gate. A 

GRU has two gates, a reset gate r, and an update gate z shown in Equation 9 

 



                             𝑧 =  𝜎(𝑥𝑡𝑈𝑧  +  𝑠𝑡−1𝑊𝑧) 

                            𝑘𝑟 =  𝜎(𝑥𝑡𝑈𝑟  +  𝑠𝑡−1𝑊𝑟)                (9) 

                ℎ = tanh(𝑥𝑡𝑈ℎ  +  ( 𝑠𝑡−1𝑜𝑟)𝑊ℎ) 

                             𝑠𝑡  =  (1 − 𝑧)𝑜ℎ +  𝑧𝑜𝑠𝑡−1 

 

3. EXPERIMENTAL STUDY 

The purpose of this study is to examine the impact of implementing resampling method of handling 

imbalance data on multiclass classification in other to improve our previously implemented RNN variants 

algorithm in APTs detection (Eke et al. 2019). Two separate experiment were implemented. One 

experiment was implemented without application of resampling techniques and the second experiment 

involves implementation of SMOTE oversampling and NearMiss undersampling approaches on training 

dataset.  

    In this study, we have carried out three different tasks. The first task involves data preprocessing. All the 

standard data mining processes such as data cleaning and preprocessing, normalisation, visualisation and 

classification were implemented in Python. The batch size of 128 and epochs are run up to 50 and 100 with 

a learning rate set in the range of 0.01-0.5 on a GPU-enabled TensorFlow network architecture. RNN 

variants classification algorithms were used to perform the classification experiments on both dataset in 

order to analyse the network protocol relationship with the attack used by intruders in generating anomalous 

network traffic. The second task focused on deriving hyper-parameter values for best performance model 

and then applied the achieved hyper-parameter values in measuring the model performance. We also 

compared the result of this model to previously published work in (Eke et al., 2019) while the third task, 

involves implementing the two experiments as mention above. 

    The classification metrics result obtained without applying resampling techniques was compared to the 

result obtained when resampling techniques were applied in order to further evaluate the performance of 

RNN variants model on two different datasets (KDDCup99 and UNSW-NB15). This classification task 

analysis was implemented as a binary class and multiclass classification on both datasets used with main 

focus on minority class of interest within the multi-class classification. The training dataset were normalised 

from 0 to 1. This was trained using sigmoid activation function through time with ADAM optimiser, 

sigmoid function was used on all the three gates and categorical/binary cross entropy as loss function for 

multi and binary classification respectively. 

3.1 Experimental Data 

In this study, two different datasets (KDDCup991 and UNSW-NB152) were used. The 10% KDDCup99 

dataset containing 494021 records used consists of 22 attacks classes and 1 normal class. These 9 attacks 

were grouped into 4 main attack classes - Denial of Service (DOS), Remote to User (R2L), User to Root 

(U2R) and Probe. Figure 2 shows the number of records in each of the classes. All features were used as 

input vector with 70% as training set and 30% as testing set for the binary and multi classification 

respectively. The UNSW-NB15 dataset consists of 9 attacks classes and normal class. These 9 attacks were 

grouped into 6 main attack classes - Generic, Exploits, Fuzzers Denial of Service (DoS), Analysis, and 



Worms. This UNSW-NB15 dataset has been partitioned into training and testing sets containing total 

records of 175331 training and 82332 testing datasets. 

 

     Figure 2 is a visual representation of classes in KDDCup99 and UNSW-NB15 datasets as used in this study, it 

shows a clear picture of class distribution in both datasets with A and B representing binary and multiclass 

data records in 10% KDDCup99 dataset, while C and D represent the 6 attacks class and normal class in 

UNSW-NB15 training and testing dataset. 

 

 
Figure 2. Visual representation of experimental datasets (10% KDDCup99 and UNSW-NB15 datasets) 

 

3.2   Evaluation Metrics 

Generally, accuracy is used as a traditional way of classification performance measure. This matric measure is 

no longer appropriate when dealing with multiclass imbalance data since the minority class has little or no 

contribution when compared to majority classes toward accuracy (Sun, et al, 2009). For this reason, this study 

considered precision, recall, f1-score, overall accuracy, area under the curve (AUC) receiver operating characteristic 

(ROC) and confusion matrix to get a clearer understanding of the output. 

• True Positive (TP) - abnormal instances correctly predicted as abnormal. 

• True Negative (TN) - normal instances correctly predicted as normal 

• False Positive (FP) - normal instances incorrectly predicted as abnormal 

• False Negative (FN) - abnormal instances incorrectly predicted as normal 

• Precision (P) - is the ability of a classification model to identify only the relevant data 

points, that is the ratio of true positive (TP) records over the sum of true positive (TP) and false 

positive (FP). Represented as equation  

                                      𝑃 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                             (10)  



• Recall (R) – which is also known as probability of detection, true positive rate (TPR) or 

sensitivity (S) is the ability of a model to find all the relevant cases within a dataset, that is the 

ratio of the true positive (TP) records over the sum of true positive (TP) and false negative (FN). 

Represented as equation  

                          𝑅 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
                       (11) 

 

• F1-score (f1) - is the weighted average of precision and recall, that is the harmonic mean of 

precision and recall of a class in one given metric, represented as in Equation 12, where weight 

parameter is denoted by 𝛽2 generally set to 1 by default and which measures the trade-off between 

recall and precision. By default, 𝛽 often set to  

            

                   𝑓1   =  
(1+𝛽2) .𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
      (12) 

 

• AUC-ROC curve - The precision-recall curve shows the trade-off between precision and recall at 

different threshold settings, where AUC measures the degree of separability and ROC represent 

the probability curve and also a useful technique for model output visualising, organising and 

selecting classifiers based on their performance as described in (Fawcett, 2006). A high area under 

the curve represents both high recall and high precision, where high precision relates to a low 

false positive rate, and high recall relates to a low false negative rate. High scores for both 

precision and recall show that the model is returning accurate results (precision), as well as 

returning a majority of all positive results (recall). An ideal model with high precision and high 

recall will return many results, with all results labelled correctly. The AUC-ROC curve can also 

be used as a scaler measure rather than the higher the AUC value, the better the model (Haixiang 

et al., 2017). 

                              AUC =  
 1 + TPrate − FPrate

2
              (13)  

• Overall Accuracy (OaAcc) - Measures the rate of the correctly classified class instances of all the 

classes (attacks and normal). An overall classification performance is an important performance 

matrix require to evaluate the overall model performance rate, calculated as represented in Equation 

14.  

               𝑂𝑎𝐴𝑐𝑐 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 +𝐹𝑃 + 𝐹𝑁)
                (14) 

 

3.3 Results and Discussions 

To validate the impact of implementing resampling techniques and model performance on imbalance data 

for multi-class classification in detecting minority class of interest (U2R in KDDCup99 and Worms in 

UNSW-NB15 datasets) and multi-attacks, statistical matrices as recommended by (Haixiang et al., 2017), such 

as precision, recall, f1-score, AUC-ROC curve and overall average accuracy are calculated  

• to evaluate the ability of the RNNs variants model (before and after resampling training data) to accurately 

detect and classify an attack as abnormal 

• and also, to investigate how accurately this model will detect different type of attacks with our main 

focus on detecting the minority class of interest  



Table 1 contains the comparative overall average summary result achieved by individual algorithms before 

and after applying SMOTE oversampling techniques on KDDCup99 and UNSW-NB15 datasets, 

while Table 2 and 3 shows  the summary result of individual class classification performance and average mean 

classes detection rate of both resampled and non-resampled data for both datasets. The overall visualisation of 

these results as obtained in mult-class and binary class classification task are also represented in Figures 5(a & b) 

and 6(a & b) for KDDCup99 and UNSW-NB15 datasets respectively. 

    The RNNs variants and stacked-ensemble RNNs variants model were used as classifier and as a detector. As 

a binary classifier to separate normal from attacks instances. This model was able to achieve a noticeable 

overall average accuracy of probability confidence and macro f1 results of (99.95% & 99.93% and 99.95

% & 99.92% for KDDCup99) and (76.09% & 73.06% and 75.92% & 72.80% for UNSW-NB15) datasets 

on oversampled and non-oversampled data respectively, with insignificant performance output comparing  

result between oversampled and non- oversampled data. The individual algorithms performance can also 

be seen in Figure 6a and 6b for both datasets. 

          However, since the focus of this study is on detecting the minority class among the multiclass attacks, using 

the confusion matrix output in Figure 3, the chosen performance matric measures were calculated to get a better 

understanding of the overall model performance. A closer observation of these overall performance matric 

measures results as in Table 1 and the individual performance of each of these algorithms in classifying 

individual classes as represented in Table 2 and 3 shows a slightly different in result in detecting the 

minority class of interest in both resampled and non-resampled data for both datasets. As a detector, the overall 

average detection rate improved from 63.20%, 68.40% & 57.60% to 78.90%, 78.90% & 73.70% for 

minority class of interest (U2R) in KDDCup99 dataset (see Figure 5a), while in the case of detecting 

Worms in UNSW-NB15 dataset, although implementing SMOTE oversampling approach did make a huge 

impact as the overall average detection rate improved from 0.03%, 0.06% & 0.09% to 32.50%, 35.50% & 

23.2% but the detection rate is still below average (see Figure 5b), this demonstrate that uneven data 

distribution is not the only factor that affects performance of diverse modelling classifiers as discussed 

also by arthurs in Sáez et.al, (2016), Batista et.al, (2004) and Sun et al. (2009). High classification error as 

highlighted in Sáez, et al., (2016) also contributed to the poor performance of the validation matrices 

implemented in this study. 

For the case of KDDCup99 dataset, while there are some spikes in the validation accuracy and loss as 

shown in Figure 7 and 8, following the individual model accuracy and loss per epoch, achieving training 

and validation accuracy of 99.96%, 99.95 % (LSTM), 99.95%, 99.94% (RNN), and 99.96%, 99.95% (GRU) 

with overall validation average accuracy of 99.95% and average mean detection accuracy improving from 

91.43% to 94.33% for oversampled and non-oversampled data. Also, the training and validation accuracy 

are quite close to each other, indicating that the model is not overfitting. 

 
Furthermore, the AUC-ROC shows a significant improvement from 82% to 89%, 82% to 87% and 82% 

to 89% for U2R as can be visualised in Figures (9 to 11), with the rest of the classes achieving above 97% 

with micro and macro-average ROC curve of 100% and 97% respectively. While in the case of minority 

class of interest “Worms” in UNSW-NB15 dataset, AUC-ROC, improves from 50% to 59%, with micro 

and macro-average ROC curve of 73% and 65% respectively. With this macro-average obtained in both 

datasets, it indicates that the classifier performs well for each individual class. 
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Table 1. Overall summary performance result of class classification of both resampled and non-resampled 

data for 10% KDDCup99 and UNSW-NB15 datasets 

 

 
 



 
 

 

 



3.3.1 Confusion Matrix: Is a good and simple matrix used in this study as it gives a general overview of 

model performance. The model was trained on the full development training set for UNSW-NB15 dataset, 75% 

full development training and scores are computed on the full evaluation set for UNSW-NB15 dataset and 

25% full evaluation set. The KIDDCup99 confusion matrix of the RNNs variants shows the predicted and 

the actual true binary classifications of normal/attack and detection of all the four attacks group for each of 

the RNNs as represented on Figure 3 for multi-class task and 4 for binary task classification. Visual observation 

of Figure 2 shows a clear picture of the number of instances of each classes within the individual dataset. In 

KDDCup99, the R2L, U2R and Probes are shown to have lower connection records in Figure 2 (B), while normal 

and DOS appear to have more connection records. Those group with more records are learnt properly 

without confusing their identity while those with fewer connection records during training did not show 

good true positive rate and precision as it was had to identify them. This indicates data imbalance distribution 

problem. The dataset contains many examples for "neptune" that belongs to DOS attack class, "satan" attacks 

that belongs to Probe and "normal" but fewer examples of the others. Likewise, within UNSW-NB15, 

Figure 2 (B & C) shows that Worm has the lowest connection record than the rest of the classes within the 

training and testing sets, hence indicating data imbalance distribution problem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 3: 10% KDDCu99 dataset confusion matrix of 5 classes with and without SMOTE oversampling 

techniques applied  

 

 

 

 
Figure 4: 10% KDDCu99 dataset confusion matrix of 2 classes with and without SMOTE oversampling 

techniques applied  



           
Figure 5a. Multi-class classification on KDDCup99        Figure 5b. Multi-class classification on  

                                                                                           UNSW-NB15 

Figure 5(a & b): The visual performance representation of each of the algorithms in detecting all the four 

attacks family and normal network traffics on both KDDCu99 and UNSW-NB15 datasets, each variant 

showing prediction of each of the individual classes with and without SMOTE oversampling techniques 

applied. Starting from left is LSTM, followed by RNN and then GRU on the right for A and B of each dataset 

      

 Figure 6a. Binary classification on KDDCup99             Figure 6b. Binary classification on UNSW-NB15 

Figure 6(a & b). The binary visual performance representation of each of the algorithms in detecting, 

differentiating and classify an attack and normal classes on both KDDCu99 and UNSW-NB15 datasets, 

each variant showing prediction of normal against attack classes with and without SMOTE oversampling 

techniques applied. Starting from left is LSTM, followed by GRU and then RNN on the right for both A and 

B of individual dataset 

 



 

Figure 7: The visual representation of each algorithm’s validation accuracy and loss rate on each iteration 

on 10% KDDCup99 dataset with SMOTE oversampling techniques applied. 

 

 

 

Figure 8: The visual representation of each algorithm’s validation accuracy and loss rate on each 

iteration on 10% KDDCup99 dataset without resampling techniques applied. 

 



 

Figure 9: The visual representation of LSTM’s AUC-ROC graph for all 5 classes and minority “class 4-

U2R” of interest on 10% KDDCup99 dataset with SMOTE oversampling techniques applied. 

 

 

Figure 10: The visual representation of GRU’s AUC-ROC graph for all 5 classes and minority “class 4-

U2R” of interest on 10% KDDCup99 dataset with SMOTE oversampling techniques applied. 



 

 

Figure 11: The visual representation of RNN’s AUC-ROC graph for all 5 classes and minority “class 4-

U2R” of interest on 10% KDDCup99 dataset with SMOTE oversampling techniques applied 

 

4. CONCLUSION 

In this paper, SMOTE oversampling data resampling methods were implemented on two different datasets. 

An IDS based on heterogeneous ensemble learning approach were implemented and evaluated the impact of 

implementing resampling techniques and model performance on imbalance data for multi-class 

classification in detecting minority class of interest (rare attack). This study went further to evaluate the 

ability of the RNNs variants to accurately detect and classify an attack as abnormal, and how accurately this model 

will detect different type of attacks with our main focus on detecting the rare attack class. The result 

obtained from resampled data were compared to that acquired without data resampling. Based on these 

results as contained in Tables 1-3. It is also observed that most of the algorithms applied in this study, achieved a 

competitive overall average validation accuracy rate of 99.95% with 0% overall average validation loss for 

KDDCup99 dataset. At the same time achieving a maximum average mean accuracy of 81.02% with a 

noticeable validation loss for UNSW-NB15 dataset. Although the model demonstrated a good percentage 

detection overall average mean accuracy, precision, sensitivity and F1-score of 99.96%, and detection rate of 

minority class (U2R) improved from 62.50%, 56.20% and 37.50% to 78.90%, 78.90% & 73.70% when 

compared to our previous work in Eke et al., 2019 in classifying individual class. 

Also, with the percentage macro-average obtained from both datasets, these indicates that the classifier 

performs well for each individual class. It can be seen that the implemented model on this study performed 

significantly better when dealing with KDDCup99 dataset than UNSW-NB15 dataset, especially in overall 



performance validation measures. Overall, the result suggests that high classification error and class 

separability problem of minority class has a noticeable impact on model overall performance with respect 

to application domain as seen with the case of KDDCup99 and UNSW-NB15 datasets. 

5. FUTURE WORK  

This work on implementation of resampling techniques on diverse datasets is an ongoing study. Further 

work will explore the impact of implementing Principal Component Analysis (PCA) and t-Distributed 

Stochastic Neighbor Embedding (t-SNE) high-dimensional data visualisation techniques to evaluation the 

need in understanding the relationship boundary between classes in high-dimensional imbalance multi-class 

classification task and then implement OneVsOne and OneVsAll decomposition schemes together with 

exploring modelling combination of an optimised stacked LSTM-RNN model and CNN on a time-series 

dataset - UNSW-NB15 datasets (University of New South Wales 2015 Datasets) over a multi-stage APT 

detection architecture. As APT is a multi-step attacks, detecting a single stage of an APT technique itself does 

not imply detecting an APT attack as mentioned by (Ghafir, Hammoudeh, Prenosil, Han, Hegarty, Rabie, 

& Aparicio-Navarro, 2018). Patterns embedded in large generated datasets through industrial processes may 

be dynamic, hence the need for a system that can accurately detect APT in a systematic way at different 

time step and has the ability to learn, store and update existing patterns with the collection of new data, and 

also be scalable to process data in large volumes (Chen et.al, 2016). Hence, the combination of these two 

models to determine the efficiency of this approach since RNN variants has the capability to learn temporal 

dynamic behaviour over a time sequence data. The authors are currently engaged in work in this domain.  
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ENDNOTES  

1 KDDCup99 dataset: Retrieved from http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. 
 
2 UNSW-NB15 dataset: Retrieved from   

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/  

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
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