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ABSTRACT

Multiclass problem, such as detecting multi-steps behaviour of Advanced Persistent Threats (APTs) have
been a major global challenge, due to their capability to navigates around defenses and to evade detection for a
prolonged period of time. Targeted APT attacks present an increasing concern for both cyber security and
business continuity. Detecting the rare attack is a classification problem with data imbalance. This paper
explores the applications of data resampling techniques, together with heterogeneous ensemble approach
for dealing with data imbalance caused by unevenly distributed data elements among classes with our focus
on capturing the rare attack. It has been shown that the suggested algorithms provide not only detection
capability, but can also classify malicious data traffic corresponding to rare APT attacks.

Keywords: Imbalance data, Resampling techniques, Multi-steps, Multiclass classification, Oversampling,
SMOTE, Recurrent Neural Network, Long Short-Term Memory, Gated Recurrent Unit and Ensemble
techniques.


https://orcid.org/0000-0001-5049-8212
https://orcid.org/0000-0002-0987-2791
https://orcid.org/0000-0002-1389-3886

1. INTRODUCTION

The ability of an intrusion detection system to detect every possibility of an active attack on a system is a
global security challenge. There have been a number of successful breaches of critical infrastructure.
Stuxnet is one example of a sophisticated APT attack purposefully launched to target critical nuclear
infrastructure in Iran as highlighted in (McAfee Labs, 2011) and (Chen etal., 2011).

There are diverse views as to what makes a threat an APT. Some believe that an APT is nation-state
sponsored attack (Ahmad, Webb, Desouza, & Boorman, 2019), as a term that is frequently been used in
security threat discussions (Smiraus & Jasek 2011), while (Five, 2011) and (ISACA, 2014) retain their
definition, “APT is often aimed at the theft of intellectual property or espionage as opposed to achieving
immediate financial gain and are prolonged, stealthy attacks”. However, (Cressey, 2012), (Micro, 2013)
and (Chen et al., 2018) view APT as a highly sophisticated combination of different techniques to achieve
a specifically targeted and highly valuable goal.

This type of attack has drawn special attention to the possibilities of APT attacks on the Industrial Control
System (ICS) such as Supervisory Control and Data Acquisition (SCADA) network. It has also led to
research in developing methods to detect intrusions within a network and isolated devices at any level. Due
to the dynamic and diverse nature of techniques used by attackers to implement an APT attack, these yielded
to uneven distribution different classes. Hence, learning from imbalanced data has notable challenges for
machine learning algorithms, since they need to deal with uneven distribution among examples of different
classes in the training set (Krawczyk, 2016a) and (Zhou & Liu 2005). Handling imbalanced data distribution
in multi classification problem based on ensemble supervised learning and problem decomposition with
cost-sensitive learning are still an active research area in machine learning community as demonstrated by
the authors (Nguyen et al., 2019), (Nguyen et al., 2018) and (Krawczyk, 2016b).

However, most of these proposed works has led to a significant pool of solutions geared towards
addressing both binary and multiclass imbalance problem (Weiss, 2004). Majority of this solutions where
mainly for binary imbalanced problem (Krawczyk, 2016a); hence, there is every need for research direction
towards developing reliable solutions to deal with multiclass scenario problem. This paper focuses on the
implementation of diverse data resampling techniques in combination with heterogeneous ensemble
learning approach for handling multiclass imbalanced datasets with special interest on capturing the
minority class.

The contribution of this paper can be summarised as follows:

¢ Implementation of several oversampling and undersampling approaches for handling binary and
multiclass imbalance datasets with main focus on minority class in multiclass label.

e Analysing the impact of these approaches that could be used to improve the results obtained,
without proposing a new algorithm or technique for handling imbalance data.

e Implementation of oversampling techniques for the multi-class imbalanced classification on two
datasets (KDDCup99! and UNSW-NB152), with close attention on the impact and knowledge of
the minority class and imbalance distribution factors.

e Carried out series of experiments to: evaluate the impact of resampling imbalance data and
ensemble deep neural networks to (i) accurately detect and classify an attack as abnormal and (ii)
classify multiclass label into different type of attacks family.

The remainder of this paper is organised as follows. In the background section 2, we covered classification of
imbalance data, techniques for learning from imbalance data and application in security domain together with an
overview of deep neural network and ensemble learning approach as applicable to this study are discussed.



Experimental data, evaluation metrics and analysis results are discussed in Section 3. The conclusion of this
study and future work are presented in section 4 and 5 respectively.

2. BACKGROUND

This section contains a brief background of imbalance data and applicable technique for handling
imbalance distribution with respect to security domain based on literature review of few approaches
and basic definition. This section also contains an overview of deep neural network and ensemble
learning approaches as implemented on this study are discussed.

2.1  Learning from Multiclass Imbalance Data

Threats to network security remain one of the biggest challenges facing organisations and industries at
various levels of operation. One of the major forms of such threats is referred to as APTs, which exploit
multiple ways to open the system to malware. Classification and prediction has become an important task
for pattern recognition as these events are rarely observed in any given network, making the classification
and prediction task suffers from imbalanced data as stated by authors (Haixiang et al., 2017). This problem
of imbalance data is not limited to security domain, but also applicable in detection of fraudulent transaction
or call (Dal Pozzolo et al., 2014), text classification (Cardie & Howe, 1997) and several other domains.
Hence the need for a classification model that will yield a high detection rate including identifying the rare
class of interest.

The uneven distribution among examples of different attacks categories in classification tasks is known
as the problem of imbalanced data whereby instances of certain classes occur more frequently than others
(the minority class). This identified problem makes it difficult for learning algorithms as mentioned in (Sun
et.al, 2009). Several studies have demonstrated that uneven data distribution is not the only factor that
affects performance of diverse modelling classifiers as discussed by arthurs (Saez et.al, 2016), (Batista et.al,
2004) and (Sun et al., 2009). Other factors may include the number of minority class, this could result to
not enough data for training the model, minority class forming small distributed groups which leads to class
separability problem, this is the main problem with minority class as highlighted by (Sun et al., 2009). Also,
a high classification error may as well contribute to poor performance of the validation matrix implemented
in any a given problem (Saez et al., 2016). Again, class overlap as pointed out by (Vuttipittayamongkol
et.al, 2018) is also known to have a higher impact on the classification of imbalanced datasets than the
dominance of the majority class, although their proposed approach “new undersampling method that
eliminates negative instances from the overlapping region” (Vuttipittayamongkol et al. 2018) has only been
tested on binary class.

Diverse techniques have been proposed and successfully applied in handling imbalance data distribution
problem, among which are but not limited to (i) data preprocessing, such as oversampling and
undersampling techniques, decomposition of original problem into binary problem (Hoens et.al, 2012),
however, implementing multiclass problem as binary may lead to loss of important information, (ii) cost-
sensitive learning (Zhou & Liu 2005), implementing MetaCost (Domingos 1999), one-versus- one approach
(OVO) and one-versus-all approach (OVA) based on decomposition schemes (Haixiang, et al., 2017) and
implementation of ensemble modelling (Nguyen et.al, 2018) and (Nguyen et.al, 2019).

As an example, let us consider the multi-steps APTs detection problem, in which the percentage of the
different dynamically generated transactions steps of APTs scenario comparing to the legitimate transaction
of 99.98% is very low, as limited to 0.02 %. As the case of KDDCup99 dataset used in this study that
contains four attacks categories with records of denial-of-service (DOS) as 391458, surveillance (Probe) as
4107, remote-to-local (R2L) as 1126 and user-to-root (U2R) as 52 of which R2L and U2R in essence are
very rare (see Figure 2. for visual representation). However, any approaches which do not take into



consideration the imbalance distribution of class elements, may lead to increase difficulty of the
classification task as observed in the previous study (Eke et al., 2019).

During the training, it was observed that LSTM-RNN appear to be more suitable for classifying high-
frequency attacks and also the low frequency attacks with lower confidence prediction of 62.50%, 56.20% and
37.50% for LSTM, GRU and RNN respectively on multi-class attack detection task, while achieving a very
significant average accuracy of 99.99% for LSTM (Eke et.al, 2019), although accuracy is not a
recommended performance matrix for such task.

APT attack has affected many organisations, some of the victims of this modern attack do not provide
any details about the attacks against them. As far back as 1998 with the first public recorded targeted attack
named Moonlight Maze, that targeted Pentagon, NASA, the US Energy Department research laboratories
and private universities and successfully compromised Pentagon computer networks and access tens of
thousands of files (Smiraus & Jasek 2011). When examining the APT and the new methods being used to
breach today’s security controls, it distilled down to a basic understanding that attackers, especially those
who have significant financial motivation, have devised effective attack strategies cantered on penetrating
some of the most commonly deployed security controls (largely signature-based antivirus and signature-
based intrusion prevention), most often by using custom or dynamically generated malware for the initial
breach and data-gathering phase.

The advanced and persistent are major features that make APT differ from basic and traditional attacks
(TA). These characteristics made APTs ideal for campaigns against enterprises as the perfect tool that easily
penetrates defences, avoided detection for lengthy periods of time and stole sensitive information. Hence,
the need for further investigation into handling imbalance data distribution in view to finding a better
approach that could be considered to improve the achieved results.

2.2 Imbalance Learning Techniques

Diverse algorithms and technigques have been proposed and implemented for handling imbalance data
problem. The basic strategies for dealing with imbalanced learning as described in (Das et.al, 2018),
(Haixiang et al., 2017) and (Séez, et al., 2016) are discussed in this section.

2.2.1 Data-level approach

This level involves application of preprocessing techniques such as resampling method in other to rebalance
sample data distribution point so as to improve the accuracy of the learning process. Resampling method is
classified into three group, undersampling instances from the majority class or oversampling instances from
the minority class such that at the end, the number of labelled instances from both classes become
comparable and hybrid methods (combination of oversampling and undersampling approaches)

e Resampling Methods

Resampling methods are statistical procedures that use value of information from the observed data
and modifying the class distribution of the data to draw certain conclusions about the data as
described in (Chernick, 2012), (Lopez et al., 2012) and (Sinharay, 2010). This resampling technique
can be achieved through means of undersampling / oversampling and nonparametric statistical
methods. More information about nonparametric methods can be find in (Chernick, 2012) and
(Sinharay, 2010).

o Oversampling techniques - such as Random Oversampling (ROS) and Synthetic Minority
Oversampling Technique (SMOTE), involves process of oversampling instances from the
minority class thereby creating new synthetic instances of that minority class (Chawla et
al., 2002), (Dendamrongvit, & Kubat 2009) and (Giraldo-Forero et al., 2013).



2.2.2

o Undersampling techniques — example Random Undersampling (RUS): - undersampling
instances from the majority class by discards examples from the majority classes until the
effect of imbalance is significantly mitigated (Chawla et al., 2002), (Dendamrongvit, &
Kubat 2009) and (Giraldo-Forero et al., 2013).

o Hybrid Methods — this method involves combination of oversampling and underrsampling
approach. Example of such approach is SMOTETomek. In terms of computational time, a
situation where within a given dataset, there are hundreds of minority instances,
underrsampling method appear to be a better option to an oversampling method, while in
a case of fewer observation of minority instances, the oversampling method SMOTE
appear to be a better option (Haixiang et al., 2017).

Feature Selection (FS) and Extraction (FE) - FS can be divided into filters, wrappers, and
embedded methods, this method of data preprocessing select a subset of k features from the
existing feature that will enable a classifier to achieve optimal performance, where Kk is a user-
defined. Examples of FE techniques are PCA (Principal Component Analysis), SBD (Singular
Value Decomposition) and NMF (f Non-negative Matrix Factorization), more details can be found
in (Yijing, Haixiang., Xiao, Yanan, & Jinling, 2016).

Algorithm-Level Approaches

These methods adopt the existing learning algorithms and make a modification so as to reduce bias towards
the majority class in favour of the minority class. These approaches can be viewed as

2.2.3

Boundary Shifting Methods — this method uses disparate costs with the aim at artificially moving
the decision boundary towards the majority class (Haixiang et al., 2017).

Discriminative regression based supervised learning models - this approach was proposed and
implemented by author in (Peng et.al, 2017).

Cost-Sensitive Learning - in these methods, the minority class is assigned a higher cost of miss-
classification compared to the majority class (LOpez et.al, 2012), (Lépez et.al, 2013) and (L6pez
et.al, 2015).

Active Learning — active learning forms a part of the semi- supervised machine learning paradigm
where the learner is allowed to interact with the user (or some equivalent source of information) to
obtain the desired outputs at new data points, under the assumption that labelling can be expensive
for large unlabelled datasets (Attenberg, & Ertekin, 2013).

Hybrid Approach

These methods involve the combination of various preprocessing techniques and algorithm-based approach
so as to improve the robustness of this approach with respect to the nature of data imbalance distributions
of the minority classes. Few examples of this approach as adopted for imbalance data classification are as
follows.

Sampling Based Approaches with Cost-Sensitive Learning — this approached involves combination
of presprocessing data resampling techniques either by underrsampling or oversampling the
imbalance data before implementing a classifier with cost-sensitive turning. Some remarkable work
was carried out by authors (Chawla et.al, 2002), combined oversampling and underrsampling with
C4.5 and Naive Bayes clarifier, (Lépez et al., 2012), combined cost-sensitive learning classifiers
such as C4.5 with oversampling and underrsampling while (Akbani et.al, 2004) combined SMOTE
with cost-sensitive SVM.



o Sampling and Data Balancing Approaches with Classifier Ensembles — these approach uses diverse
oversampling, underrsampling together with data ensemble classifier mostly bagging and boosting
such as SMOTEBoost with some balancing techniques while dealing with imbalance data. The
authors (Nguyen, et al., 2018) combined ensemble classifier through class prototypes.

2.3. Imbalance Learning Classification Algorithms

2.3.1 Ensemble learning approaches

Can be seen as combination of multiple classifiers within a classification learning system. It is believed that
within a wider range of applications and under a diverse scenario, combining several base classifiers has
shown to yields a better performance to those of single classifier (Polikar, 2006), (Zhang & Duin, 2011)
and (Nguyen et al., 2019). These approaches have been successfully used to address problem of imbalance
data among other applications are: the main purpose of implementing ensemble systems is to reduce the
chances of choosing a single poor performance classifier, or to improve a single poor performance classifier
by using an intelligently combined ensemble of classifiers (Polikar, 2006).

Few examples of different taxonomy of ensemble learning methods are discussed below.

o lterative / Incremental Based Ensemble Learning — These approaches involves the ability of a
classifier to adopt to learn from new introduced class instances without forgetting the previously
acquired knowledge. Examples are: Boosting, Adaboost. The advantage of using Adaboost is that
it updates its weight distribution based on the performance of hypothesis ht generated in the
previous iteration. Any samples that fail to be assigned to the correct class are given higher weights,
this forces the future classifier to focus on learning these failed classified samples (Polikar, 2006)
and (Haixiang et al., 2017). Incremental approach is proposed in (Parikh et al., 2004).

o Parallel Based Ensembles — Examples of parallel based ensemble methods include resampling-
based ensembles, bagging and feature selection-based ensembles. In these methods, each base
classifier can be trained in parallel, hence an advantage as time saving and ease of development,
thus for dealing with practical problems (Haixiang et al., 2017).

e Data Fusion — these methods can be viewed in form

o Homogeneous Ensemble Methods, where the same learning algorithm uses different
training sets obtained from diverse data source to generate a set of classifiers, the
combined outputs of these classifiers are used to make an informed decision about the
phenomenon generating underlying data distributions (Haixiang et al., 2017), (Nguyen et
al., 2018) and ((Nguyen et al., 2019).

o Heterogeneous Ensemble Method: in these methods diverse learning algorithms are
learned on the same training set to generate different base classifiers. It mainly involves
combination of different techniques on the meta-data, aimed at achieving a high accuracy
and the desired data fusion (Polikar, 2006), (Polikar et.al, 2006), (Nguyen, et al., 2018)
and (Nguyen et al., 2019). Proposed Learn ++ in (Parikh, et al., 2004) and implemented
on (Polikar et al., 2006), where Lean++ was used to generate an ensemble of classifiers
that are been trained on available data to achieve a significant and constant output.

2.3.2  Recurrent Neural Network

Recurrent neural network (RNN) is an effective class of artificial neural network (ANN) that is used when
dealing with complex supervised and unsupervised tasks ( KP, 2019) and (Mufoz et al., 2019). Recently,
deep learning techniques have been applied in cyber security (Eke et al., 2019) and (McDermott et.al, 2019).
RNN and its variants has the capability to detect the cyber attacks by learning the complex underlying
structure and hierarchical feature representations from a huge set of networks traffic data. The authors (Eke et al.,
2019), proposed a novel approach and implemented using deep neural networks for APT multi-step



detection which takes stacked LSTM- RNNSs networks to automatically learn features from the raw data to
capture the malicious patterns. Although this approach achieved a significant average accuracy of 99.99%
for LSTM, GRU and RNN on differentiating attacks from normal instances but the model tends to be more
suitable for classifying high-frequency (majority classes) attacks and also the low frequency attacks (minority
classes) with lower confidence prediction of 62.50%, 56.20% and 37.50% for LSTM, GRU and RNN
respectively on multi attack detection. Also ( KP, 2019). Proposed and evaluated RNN model against
classical support vector machine classifier (SVM) for cybersecurity in Android malware classification, incident
detection, and fraud detection.

RNN emerged as a powerful approach for deep learning architecture generally applicable for time-series data
modelling. Despite the RNN and its variant networks remarkable performance in long standing Al sequence data
modelling tasks such as time-series analysis, speech recognition and machine translation (Eke et al., 2019) and
(LeCun et.al, 2015), applying the same in cyber security task is in early stage of development (Vinayakumar
et.al, 2017).
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Figure 1. Schema of Unfolded Basic Recurrent Neural Network, modified after (Eke et al., 2019)

RNN were developed in the 1980s and it is similar to a feed- forward network (FFN) with an additional
internal feedback loop (short-term memory to store and retrieve past information over time scales and
thereby execute the temporal task) which is a circular connection between higher- and lower-layer neurons
and optional self-feedback connections. These feedback connections enable RNNs to propagate data from
earlier events to current processing steps which is in contrasts to FFN. The formulated mathematical
representations of the RNN computational flow are represented in Equations 1 and 2

St = fw(Se—1, Xe) 1)

Equation 1 represent the basic recursive formula of RNN where f£,, is the recursive function. The network
has an input layer x, hidden layer s (also known as hidden state) and output layer 0. The current observed
input to the network at time step t is denoted as x; , the hidden state at time step t is denoted ass; and s;_,
represent the previous hidden state

Se = fUxe + Wseq) (2)

s; is calculated based on the previous hidden state s;_; and the input at the current step x; asshown in
Equation 2. s, is the short-term "memory" of the network which captures information about what
happened in all the previous time steps, this can further be fed to other stacked recurrent layer or final



layer where the layer has nonlinear activation function such as softmax function sf as represented in
Equation 3.

or = sf(Vs¢) 3)
o; is the output at time step t and the vector of probabilities of initial hidden state is set to V.

f denotes the nonlinearity mapping function from the input features to the output labels such as tanh or
ReLU, where the weight matrices of the previous state weight at time step t and input state weight at time
step t are represented as Ux; and Ws,_; respectively. s,_; is required to calculate the first hidden state
and is usually initialised to zeroes.

Understanding the dynamics of RNN entirely is difficult due to its cyclic connection. To overcome this
an RNN structure input sequence of length is transformed to an FRNstructure by unfolding over time-steps
as represented in Figure 2. FFN consist of hidden layers. This new structure can be analysed and also is
adaptable to the backward propagation (BP) of errors, at this point the predefined error function are computed by
comparing the output values with correct values and then distributed back throughout the network layers.
This process is often used to train deep neural networks (DNN). An unfolded RNN at any given timet is
definedasafunction h Equation 4.

hy = Sp(x3%1) (4)

Where S represents the unfolded graph of time-steps t.

The sum of all input-output pairs in a sequence over all the time- steps is referred to as the loss L function
represented in Equation

T
L = d(tr,pr) = tzch(tr,pr) %)

The schema of unfolding of RNN in time of the computation is shown in Figure 1. In RNN cyclic
connections, each layer represents per time information. The unfolded RNN shares weight parameters W
across time-steps as represented in Equation 2. This indicates the fact that network performs the same task
with various inputs over time-steps. In addition to learning the temporal patterns with cyclic connections,
unfolding allows the RNN model to learn the association of static features between the input and output
sequences. In order to apply the feedback concept, the BP is used to compute the gradients for weight
parameters across time-step t.

To find the recurrent weights, the computation of gradient at t = 2 will involve back propagating 1 step
and add themto find and update the recurrent weight. This technique is known as back propagation through time
(BPTT) employed by RNN to reduce network cumulative error. However, modelling large scale data
sequence with RNN and BPTT is not efficient due to vanishing and exploding gradient problem as stated
in (Bengio et.al, 1994) which usually occurs when we BP the error back in many time-steps in the deep
unrolled RNNs network models.

Since RNN shares the parameters across all time step reducing the amount of parameter to be trained, this is
utilised to calculate the gradient at each time t as in Equation 6 and

s¢ =tanh (Wys x¢ + WsssSe—1 + bs) (6)
0 = softmax Wy, s¢ + by) 7

where st is the hidden layer, tanh is the hidden layer nonlinear activation function, the softmax function
sfisused at the last layer as, b and bo are the bias terms for the hidden state and prediction at time step ¢ .



Where the prediction at time step t is denoted as o, while the weight shared between the hidden layer s
and output o across all the time sequence are W, and W, respectively

2.3.3  Long Short-Term Memory (LSTM)

LSTM is a second order RNNs that is augmented by recurrent gates known as Forget Gates (FG)
(Hochreiter & Schmidhuber, 1997). LSTM has the capability to remember information for long periods
of time. It contains a memory block which is a complex processing unit that is composed of one or more
memory cell and a pair of multiplicative gates known as input and output gate with in-built recurrent
connection value 1 as constant error carousel (CEC). This value will be active across the time-step and
triggered when a memory block has not received any value from outside signals (Ostaszewski et.al, 2006). In
order to combat the issue of vanishing gradient that prevents RNN from learning long term dependencies
through gating mechanism, the computation of recurrent hidden state St can be seen as mean elementwise
multiplication as shown in Equation

i = a(xtUi + st_lwi)
f=olx U + s, W)

o = a(xU° + (s;_q0m)W?) (8)
g = tanh(x, U9 + s;_q0rW9)
C; = C—1 + goi

s¢ = tanh(c; )oo

LSTM comprises of one cell state ¢ and three gates. The input i forget f and output gates o used to
illustrate interaction within LSTM architecture as represented within Equation 8. These gates are composed
out of a sigmoid function ¢ that generate output vectors between 0 and 1 through elementwise multiplication
operation o used in Equation 8 with another vector to decide how much of the newly computed state for the
current input you want to let through by input gate i, the forget gate f defines how much of the previous state
you want to let through. The output gate defines how much of the internal state to expose to next layer in
time t step.

The candidate value o is calculated based on the current input and the previous hidden state, the input
gate i will decide which part of this information to store in cell state memory c; as the new hidden state o.
The internal memory of the unit is denoted as c;, this is the combination of the previous memory c;_
multiplied by the forget gate f and the newly computed hidden state g, multiplied y the input gate.
Finally, the hidden state output state s, can be computed by multiplying the internal memory c¢; with
output gate o.

2.3.4 Gated Recurrent Unit (GRU)

GRUsare gating mechanisminrecurrent neural networks. Its performance on polyphonic music modelling
and speech signal modelling are similar to that of LSTM with fewer parameters due to lack of output gate. A
GRU has two gates, a reset gate r, and an update gate z shown in Equation 9



z = o(xU? + s W?)
kr = a(x,U" + s, WT) 9)
h = tanh(x, U" + (s,_j0r)W")

s¢ = (1 —2)oh + zos;_4

3. EXPERIMENTAL STUDY

The purpose of this study is to examine the impact of implementing resampling method of handling
imbalance data on multiclass classification in other to improve our previously implemented RNN variants
algorithm in APTs detection (Eke et al. 2019). Two separate experiment were implemented. One
experiment was implemented without application of resampling techniques and the second experiment
involves implementation of SMOTE oversampling and NearMiss undersampling approaches on training
dataset.

In this study, we have carried out three different tasks. The first task involves data preprocessing. All the
standard data mining processes such as data cleaning and preprocessing, normalisation, visualisation and
classification were implemented in Python. The batch size of 128 and epochs are run up to 50 and 100 with
a learning rate set in the range of 0.01-0.5 on a GPU-enabled TensorFlow network architecture. RNN
variants classification algorithms were used to perform the classification experiments on both dataset in
order to analyse the network protocol relationship with the attack used by intruders in generating anomalous
network traffic. The second task focused on deriving hyper-parameter values for best performance model
and then applied the achieved hyper-parameter values in measuring the model performance. We also
compared the result of this model to previously published work in (Eke et al., 2019) while the third task,
involves implementing the two experiments as mention above.

The classification metrics result obtained without applying resampling techniques was compared to the
result obtained when resampling techniques were applied in order to further evaluate the performance of
RNN variants model on two different datasets (KDDCup99 and UNSW-NB15). This classification task
analysis was implemented as a binary class and multiclass classification on both datasets used with main
focus on minority class of interest within the multi-class classification. The training dataset were normalised
from 0 to 1. This was trained using sigmoid activation function through time with ADAM optimiser,
sigmoid function was used on all the three gates and categorical/binary cross entropy as loss function for
multi and binary classification respectively.

3.1 Experimental Data

In this study, two different datasets (KDDCup99' and UNSW-NB152) were used. The 10% KDDCup99
dataset containing 494021 records used consists of 22 attacks classes and 1 normal class. These 9 attacks
were grouped into 4 main attack classes - Denial of Service (DOS), Remote to User (R2L), User to Root
(U2R) and Probe. Figure 2 shows the number of records in each of the classes. All features were used as
input vector with 70% as training set and 30% as testing set for the binary and multi classification
respectively. The UNSW-NB15 dataset consists of 9 attacks classes and normal class. These 9 attacks were
grouped into 6 main attack classes - Generic, Exploits, Fuzzers Denial of Service (DoS), Analysis, and



Worms. This UNSW-NB15 dataset has been partitioned into training and testing sets containing total
records of 175331 training and 82332 testing datasets.

Figure 2 is a visual representation of classes in KDDCup99 and UNSW-NB15 datasets as used in this study, it
shows a clear picture of class distribution in both datasets with A and B representing binary and multiclass
data records in 10% KDDCup99 dataset, while C and D represent the 6 attacks class and normal class in
UNSW-NB15 training and testing dataset.
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Figure 2. Visual representation of experimental datasets (10% KDDCup99 and UNSW-NB15 datasets)

3.2 Evaluation Metrics

Generally, accuracy is used as a traditional way of classification performance measure. This matric measure is
no longer appropriate when dealing with multiclass imbalance data since the minority class has little or no
contribution when compared to majority classes toward accuracy (Sun, et al, 2009). For this reason, this study
considered precision, recall, f1-score, overall accuracy, area under the curve (AUC) receiver operating characteristic
(ROC) and confusion matrix to get a clearer understanding of the output.

True Positive (TP) - abnormal instances correctly predicted as abnormal.
True Negative (TN) - normal instances correctly predicted as normal

False Positive (FP) - normal instances incorrectly predicted as abnormal
False Negative (FN) - abnormal instances incorrectly predicted as normal

Precision (P) - is the ability of a classification model to identify only the relevant data
points, that is the ratio of true positive (TP) records over the sum of true positive (TP) and false
positive (FP). Represented as equation

TP

P = Trirp (10)




e Recall (R) —which is also known as probability of detection, true positive rate (TPR) or
sensitivity (S) is the ability of a model to find all the relevant cases within a dataset, that is the
ratio of the true positive (TP) records over the sum of true positive (TP) and false negative (FN).
Represented as equation

TP
~ (TP +FN)

(11)

e Fl-score (f1) - is the weighted average of precision and recall, that is the harmonic mean of
precision and recall of a class in one given metric, represented as in Equation 12, where weight
parameter is denoted by 2 generally set to 1 by default and which measures the trade-off between
recall and precision. By default, 8 often set to

__ (14p?) precision .recall

f1 (12)

B2precision + recall

e AUC-ROC curve - The precision-recall curve shows the trade-off between precision and recall at
different threshold settings, where AUC measures the degree of separability and ROC represent
the probability curve and also a useful technique for model output visualising, organising and
selecting classifiers based on their performance as described in (Fawcett, 2006). A high area under
the curve represents both high recall and high precision, where high precision relates to a low
false positive rate, and high recall relates to a low false negative rate. High scores for both
precision and recall show that the model is returning accurate results (precision), as well as
returning a majority of all positive results (recall). An ideal model with high precision and high
recall will return many results, with all results labelled correctly. The AUC-ROC curve can also
be used as a scaler measure rather than the higher the AUC value, the better the model (Haixiang
etal., 2017).

1+ Tprate - Fprate
2

AUC =

(13)

e Overall Accuracy (OaAcc) - Measures the rate of the correctly classified class instances of all the
classes (attacks and normal). An overall classification performance is an important performance
matrix require to evaluate the overall model performance rate, calculated as represented in Equation
14,

(TP + TN)
(TP + TN +FP + FN)

OaAcc = (14)

3.3 Results and Discussions

To validate the impact of implementing resampling techniques and model performance on imbalance data
for multi-class classification in detecting minority class of interest (U2R in KDDCup99 and Worms in
UNSW-NB15 datasets) and multi-attacks, statistical matrices as recommended by (Haixiang et al., 2017), such
as precision, recall, f1-score, AUC-ROC curve and overall average accuracy are calculated

e to evaluate the ability of the RNNSs variants model (before and after resampling training data) to accurately
detect and classify an attack as abnormal

e and also, to investigate how accurately this model will detect different type of attacks with our main
focus on detecting the minority class of interest



Table 1 contains the comparative overall average summary result achieved by individual algorithms before
and after applying SMOTE oversampling techniques on KDDCup99 and UNSW-NB15 datasets,
while Table 2 and 3 shows the summary result of individual class classification performance and average mean
classes detection rate of both resampled and non-resampled data for both datasets. The overall visualisation of
these results as obtained in mult-class and binary class classification task are also represented in Figures 5(a & b)
and 6(a & b) for KDDCup99 and UNSW-NB15 datasets respectively.

The RNNs variants and stacked-ensemble RNNs variants model were used as classifier andas a detector. As
a binary classifier to separate normal from attacks instances. This model was able to achieve a noticeable
overall average accuracy of probability confidence and macro f1 results of (99.95% & 99.93% and 99.95
% & 99.92% for KDDCup99) and (76.09% & 73.06% and 75.92% & 72.80% for UNSW-NB15) datasets
on oversampled and non-oversampled data respectively, with insignificant performance output comparing
result between oversampled and non- oversampled data. The individual algorithms performance can also
be seen in Figure 6a and 6b for both datasets.

However, since the focus of this study is on detecting the minority class among the multiclass attacks, using
the confusion matrix output in Figure 3, the chosen performance matric measures were calculated to get a better
understanding of the overall model performance. A closer observation of these overall performance matric
measures results as in Table 1 and the individual performance of each of these algorithms in classifying
individual classes as represented in Table 2 and 3 shows a slightly different in result in detecting the
minority class of interest in both resampled and non-resampled data for both datasets. As a detector, the overall
average detection rate improved from 63.20%, 68.40% & 57.60% to 78.90%, 78.90% & 73.70% for
minority class of interest (U2R) in KDDCup99 dataset (see Figure 5a), while in the case of detecting
Worms in UNSW-NB15 dataset, although implementing SMOTE oversampling approach did make a huge
impact as the overall average detection rate improved from 0.03%, 0.06% & 0.09% to 32.50%, 35.50% &
23.2% but the detection rate is still below average (see Figure 5b), this demonstrate that uneven data
distribution is not the only factor that affects performance of diverse modelling classifiers as discussed
also by arthurs in Saez et.al, (2016), Batista et.al, (2004) and Sun et al. (2009). High classification error as
highlighted in Séez, et al., (2016) also contributed to the poor performance of the validation matrices
implemented in this study.

For the case of KDDCup99 dataset, while there are some spikes in the validation accuracy and loss as
shown in Figure 7 and 8, following the individual model accuracy and loss per epoch, achieving training
and validation accuracy of 99.96%, 99.95 % (LSTM), 99.95%, 99.94% (RNN), and 99.96%, 99.95% (GRU)
with overall validation average accuracy of 99.95% and average mean detection accuracy improving from
91.43% to 94.33% for oversampled and non-oversampled data. Also, the training and validation accuracy
are quite close to each other, indicating that the model is not overfitting.

Furthermore, the AUC-ROC shows a significant improvement from 82% to 89%, 82% to 87% and 82%
to 89% for U2R as can be visualised in Figures (9 to 11), with the rest of the classes achieving above 97%
with micro and macro-average ROC curve of 100% and 97% respectively. While in the case of minority
class of interest “Worms” in UNSW-NB15 dataset, AUC-ROC, improves from 50% to 59%, with micro
and macro-average ROC curve of 73% and 65% respectively. With this macro-average obtained in both
datasets, it indicates that the classifier performs well for each individual class.
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Table 1. Overall summary performance result of class classification of both resampled and non-resampled
data for 10% KDDCup99 and UNSW-NB15 datasets

Cosnparative overall performnance resullt table for mullidiass diassification data analysis
10% KDDCup99 dataset
No of Samples 494020 - 10% KDDCup99
SMOTE [ NoRe [ sMOTE| NoRe | sMOTE | NoRe
LLs 143149 143149 143137 143106 143134 143147
FP 58 62 s Fal 3 i H
™ 143149 143149 148137 143106 143134 143147
FN 58 62 s Fal 3 [ H
Valloss (%) |0 [} [} 0 0
Scores
AgAc{%) [ooos 00_08 00_08 00 08 00 08 09 0g
P (%) 99.96 99.96 99.95 99.95 99.95 99.96
SefTPR(%) [99.96 99.96 99.95 99.95 99.95 99.96
sp {%) 99.96 99.96 99.95 99.95 99.95 99.96
(%) 99.96 99.96 99,95 99,95 99.95 99.96
Voling by Probability Confidence
SMOTE No-Re
OaAgAc(%) (D996 09 95
maoo L{%] |9293 o124
URNSW- NS dataset
Criteria 15T RN GRU
No of Samples 15331 Tml'ning and 32332 Tﬁting - UNSW-NB15 dataset
SMOTE No-Re SMOTE MNo-Re SMOTE MNo-Re
P 36333 43559 41199 34403 30716 36333
FP 45999 E-~ P 41132 4799 31616 459979
™ 26333 43559 41199 34402 20716 36333
FN 45936 38779 3997 47935 51049 45936
Valloss (%) |27 273 252 235 3.44 3.98
Scores
AgAc (%) 7773 102 7805 7a71 GOS 7614
P (%) 43.63 52.91 50.04 41.79 37.31 41.13
SefTPR{X] |48.73 329 304 41. 78 3757 41.16
specificity (%) |48.63 52.91 S0.04  4L79 37.31 4113
(%) 48 68 52.9 50.39  4L78 3744 4115
Voling by Probability Confidence
SMOTE No-Re
OaAgAc(%) |#8.37 2811
maouo 1 {%] [301 1




Tabla 2. Summary result of individual class classification rate and average mean classas dataction rata of both rasamplad and non-rasamplad data for 10% KDDCup9? dataset

Chaszes s Normal FProle RIL (ciass of imieresi) VIR [class of imivresi) d;\
&
Alporithen| Meirics | De (%) P (%) Se(®) Sp(6) 0O (%) De(®6) P(34) Se(6) Sp(*6) 0 (36)| De (36) P(36) Se () Sp(36) 0 (36)|De (36) P (36) Se (34) Sp (36) 0(346)[De (36) P (36) Se (36) Sp(26) 0 (34) !’V
100 100 100 9999 100 9997 999 90.99 9998 9991 |9999 9968 9951 100 9959 |9998 9679 9326 9999 9499 9999 5769 T89S 9999 6667 |9998
LSTM | NeRe [100 100 100 9999 100 9995 9991 999 9998 9991 |9999 9935 9968 9999 9951 |9997 9471 944 9999 M5 |9999 66567 6316 100 6156 |9998
9999 9999 100 2997 100 9995 9991 9926 9998 998 |9999 9919 9943 9999 9931 |999%F 9345 943F 9999 M9 |9999 51f3 TieE 9999 6027 |9998
ENN NeRe |9999 9999 100 999% 100 9996 9986 9919 9997 9989 |99 9950 9943 100 9951 |9997 9331 M1 9998 9371 |9999 7692 5263 100 625 9998
GHY) 9999 9985 9992 9996 9959 |9996 995 9992 99% M9 |99 9959 9943 100 9951 |9997 9I55 961 9999 9341 |9999 60 TE9S 9999 65l |9998
Ne-Re |100 9999 100 90T 100 9996 961 999 Kot 99 9999 9935 9943 9999 9939 |99 954 9551 9999 9537 |9999 E6567 6842 100 7647 |9998
Table 3. Summary result of individual class classification parformance and avaraga mean classas detaction rate of both rasampled and non-rasampled data_for UNSW-NB15 dataset
Claszes Amalyviz Dex Explait Furzers Gemenic
Algorithm | Meivicy | De (3%6) F (%) Se(%) Sp(%) 0 (36)) De (%) P (%) Se(?6) Sp(3%6) 0l (36)| De (36) P (36) Se(6) Sp(26) 0 (36)|De (36) P (36) Se(36) Sp(36) 0 (36)|De (36) P (3%6) Se (36) Sp () 0 (36)
SMOTE |26 101 026 9759 043 1299 03 203 g7eE 3 6358 3161 7627 632 4469 |1341 TE7 13 $0o7 9% £206 9727 5515 990! 7039
LSTM | MeEe |I91F M4 15T 9B5TE 26T |7996 42 169 50 11M |8dl3 XM T ¥ M3I7 (217 M1 3086 £T69 X713 |E302 96K MM 9901 6921
SMOTE|$221 6 £l - 1] 705 |E701 47 2162 M99 336 6353 3048 £781 585 4526 (8432 1332 1146 M6F 1535 |E187 9781 5283 990 6E6l
HENN Ne-Ee 2711 ol 1279 9507 169 |7441 31z 643 £l 4% 4977 n6 9002 4154 3614 |E236 79 1349 04 1£17 |6935 2634 BO7 9776 3641
GHY] |SMDTE|Z446 1647 E7 L 1138 |749% 301 139 £2237 617 3201 2137 517 3069 3119 |7604 1E3XT 1EOE E6ZE  1E4T7 |62 3196 3303 094 4039
NeRe (£757 0% 0.19 9734 031 |7212 315 £19 TITE 445 5165 M35 9192 4509 3851 |E383 XS 1041 9577 1536|764 9019 454%F 9674 6047
Table 3. Continuad
Clharzes Nermal Werms [class of imteresi) dn
R
Algerithen | Metrics | De (3) P (%) Se(3) Sp(%) f1(%)| De(%) P(%) Se (%) Sp(%) a.0%)| %
SMOTE |69 74 9249 5387 9251 6963 |75T2 252 3 T3 485 TL1A
LSTM | NeRe |7195 909 61 9971 041 |9764 566 03 959 057 81.02
SMDTE |66 M09 MX KT 6597 (872 473 1z 25 115 7895
ENN Ne-Re |6332 9315 49% 9212 &9 |94 1406 D9 9984 168 7471
GHRYY |SMOTE|57TE: 924 4297 9189 66 |TE3 434 35352 M4 TH 6445
Ne Ee |63 83 99 447 9938 6164 |9655 196 113 991 092 T4




3.3.1 Confusion Matrix: Is a good and simple matrix used in this study as it gives a general overview of
model performance. The model was trained on the full development training set for UNSW-NB15 dataset, 75%
full development training and scores are computed on the full evaluation set for UNSW-NB15 dataset and
25% full evaluation set. The KIDDCup99 confusion matrix of the RNNs variants shows the predicted and
the actual true binary classifications of normal/attack and detection of all the four attacks group for each of
the RNNs as represented on Figure 3 for multi-class task and 4 for binary task classification. Visual observation
of Figure 2 shows a clear picture of the number of instances of each classes within the individual dataset. In
KDDCup99, the R2L, U2R and Probes are shown to have lower connection records in Figure 2 (B), while normal
and DOS appear to have more connection records. Those group with more records are learnt properly
without confusing their identity while those with fewer connection records during training did not show
good true positive rate and precision as it was had to identify them. This indicates data imbalance distribution
problem. The dataset contains many examples for "neptune" that belongs to DOS attack class, "satan" attacks
that belongs to Probe and "normal™ but fewer examples of the others. Likewise, within UNSW-NB15,
Figure 2 (B & C) shows that Worm has the lowest connection record than the rest of the classes within the
training and testing sets, hence indicating data imbalance distribution problem.
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Figure 3: 10% KDDCu99 dataset confusion matrix of 5 classes with and without SMOTE oversampling
techniques applied

True label

True label

&
& &

Pradicted lobel Predicted label

Po—— Confusion Matrix for GRU Confusion Matrix for RNN
- 80000 80000
24353 20 nosmsl 1 g 14 narmal 24357 16
50900 60000
40000 40000
sttack g attack 56
51
20000 | 20000
5 o
- o« &
7 & &

A4 LSTMwith SMOTE applied B GRUwith SMOTE applied C  RNNwith SMOTE applied
Cenfusion Matrix for LSTM Confusion Matrix for GRU Confusion Matrix for RNN
100000 100000 100000
rormal § 29279 k- 81000 narmal { 29270 37 80000 nermal 29269 38 BOOGO
3 ] 2
1 su000 - 0000 ] 60000
£ £ E
attack | 35 4ng00 attack | 3 118867 40060 ttack 5 40000
20000 L . 20000 . 20000
1S o & &
& & & & & &
Predicted label Predicted label

Predicted label
D LSTMwithout resampling E  GRU without resampling F  RNN without resampling

Figure 4: 10% KDDCu99 dataset confusion matrix of 2 classes with and without SMOTE oversampling
techniques applied
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Figure 5(a & b): The visual performance representation of each of the algorithms in detecting all the four
attacks family and normal network traffics on both KDDCu99 and UNSW-NB15 datasets, each variant
showing prediction of each of the individual classes with and without SMOTE oversampling techniques
applied. Starting from left is LSTM, followed by RNN and then GRU on the right for A and B of each dataset
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Figure 6(a & b). The binary visual performance representation of each of the algorithms in detecting,
differentiating and classify an attack and normal classes on both KDDCu99 and UNSW-NB15 datasets,
each variant showing prediction of normal against attack classes with and without SMOTE oversampling
techniques applied. Starting from left is LSTM, followed by GRU and then RNN on the right for both A and
B of individual dataset
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Figure 7: The visual representation of each algorithm’s validation accuracy and loss rate on each iteration
on 10% KDDCup99 dataset with SMOTE oversampling techniques applied.
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Figure 8: The visual representation of each algorithm’s validation accuracy and loss rate on each
iteration on 10% KDDCup99 dataset without resampling techniques applied.
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Figure 10: The visual representation of GRU’s AUC-ROC graph for all 5 classes and minority “class 4-
U2R” of interest on 10% KDDCup99 dataset with SMOTE oversampling techniques applied.
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Figure 11: The visual representation of RNN’s AUC-ROC graph for all 5 classes and minority “class 4-
U2R” of interest on 10% KDDCup99 dataset with SMOTE oversampling techniques applied

4. CONCLUSION

In this paper, SMOTE oversampling data resampling methods were implemented on two different datasets.
AnIDS based on heterogeneous ensemble learning approach were implemented and evaluated the impact of
implementing resampling techniques and model performance on imbalance data for multi-class
classification in detecting minority class of interest (rare attack). This study went further to evaluate the
ability of the RNNs variants to accurately detect and classify an attack as abnormal, and how accurately this model
will detect different type of attacks with our main focus on detecting the rare attack class. The result
obtained from resampled data were compared to that acquired without data resampling. Based on these
results as contained in Tables 1-3. Itis also observed that most of the algorithms applied in this study, achieved a
competitive overall average validation accuracy rate of 99.95% with 0% overall average validation loss for
KDDCup99 dataset. At the same time achieving a maximum average mean accuracy of 81.02% with a
noticeable validation loss for UNSW-NB15 dataset. Although the model demonstrated a good percentage
detection overall average mean accuracy, precision, sensitivity and F1-score of 99.96%, and detection rate of
minority class (U2R) improved from 62.50%, 56.20% and 37.50% to 78.90%, 78.90% & 73.70% when
compared to our previous work in Eke et al., 2019 in classifying individual class.

Also, with the percentage macro-average obtained from both datasets, these indicates that the classifier
performs well for each individual class. It can be seen that the implemented model on this study performed
significantly better when dealing with KDDCup99 dataset than UNSW-NB15 dataset, especially in overall



performance validation measures. Overall, the result suggests that high classification error and class
separability problem of minority class has a noticeable impact on model overall performance with respect
to application domain as seen with the case of KDDCup99 and UNSW-NB15 datasets.

5. FUTURE WORK

This work on implementation of resampling techniques on diverse datasets is an ongoing study. Further
work will explore the impact of implementing Principal Component Analysis (PCA) and t-Distributed
Stochastic Neighbor Embedding (t-SNE) high-dimensional data visualisation technigues to evaluation the
need in understanding the relationship boundary between classes in high-dimensional imbalance multi-class
classification task and then implement OneVsOne and OneVsAll decomposition schemes together with
exploring modelling combination of an optimised stacked LSTM-RNN model and CNN on a time-series
dataset - UNSW-NB15 datasets (University of New South Wales 2015 Datasets) over a multi-stage APT
detection architecture. As APT is a multi-step attacks, detecting a single stage of an APT technique itself does
not imply detecting an APT attack as mentioned by (Ghafir, Hammoudeh, Prenosil, Han, Hegarty, Rabie,
& Aparicio-Navarro, 2018). Patterns embedded in large generated datasets through industrial processes may
be dynamic, hence the need for a system that can accurately detect APT in a systematic way at different
time step and has the ability to learn, store and update existing patterns with the collection of new data, and
also be scalable to process data in large volumes (Chen et.al, 2016). Hence, the combination of these two
models to determine the efficiency of this approach since RNN variants hasthe capability to learn temporal
dynamic behaviour over a time sequence data. The authors are currently engaged in work in this domain.
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ENDNOTES
1 KDDCup99 dataset: Retrieved from http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

2 UNSW-NB15 dataset: Retrieved from
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ ADFA-NB15-Datasets/



http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
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