
ELYAN, E., JAMIESON, L. and ALI-GOMBE, A. 2020. Deep learning for symbols detection and classification in 
engineering drawings. Neural networks [online], 129, pages 91-102. Available from: 

https://doi.org/10.1016/j.neunet.2020.05.025.  

Deep learning for symbols detection and 
classification in engineering drawings. 

 ELYAN, E., JAMIESON, L. and ALI-GOMBE, A.  

2020 

This document was downloaded from 
https://openair.rgu.ac.uk 

https://doi.org/10.1016/j.neunet.2020.05.025


Deep Learning for Symbols Detection and Classification
in Engineering Drawings

Eyad Elyan∗, Laura Jamieson, Adamu Ali-Gombe

School of Computing Science and Digital Media, Robert Gordon University, UK

Abstract

Engineering drawings are commonly used in different industries such as Oil

and Gas, construction, and other types of engineering. Digitising these draw-

ings is becoming increasingly important. This is mainly due to the need to

improve business practices such as inventory, assets management, risk analy-

sis, and other types of applications. However, processing and analysing these

drawings is a challenging task. A typical diagram often contains a large number

of different types of symbols belonging to various classes and with very little

variation among them. Another key challenge is the class-imbalance problem,

where some types of symbols largely dominate the data while others are hardly

represented in the dataset. In this paper, we propose methods to handle these

two challenges. First, we propose an advanced bounding-box detection method

for localising and recognising symbols in engineering diagrams. Our method is

end-to-end with no user interaction. Thorough experiments on a large collec-

tion of diagrams from an industrial partner proved that our methods accurately

recognise more than 94% of the symbols. Secondly, we present a method based

on Deep Generative Adversarial Neural Network for handling class-imbalance.

The proposed GAN model proved to be capable of learning from a small num-

ber of training examples. Experiment results showed that the proposed method

greatly improved the classification of symbols in engineering drawings.
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1. Introduction

Large volumes of un-digitised and paper-based documents are still very com-

mon across different domains. Amongst this legacy, engineering drawings are

known to be one of the most complex types of documents to process and anal-

yse. They are widely used in different industries such as construction and city5

planning (i.e. Floor Plan diagrams [1]), Oil and Gas (i.e. P&IDs [2]), Me-

chanical Engineering [3], AutoCAD Drawing Exchange Format (DXF) [4] and

others. Interpreting these drawings requires highly skilled people, and in some

cases long hours of work.

In recent years, the digitisation of these drawings is becoming increasingly10

important. This is partly due to the urgent need to improve business practices

such as inventory, assets management, risk analysis, safety checks and other

types of applications, and also due to the recent advancements in the domain of

machine vision and image understanding. Deep Learning (DL) [5], in particular,

had significantly improved the performance by orders of magnitude in many15

domains such as Gaming and AI [6], Natural Language Processing [7], Health

[8], and others. One particular domain that has benefited hugely from DL is

machine vision [9]. Convolutional Neural Networks (CNNs) [10] have made

significant progress in recent years in many image-related tasks [11]. It has

been successfully applied to several fields such as hand-written recognition [12],20

image classification [13, 14], Face Recognition & Biometrics [15] and others.

Before the CNNs, the improvements in image classification, segmentation, and

object detection was marginal and incremental. However, the introduction of

CNNs revolutionalised this field. For example, Deep Face [16], a face recognition

system that was first proposed by FaceBook in 2014 achieved an accuracy of25

97.35%, beating the state-of-the-art then, by 27%.

Core image processing tasks such as shape and object detection, recognition,
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and tracking have become much less challenging even under different conditions

and in much less controlled environments. Faster Region-based CNN (R-CNN)

[17], Single Shot Detectors (SSD) [18], Region-based Fully Convolutional Net-30

works (R-FCN) [19] and You Only Look Once (YOLO) [20] are all relatively re-

cent methods that showed superior performance in the field of object detection,

tracking, and classification. These methods and their extensions have signifi-

cantly advanced this area of research and solved some of the most challenging

and inherent vision problems such as occlusions, light conditions, orientation,35

and others, which were considered major challenges, even for a specific vision

task in a more controlled environment [21].

Significant advancement has also been made in the area of Generative Models

and was successfully applied in many applications. Among these, Generative

Adversarial Networks (GAN) proved to be one of the most established and40

commonly used methods in generating content. GANs were initially introduced

by Ian Goodfellow in 2014 [22]. In the Methods section, we will discuss our

GAN-based method to handle the class imbalance problem. This is another

challenging problem that is common across many domains [23] including engi-

neering drawings, where one or more class of symbols in the diagrams are either45

underrepresented or overrepresented in the dataset [24].

Despite this massive progress in the field of image processing and analysis,

very little progress has been made in the area of digitising complex engineering

drawings, and extracting information from these diagrams is still considered a

challenging problem [25]. To date, a major problem of most of the existing50

solutions is that they still follow a traditional image-processing approach, which

requires extensive features extraction and engineering and carefully designed

heuristics [26]. These are often very domain-dependent, sensitive to noise and

data distribution, and mostly dedicated to solving part of the problem (i.e. de-

tecting symbols, separating graphics from text, and so on). As can be seen in55

Figure 1, not only such an approach difficult to generalise across different sce-

narios, but also the performance of any machine learning algorithm will hugely

depend on the quality and accuracy of the extracted features.
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Figure 1: Traditional frameworks for analysing images/ documents

In this paper, we propose an end-to-end framework for processing and analysing

complex engineering drawings. We argue that the core task of such a frame-60

work is the accurate localisation and recognition of symbols in the drawing that

constitute a major part of it and simplifies subsequent tasks (i.e. line and text

detection). We show how one of the main inherent problems in classifying en-

gineering symbols, namely class-imbalance can be addressed using Generative

Adversarial Neural Networks. Figure 2 provides a schematic diagram of the65

work presented in this paper. The main contributions of this work are outlined

as follows:

• We propose a novel pipeline for processing and analysing complex engi-

neering drawings. At the core of this pipeline is the accurate detection

and recognition of symbols.70

• We show that an advanced-bounding-box detection method performs very

accurately on challenging engineering diagrams. To the best of our knowl-

edge, Deep Learning models (e.g. YOLO [27], RCNN [9] ) were never used

in such domain at a large scale of symbols with minimal difference. This is

mainly due to the complexity of the problem, and the very little variation75

and noise within symbols of engineering drawings.

• Methods to handle the class-imbalance within engineering drawings are

presented and thoroughly evaluated. We present a fine-grained method to

train GAN models to generate engineering symbols of different overlapping

classes.80
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• Thorough evaluation using large collection of P&ID diagrams provided by

an industry partner in the Oil and Gas sector.

Annotated
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Deep Learning
YOLO-based methods 

Model list of
recognised
symbols in
the
diagrams 

Augmented list of
recognised symbols in
the diagrams 

MFC-GAN

Figure 2: Schematic diagram of the framework for processing and analysing engineering doc-

uments

The rest of this paper is organised as follows: Section 2 presents an overview

and critical discussion of relevant work. In section 3, we present our methods,

dataset and pre-processing steps carried out. In section 4 we present our exper-85

iments and discuss results. Finally, conclusions and future work are outlined in

section 5.

2. Related Work

In this section, we discuss relevant literature. First, we discuss literature

related to the processing and analysis of engineering drawings. This will be90

followed by a brief introduction to Generative Adversarial Neural Networks and

how it can be applied to handle the class imbalance problem.

2.1. Engineering Drawings

An engineering drawing is a 2D image that contains different types of shapes,

symbols, lines, and text. These drawings are commonly used in different do-95

mains and provide a rich representation of complex engineering workflows or

situations. The digitisation of these drawings was subject to extensive re-

search from the machine vision research community over the past four decades
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[28, 29, 30, 31]. In recent years, and due to the significant progress in machine

vision research, computer power and also due to the availability of large vol-100

umes of un-digitised data, the demand to have a fully automated framework for

digitising these drawings is becoming increasingly important.

Examples of work that aimed at extracting information from engineering

documents include analysis of musical notes [32], mechanical drawings [33], op-

tical character recognition (OCR) [34, 35, 36], and extracting information from105

P&ID drawings [2, 37, 38]. It can be argued that most of the existing litera-

ture followed a traditional image processing approach [39], which requires some

form of feature extraction from the image[28], features representations [30], and

classification to determine the class of objects (i.e. symbols, digits, ...) [31].

The key limitation of traditional machine vision methods is that they re-110

quire extensive features engineering, depend heavily on the quality of extracted

features, and often won’t generalise well to other unseen examples. A recent

extensive review showed that most of the existing literature focused on solving

part of the problem rather than providing a fully automated framework for digi-

tising an engineering diagram [26]. Examples include methods for recognising115

symbols and lines in a drawing [40], detecting and separating text from symbols

and other graphics elements in diagram [38], classifying symbols in engineering

drawings [2] and so on. This is partly due to the complexity of the problem (i.e.

localising every single element in the document), and also due to the limitations

of the traditional image processing and analysis methods and the inherent vision120

problems such as the sensitivity to noise, quality of the image, the orientation

of shapes and so on. Consider for example the work in [2], the authors used

a set of heuristic rules to localise symbols in the drawings, a Random Forest

[41] was then used to classify the symbols achieving an average accuracy higher

than 95%. Similar work was presented in [38], where a set of heuristics were125

also used to detect and separate text from graphics elements. However, such an

approach is very dependent on the data distribution, and a slight variation in

the diagrams or in symbols representation might require adapting the existing

heuristics rules or creating new ones.
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In a closely related area, Rebelo et al [42] presented a study on optical mu-130

sic recognition and classification methods for musical symbols. They suggested

that adjoining staff lines, presence of symbols in close proximity to music notes,

broken symbols, overlapping symbols and areas with high symbol density all

contributed to the complexity of optical music recognition. Four classification

methods namely a multi-layer perceptron neural network model, Hidden Markov135

Model, K-nearest neighbour and Support Vector Machine (SVM) were evalu-

ated on datasets of both synthetic and handwritten music scores. The highest

performance was obtained with an SVM model, however all approaches imple-

mented detection then removal of music staff lines and segmented the symbols

prior to symbol classification.140

Khan et al [43], used video image analysis as part of a flight deck warning

system, which combined automated dial reading of flight instruments with do-

main knowledge. Experiments on a flight simulator and real flight aimed to

obtain the position of a white needle on the flight instrument using three image

processing approaches: background subtraction, pattern matching and a convo-145

lution based approach. Results showed that the convolution method obtained

the highest accuracy, highest true positive rate and highest true negative rate.

In recent years, DL-based methods were explored and successfully applied

to some tasks that are similar to engineering drawings analysis. Ziran et al.

proposed a method, based on Single Shot Detectors (SSD) [18], to detect and150

recognise furniture objects, doors, and windows in floor plan diagrams [44].

The results were encouraging. However, the datasets used were simple with a

limited number of furniture objects in each drawing (12). The performance also

dropped under the imbalanced class distribution of objects in the images.

Faster R-CNN was used in [45] for the detection and recognition of handwrit-155

ten characters. Although the work focused mainly on specific elements of the

documents (mathematical expressions and flowcharts), promising results over

other traditional methods were achieved.

Detection and recognition of musical notes in documents have also benefited

from adopting Deep Learning-based methods [44, 46]. R-CNN, R-FCN, and160
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SDD were applied successfully to detect and recognise handwritten music notes

[46]. Results showed an improvement in symbols detection over other traditional

structured machine vision methods.

A framework for extracting information from P&ID drawings was presented

very recently in [47]. The authors used a two-step approach. First, Deep Learn-165

ing methods were used to localise symbols and text, and then heuristic-based

methods were employed to detect other elements of the drawing (i.e. Euclidean

metrics for associating tags and symbols with pipelines, probabilistic Hough

transform to detect pipelines, etc.) The methods for localising symbols were

based on a fully connected convolutional neural network. A dataset of four170

sheets consisting of 672 flow diagrams was used. Results were an improvement

over other traditional methods. However, accuracy wasn’t consistent across all

components. Class accuracy ranged from 100% for some components to 64.0%

for others (i.e. symbols of a certain class). Moreover, only a limited number of

symbols were used in this study (10 different classes of symbols) and the P&ID175

sheets seem to be of a very good quality which is not often the case in the real

world.

To summarise, existing literature shows a clear gap between the current state

of machine vision and image understanding -due to the rapid development in this

field - and the slow and incremental progress in a very important application180

domain across many industries.

2.2. GAN Models

Generative Adversarial Networks (GAN) were initially introduced by Ian

Goodfellow in 2014 [22]. These are considered as generative models that are

capable of producing new content. GANs are made of two contesting models185

(i.e. Neural Networks, CNNs, etc), the Generator (G), and the Discriminator

(D). The discriminator is a classifier that receives input from the training set

(authentic content), and from the generator (fake input). During the training

process, the discriminator will learn how to distinguish between authentic and

fake input samples. On the other hand, the generator is trained to generate sam-190
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ples that capture the underlying characteristics of the original data (replicating

original content). Figure 3 depicts the GAN model.

Figure 3: Generative Adversarial Neural Networks

Adversarial training of both models G, and D is carried out using value

function as can be seen in Equation 1.

min
D

max
G

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

Where pdata(x) is the probability distribution over the real data, x is a sam-195

ple from the real training data, pz is the probability distribution over the noise

vector z, and G(z) is the output from the generator function G (or generated

images). GANs are state-of-the-art in terms of the quality of the image gener-

ated.

GANs have been successfully applied to different problems including image200

generation [48, 49], segmentation and speech synthesis. In recent years they

were also successfully applied to handle class-imbalance problems [50, 51]. The

class imbalance is common across different domains including health, security,

and banking [23]. The problem happens when one or more class is either un-

derrepresented or overrepresented in the dataset. In such scenarios, a typical205

supervised learning algorithm tends to be biased towards the majority class

when dealing with imbalanced datasets [24].

Supervised GANs provide an extension to the original GAN framework by

introducing conditional probabilities in the value function. This allows more

control over the generated samples and introduces diversity which is needed210

for augmenting synthetic input data for class-imbalanced datasets. Typical
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examples include vanilla GAN [22], CGAN [52] and AC-GAN [53]. Although

the literature shows that these models can be hugely affected by class-imbalance

especially in extreme cases [54].

Recent work appeared in [51] introduced a new extension of the GAN mod-215

els. The authors trained the GAN models at a fine-grained level by updating the

discriminator objective to not only distinguish between fake and real instances

but also to classify the fake instances into different classes (i.e. Fake 1, Fake

2, etc). Extensive experiments using four different datasets showed superior re-

sults over other GAN models. Generated samples proved to be of good quality220

and were successfully used to augment the dataset and improve the detection

rate of minority class instances.

3. Methods

Most engineering drawings contain a set of symbols, connectivity informa-

tion (lines) and some form of annotation (text). However, no public dataset is225

available for evaluation purposes. In Section 3.1 we introduce our approach for

end-to-end symbols recognition from complex engineering drawings. The fol-

lowing subsection will discuss in detail the dataset used for experiments. This

will include data exploration and pre-processing. Finally, Section 3.4 provides

details of our proposed method to handle class-imbalance in these drawings.230

3.1. Symbols Recognition

For locating and recognising symbols in the P&IDs, we propose to use

YOLO [55] method. This allows us to represent the problem as a set of bound-

ing box coordinates and class probabilities. The method is based on dividing

the entire image into S × S grid, where each cell predicts B bounding boxes and235

confidence scores for those boxes [55]. The confidence scores are used to decide

if a cell contains a symbol or not. These are represented as a five-dimensional

vector (x, y, w,h, and confidence). Here, (x,y) represents the center of the

bounding box, while the width and height are predicted relative to the whole
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image. The prediction from a grid is presented as S × S × (B ∗ 5 + C). Where240

S is the size of the grid, B is the bounding box and C is the class probabilities

(i.e. probability of the symbol being gate valve, sensor, etc...). Figure 4 depicts

this setting.

Figure 4: The method divides the P&ID Diagram into a grid, following the YOLO model

[55], and predicts the class probabilities of the bounding boxes. The figure shows the symbols

sensor, flange, DBBPV, DB&BBV and RS

The YOLO model was chosen for two main reasons. First, it is a simple

framework, which allows simultaneous predictions of multiple bounding boxes245

and class probabilities using a single convolutional neural network. Second, com-

pared to other models, YOLO is considered extremely fast. For testing P&IDs

that may contain on average 180 instances of various engineering symbols, this

is very important in a practical context.

3.2. Dataset - P&ID Diagrams250

For experiments in this paper, we chose to work with Piping and Instru-

mentation Diagrams (P&IDs) Figure 5. A collection of 172 P&ID sheets were

obtained from an Oil and Gas industrial partner for evaluation purposes. These

diagrams contain different types of symbols, lines, and text (Figure 5).
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Figure 5: Part of a P&ID Diagram

Additionally, the P&IDs are of different qualities, which makes the dataset255

suitable for evaluation purposes. The P&ID diagrams can be defined as schematic

diagrams representing the different components of the process and the connectiv-

ity information. It is a representation of equipment (often depicted as symbols)

and process flow (depicted as different types of lines) [2].

Such diagrams are available across many industries in the form of paper or260

scanned documents. Interpreting and analysing these documents requires expert

knowledge, and is often time-consuming [26, 56]. Moreover, a misinterpretation

of such documents can be very costly. For example, if a pipe needs to be replaced

in an Oil and Gas installation, then an engineer needs to check the corresponding

P&ID diagram, identify the valves that must be closed before carrying on the265

task to ensure safety. In other words, accurate interpretation of these drawings

is paramount.

3.3. Data Exploration & Pre-processing

The original P&IDs sheets are large images, 7500 × 5250 pixels. To speed

up the training process we divided the sheet into 6 × 4 grid, resulting in 24 sub-270
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images (patches) with relatively much smaller sizes compared to the original

sheets (1250 × 1300).

Training a Deep Learning model requires fully annotated images/ diagrams.

To do so, we have used the Sloth tool 1 to annotate the collection of P&ID

diagrams. In total 29 different symbols were annotated in the whole dataset275

(Figure 7). The annotation process is simple and involves customising the sloth

tool to record the corresponding symbols names (class) and its location in the

diagram.

The resulting annotation of data is captured in a file representing the 29 sym-

bols. Data recorded included the x,y coordinates of the center of the bounding280

boxes, width and height of the bounding box enclosing symbols. In total, 13,327

symbols belonging to the 29 different classes were annotated. The dataset is

hugely imbalanced as can be seen in Figure 6.

Figure 6: Class distribution of symbols in the whole dataset

Only 25 symbols of these were used in the experiments. These are shown

in Figure 7. Five symbols that were extremely under-represented in the whole285

1 https://sloth.readthedocs.io/en/latest/
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dataset (i.e. only one or two instances of these symbols appear in the training

and testing sets) were excluded from the first experiment.

Figure 7: Symbols used in the training and testing sets

3.4. MFC-GANs

To handle the class-imbalance in the dataset of engineering symbols (at the

classification level), we are proposing to use a method similar to the MFC-GAN290

model presented in [51]. This model is chosen due to the very minor and in

some cases subtle difference between different classes of symbols. MFC-GAN

model allows us to train the discriminator to classify not only real symbols

but also fake symbols, which provides more fine-grained discrimination between

instances.295

For this work, the discriminator network is designed to have four convolution

layers with strides of two and batch normalization is used between layers. All

convolution layers are activated using Leaky ReLu with alpha set to 0.2, and

Sigmoid function is used in the final layer as the activation function.

The discriminator layers are shared with a classifier model that outputs 2×N300

soft-max. Where N is the number of classes. We also designed the generator to

have one linear layer and five transpose convolution layers with strides of two

in each layer. Batch normalization was also used between adjacent layers and

all layers were activated using Leaky ReLu apart from the final layer which is
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sigmoid activated.305

Similar to most GAN models the generator’s input is a noise vector of size

100 and combined with symbol label encoding (see [51] for details). This label

encoding is used to control the class-specific generation, which is essential for

our experiment.

The generator output is a 64 × 64 greyscale symbols image. For our ex-310

periments (following sections) we used a batch size of 100 and a learning rate

of 0.001 which was experimentally chosen. Spectral normalisation was used in

both the generator and the discriminator. The proposed model will be trained

using Equations 2 and 3, 4.

Ls = E[logP (S = real|Xreal)] + E[logP (S = fake|Xfake)] (2)

Lcd = E[logP (C = c|Xreal)] + E[logP (C ′ = c′|Xfake)] (3)

Lcg = E[logP (C = c|Xreal)] + E[logP (C = c|Xfake)] (4)

Where Ls is used to estimate the sampling loss, which represents the prob-315

ability of the sample being real or fake. Lcd and Lcg are used to estimate the

classification losses over the generator and the discriminator. Xreal represents

the training data and Xfake is the set of generated images.

4. Experiment & Results

Two experiments were carried out. The first experiment was designed to320

evaluate an end-to-end solution for recognising symbols in engineering drawings.

We are assuming here, that locating and recognising these symbols will simplify

subsequent tasks in a framework for analysing the whole drawings (i.e. detecting

text, pipelines, etc...). This is simply because the majority of these types of

drawings are made of symbols. The second experiment is separate and is focused325

on handling the class-imbalance problem using GAN-based methods.
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4.1. Symbols Recognition

In our dataset, the P&ID sheets were approximately 7500 x 5250 pixels in

size. To use such image size in training data is computationally expensive and

therefore each P&ID was split into 24 patches by dividing the original P&ID330

width by 6 and the height by 4. This gave a patch size of approximately 1250

x 1300 pixels. The annotation data for each patch was obtained using the

annotations for the whole P&ID as discussed in the previous section.

For the training phase, we excluded symbols that overlapped multiple patches.

After extensive experiments, it was decided to use the 3rd version of the YOLO335

framework which proved to be improving the detection rate of small objects

compared to the first and second YOLO models [55], [27]. It is worth pointing

out that the sizes of the various engineering symbols in our dataset are relatively

small compared to the image size.

The YOLO architecture was customised for the purpose of this experiment.340

First the number of classes in each of the three YOLO layers was set to 25, and

the number of filters was changed accordingly and was set to 3× (Classno + 5),

where the Classno denotes the number of classes in the dataset.

The dataset was split approximately 90%:10% into training (155 P&IDs) and

test (16 P&IDs) sets. A pre-trained Network was used and retrained using our345

dataset and all layers were fine-tuned. Darknet implementation of the YOLO

was used in this experiment 2. During the training process the network input

size of 416 x 416 was adjusted after every ten batches; adjusting the input size

during training was reported to improve object detection across different object

scales [27]. The network was trained with a learning rate of 0.001 and training350

is stopped when the model was trained on 10,000 batches, (batch size of 64).

At testing time, the model input was adjusted from 416×416 to 2400×2400.

In this way, we were able to test on the original P&ID images and simplify sym-

bol detection across a whole P&ID diagram in one step as opposed to combin-

ing detections from the P&ID patches. For evaluation, symbols were compared355

2https://github.com/AlexeyAB/darknet, A. A.B., Darknet,(2019)
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against the ground truth and the Intersection over Union IOU was set experi-

mentally to 0.5. A simple front end was developed using Python Libraries and

OpenCV3 for visualisation and manual error analysis purposes.

4.1.1. Results

The training accuracy achieved was ∼ 96%. On the testing set, 1352 sym-360

bols out of 1424 were correctly located and recognised with a testing accuracy

equal to ∼ 94.9%. A heatmap of the confusion matrix for the testing set is pre-

sented in Figure 8. It can be seen and as expected that majority class instances

were accurately detected and recognised. In other words, symbols with enough

examples in the training set were accurately recognised.365

Figure 8: Heatmap of the Confusion matrix of the 25 symbols predictions (Testing Set)

3https://opencv.org/
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A typical output from the proposed methods where different symbols are high-

lighted in different colours is shown Figure 9 . Recognised symbols here were

numbered and the predicted labels were recorded for further comparison against

the ground truth. These symbols include inlets/outlets that are denoted by la-

bel to, label from, sensors, ball valve, reducers, gate valves, globe valves, and370

others.

Figure 9: A P&ID diagram with various recognised symbols (Testing Set)

18



Table 1 provides more details about the number of instances of each symbol

in the training and testing set named as No of Training Symbols and No of

Testing Symbols respectively. Furthermore, it also shows the number of correctly

recognised symbols in the testing set (Correctly Recognised) and the testing375

accuracy per class (Class Accuracy).

Table 1: Results of the proposed methods for symbols recognition (Testing Set)

Symbol No of Training Symbols No of Testing Symbols Correctly Recognised (Testing) Class Accuracy

Sensor 2810 302 297 98%

Ball Valve 1629 213 212 99%

Label From 1347 103 103 100%

Label To 1178 113 113 100%

Flange 1110 158 121 77%

reducer 821 91 90 99%

DB&BBV 542 67 66 98%

Gate Valve 535 110 104 94%

check valve 396 42 42 100%

TOB/Butterfly Valve 178 59 58 98%

Plug Valve 173 8 8 100%

Globe Valve 161 7 7 100%

Needle Valve 160 10 10 100 %

RS 143 26 24 92%

PSV 118 25 22 88%

eccentric reducer 98 23 22 96%

POB valve 84 16 16 100%

DBBPV 83 15 15 100%

PRV 32 8 8 100%

control valve globe 30 6 6 100%

control valve 22 5 5 100%

vent to atm 19 8 2 25%

injection/sample point 13 2 1 50%

Angle Valve 11 2 0 0.0%

BPRV 11 5 0 0.0%

Results show that the majority of instances were accurately detected and

recognised (1352 of 1424). Figure 10 shows different symbols from various P&ID

diagrams. Notice here that symbols are accurately detected and recognised

regardless of its orientation. For example, reducers, gate valves, check valves,380

and others appear in different orientations (Figure 10). Similarly, sensors are

accurately detected and recognised regardless of the text overlap with these

instances. This clearly shows that unlike traditional methods the proposed
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method is robust to these inherent vision challenges (at least in this context).

Figure 10: Examples of detected symbols

As can be seen in Table 2, in total 72 instances of the P&ID symbols were385

either unrecognised at all (missed), or incorrectly classified as different symbols.

Of these, 8 instances of symbols were incorrectly classified (Table 2). Addi-

tionally, 64 symbols were completely missed. This can be largely attributed

to the nature of the drawings, wherein these cases symbols will have text and

annotation almost covering its entirety. This is evident if we look at the IOU390

in Table 2 which is zero across all these missed symbols.
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Table 2: Unrecognised and misclassified symbols in Engineering Drawings

Actual Class No of Instances Predicted Class IOU

Ball Valve 1 reducer 0.81

BPRV 5 PRV 0.91

eccentric reducer 1 reducer 0.72

reducer 1 eccentric reducer 0.90

Angle Valve 2 - 0.00

Flange 37 - 0.00

Gate Valve 6 - 0.00

Sensor 5 - 0.00

TOB/Butterfly Valve 1 - 0.00

Vent to Atm 6 - 0.00

injection/sample point 1 - 0.00

PSV 3 - 0.00

RS 2 - 0.00

DB&BBV 1 - 0.00

Further visual analysis of the results presented in Table 2 showed that some

symbols were incorrectly labeled. In particular, the instance of the symbol

Ball Valve, although the model predicted the ’wrong’ class symbol, visualising

the results showed that the model actually predicted the right class for these395

symbols despite the wrong label. This is illustrated in Figure 11. Here, we use

a simple front end to visualise the recognised symbols alongside an item number

that we assign for each of them. This has greatly facilitated the analysis and

visualisation of the results.
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Figure 11: Incorrectly labeled symbol

Similarly, consider the symbol of class BPRV which was classified as PRV400

in all five instances in the testing set. First, it is worth noting that the number

of training instances of this symbol is extremely low (11). Additionally, the

symbol is very much similar to the PRV class. However, it is anticipated that

more training examples of this symbol will certainly improve its detection rate,

as it is the case with most majority class symbols (i.e. Sensor, Ball Valve,405

Reducer, Gate Valve, Check Valve, Globe Valve and so on). Figure 12 shows

samples of the BPRV symbols which were incorrectly classified alongside the

actual PRV symbol.

Figure 12: Incorrectly classified BPRV symbols (first four instances from left) as PRV symbol

(fifth instance)

In summary, it can also be seen from the results presented in Table 1 that
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the recognition rate of the symbols (vent to atm, Angle Valve, and BPRV ) was410

quite low. This is mainly due to the limited numbers of training samples that

represent these symbols. But overall, and excluding these three symbols, the

average class accuracy of the remaining 22 symbols in the dataset is over 92%

which is very encouraging results for such a challenging problem.

4.2. MFC-GAN for Class-Imbalance415

In this experiment we aim at evaluating a GAN-based model to handle the

class-imbalance problem in the dataset. This is not a recognition task as in

the first experiment but rather a classification problem. The experiment aims

first at generating more symbols using MFC-GAN model. Then these synthe-

sized samples will be used to augment the training set aiming at improving420

classification results.

The dataset used in this experiment is the almost the same one used in

Experiment 1. All symbols were resized to 64 × 64 grey-scaled images. The

problem is formulated as a supervised learning task where the aim is to learn a

function f(x) that maps an instance xi of a particular engineering symbol to the425

corresponding class yi. In this case, yi ∈ Y where Y is a discrete set of classes

representing the 29 symbols in the dataset. As discussed earlier the dataset is

hugely imbalanced, and some of the instance that were dropped in Experiment

1 populates less than ∼ 0.01% such as angle choke valve.

The experiment was carried out in two stages, a GAN training stage and430

a classification stage. First, we trained MFC-GAN using all the samples in

the dataset. The MFC-GAN model was conditioned to generate engineering

symbols in extreme cases of class imbalance. To do so, we considered the least

represented symbols in the whole dataset. These are Angle Choke Valve, Angle

Valve, Injection Sample Point, Back Pressure Regulating Valve, PS Gate Valve,435

Control Valve, Through Conduit Gate Valve, Control Valve Globe and Pressure

Regulating Valve. These symbols have 2, 13, 15, 17, 17, 27, 31, 36 and 42

instances respectively in the training set. The model was trained only once

on this dataset and the samples were generated after training was completed.
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During training, the minority classes were resampled to encourage learning of440

minority instances structure.

The trained MFC-GAN model was then used to generate symbols of minority

class instances (the least represented in the dataset, nine symbols). The original

dataset was split 70% for training and 30% for testing set. Synthetic datasets

were then added to the training set. For each minority class, 5000 more synthetic445

samples were added. This enabled us to rebalance the dataset by increasing the

presence of the least represented symbols.

In order to evaluate the quality of the generated symbols, we build a classi-

fication model to compare performance before and after adding the generated

symbols to the training set.450

The classification model chosen is a CNN with 4 layers. The first three

layers are convolution layers with 32, 64, 128 outputs. These layers have a

kernel size of 3×3, 2×2 and max-pooling in-between them. The fourth layer is

a fully connected layer with 256 units that feeds in to a 29-way SoftMax output

representing the 29 symbol classes. The CNN was trained using SGD with a455

batch size of 64 and a learning rate of 0.001. Classification results were recorded

using common metrics, namely true positive rate, balanced accuracy, G-mean

and F1-Score.

4.2.1. Results

Figure 13 compares the generated samples from MFC-GAN model with the460

original symbols from the diagram. We also report the symbols classification

results in Table 3.

MFC-GAN generated far superior and more realistic samples. Visual in-

spection revealed distinct symbols features and the required categories were

generated in each instance. Moreover, MFC-GAN high-quality samples had a465

positive effect on the performance of the classifier. For example, the G-Mean

and sensitivity improved from 0 to 100% on angle choke valve as can be seen

in Table 3 with just two instances of the classes. This result is consistent in

seven of the nine minority classes. However, we observed that the model did

24



P&ID MFC-GAN sample

Figure 13: Comparing original P&ID samples with MFC-GAN generated samples.

not improve the baseline in the other two classes control valve and PRV classes.470

A closer look at Figure 13 revealed a high similarity between symbols. There is

extreme similarity between angle valve (fifth symbol from the top) with control

valve globe (eighth symbols from the top) and PRV (seventh symbol from the

top) and BPRV (second symbol from the top). Although symbols were dis-

tinctly generated, the similarity of symbols dwindled the classification results in475

these classes. The low precision in BPRV and control valve globe classes from

Table 3 further solidifies this observation.

Table 3: CNN performance on symbols classification.

Metric Model angle choke valve Angle Valve BPRV control valve control valve globe injectionsample point PRV PS Gate Valve TCGvalve

Sensitivity
Baseline 0.00 0.50 0.60 0.88 1.00 0.80 1.00 1.00 0.89

MFC-GAN 1.00 1.00 0.80 0.88 1.00 0.88 0.77 1.00 0.91

Specificity
Baseline 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MFC-GAN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Precision
Baseline 0.00 1.00 1.00 1.00 0.85 1.00 0.72 1.00 1.00

MFC-GAN 1.00 1.00 0.67 1.00 0.92 1.00 0.91 0.83 1.00

F1-score
Baseline 0.00 0.67 0.75 0.93 0.92 0.89 0.84 1.00 0.94

MFC-GAN 1.00 1.00 0.73 0.93 0.96 0.93 0.83 0.91 0.95

Accuracy
Baseline 0.50 0.75 0.80 0.94 1.00 0.90 1.00 1.00 0.95

MFC-GAN 1.00 1.00 0.90 0.94 1.00 0.94 0.89 1.00 0.96

G-Mean
Baseline 0.00 0.71 0.77 0.94 1.00 0.89 1.00 1.00 0.94

MFC-GAN 1.00 1.00 0.89 0.94 1.00 0.93 0.88 1.00 0.95

MFC-GAN models proved in this experiment to be able to generate minor-

ity class instances that are extremely under-represented in the dataset. The
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quality of these samples was evaluated subjectively by inspecting the resulting480

samples, and objectively by measuring a classifier performance before and after

adding the generated samples to the training sets. Results show clearly that

performance improved across several common evaluation metrics. However, it

has to be said that MFC-GAN is only one method that can be used to han-

dle the class imbalance problem. Other possible methods can also be explored485

and utilized. Class-imbalance is a very well researched problem, and there is a

wide range of methods that ranges from simple data augmentation, sampling to

more advanced methods such as GAN [24]. For an extensive review of different

possible methods, the reader is referred to [57].

5. Conclusion & Future Direction490

In this paper, we proposed an end-to-end framework for processing and

analysing complex engineering drawings. Thorough experiments using a large

collection of P&ID sheets from an industrial partner showed that our method

accurately recognises more than 94% of the symbols in the drawings. Advanced-

bounding-box detection methods proved in our experiments that they perform495

accurately in such challenging tasks by recognising symbols of 25 different

classes, despite the very little differences between some of these symbols. Ad-

ditionally, we proposed a GAN-based model to handle class-imbalance in the

symbols dataset. Our experiments demonstrated that our method was capable

of generating plausible engineering symbols and also proved to be improving500

classification accuracy when augmenting the training set with this synthesized

data. Experiments results show that the proposed GAN model can learn from

a smaller number of training examples.

A future direction of this work will focus on utilising Generative Adversarial

Neural Networks to generating symbols in a diagram context. In other words,505

generate part of the engineering diagram, and not only the symbols. This will

greatly help in saving efforts needed for manual data annotation. Additionally,

future work will include building a unified framework based on the proposed
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methods to allow full processing and analysis of engineering diagrams such as

P&ID. We hypothesize that the work presented in this paper will greatly simplify510

subsequent tasks such as text localisation and line detection.
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[26] C. F. Moreno-Garćıa, E. Elyan, C. Jayne, New trends on digitisation of

complex engineering drawings, Neural Computing and Applicationsdoi:

10.1007/s00521-018-3583-1.

URL https://doi.org/10.1007/s00521-018-3583-1620

[27] J. Redmon, A. Farhadi, Yolo9000: Better, faster, stronger, in: 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017,

pp. 6517–6525. doi:10.1109/CVPR.2017.690.

[28] A. K. Chhabra, Graphics Recognition Algorithms and Systems, in: Pro-

ceedings of the 2nd International Conference on Graphics Recognition625

(GREC’97 ), 1997, pp. 244–252. doi:10.1007/3-540-64381-8_40.

[29] L. P. Cordella, M. Vento, Symbol recognition in documents: A collection of

techniques?, International Journal on Document Analysis and Recognition

3 (2) (2000) 73–88. doi:10.1007/s100320000036.

[30] D. Zhang, G. Lu, Review of shape representation and description tech-630

niques, Pattern Recognition 37 (1) (2004) 1–19. doi:10.1016/j.patcog.

2003.07.008.

[31] S. V. Ablameyko, S. Uchida, Recognition of engineering drawing entities:

Review of approaches, International Journal of Image and Graphics 07 (04)

(2007) 709–733. arXiv:http://www.worldscientific.com/doi/pdf/10.635

1142/S0219467807002878, doi:10.1142/S0219467807002878.

[32] D. Blostein, General Diagram-Recognition Methodologies, in: Proceedings

of the 1st International Conference on Graphics Recognition (GREC’95),

1995, pp. 200–212.

[33] T. Kanungo, R. M. Haralick, D. Dori, Understanding Engineering Draw-640

ings: A Survey, in: Proceedings of the 1st International Conference on

Graphics Recognition (GREC’95), 1995, pp. 119–130.

31

https://doi.org/10.1007/s00521-018-3583-1
https://doi.org/10.1007/s00521-018-3583-1
https://doi.org/10.1007/s00521-018-3583-1
http://dx.doi.org/10.1007/s00521-018-3583-1
http://dx.doi.org/10.1007/s00521-018-3583-1
http://dx.doi.org/10.1007/s00521-018-3583-1
https://doi.org/10.1007/s00521-018-3583-1
http://dx.doi.org/10.1109/CVPR.2017.690
http://dx.doi.org/10.1007/3-540-64381-8_40
http://dx.doi.org/10.1007/s100320000036
http://dx.doi.org/10.1016/j.patcog.2003.07.008
http://dx.doi.org/10.1016/j.patcog.2003.07.008
http://dx.doi.org/10.1016/j.patcog.2003.07.008
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/S0219467807002878
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/S0219467807002878
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/S0219467807002878
http://dx.doi.org/10.1142/S0219467807002878


[34] C. R. Kulkarni, A. B. Barbadekar, Text Detection and Recognition: A Re-

view, International Research Journal of Engineering and Technology (IR-

JET) 4 (6) (2017) 179–185.645

[35] Y. Lu, Machine printed character segmentation - An overview, Pattern

Recognition 28 (1) (1995) 67–80. doi:10.1016/0031-3203(94)00068-W.

[36] S. Mori, C. Y. Suen, K. Yamamoto, Historical Review of OCR Research

and Development, Proceedings of the IEEE 80 (7) (1992) 1029–1058. doi:

10.1109/5.156468.650

[37] C. Howie, J. Kunz, T. Binford, T. Chen, K. Law, Computer in-

terpretation of process and instrumentation drawings, Advances

in Engineering Software 29 (7) (1998) 563 – 570. doi:https:

//doi.org/10.1016/S0965-9978(98)00022-2.

URL http://www.sciencedirect.com/science/article/pii/655

S0965997898000222

[38] C. F. Moreno-Garćıa, E. Elyan, C. Jayne, Heuristics-Based Detection to

Improve Text / Graphics Segmentation in Complex Engineering Drawings,

in: Engineering Applications of Neural Networks, Vol. CCIS 744, 2017, pp.

87–98.660

[39] R. C. Gonzalez, R. E. Woods, Digital image processing, Prentice Hall,

Upper Saddle River, N.J., 2008.

URL http://www.amazon.com/Digital-Image-Processing-3rd-Edition/

dp/013168728X

[40] L. Boatto, V. Consorti, M. Del Buono, V. Eramo, A. Esposito, F. Melcarne,665

M. Meucci, A. Morelli, M. Mosciatti, A. Spirito, M. Tucci, Detection and

separation of symbols connected to graphics in line drawings, in: Proceed-

ings., 11th IAPR International Conference on Pattern Recognition. Vol.II.

Conference B: Pattern Recognition Methodology and Systems, 1992, pp.

545–548. doi:10.1109/ICPR.1992.201837.670

32

http://dx.doi.org/10.1016/0031-3203(94)00068-W
http://dx.doi.org/10.1109/5.156468
http://dx.doi.org/10.1109/5.156468
http://dx.doi.org/10.1109/5.156468
http://www.sciencedirect.com/science/article/pii/S0965997898000222
http://www.sciencedirect.com/science/article/pii/S0965997898000222
http://www.sciencedirect.com/science/article/pii/S0965997898000222
http://dx.doi.org/https://doi.org/10.1016/S0965-9978(98)00022-2
http://dx.doi.org/https://doi.org/10.1016/S0965-9978(98)00022-2
http://dx.doi.org/https://doi.org/10.1016/S0965-9978(98)00022-2
http://www.sciencedirect.com/science/article/pii/S0965997898000222
http://www.sciencedirect.com/science/article/pii/S0965997898000222
http://www.sciencedirect.com/science/article/pii/S0965997898000222
http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X
http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X
http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X
http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X
http://dx.doi.org/10.1109/ICPR.1992.201837


[41] E. Elyan and M. M. Gaber, A genetic algorithm approach to optimising

random forests applied to class engineered data, Information Sciences 384

(2017) 220 – 234. doi:https://doi.org/10.1016/j.ins.2016.08.007.

URL http://www.sciencedirect.com/science/article/pii/

S0020025516305783675

[42] A. Rebelo, G. Capela, J. S. Cardoso, Optical recognition of music symbols:

A comparative study, Int. J. Doc. Anal. Recognit. 13 (1) (2010) 1931.

doi:10.1007/s10032-009-0100-1.

URL https://doi.org/10.1007/s10032-009-0100-1

[43] W. Khan, D. Ansell, K. Kuru, M. Bilal, Flight guardian: Autonomous flight680

safety improvement by monitoring aircraft cockpit instruments, Journal

of Aerospace Information Systems 15 (4) (2018) 203–214. arXiv:https:

//doi.org/10.2514/1.I010570, doi:10.2514/1.I010570.

URL https://doi.org/10.2514/1.I010570

[44] A. Pacha, J. Haji, J. Calvo-Zaragoza, A baseline for general music ob-685

ject detection with deep learning, Applied Sciences 8 (9). doi:10.3390/

app8091488.

URL http://www.mdpi.com/2076-3417/8/9/1488

[45] F. D. Julca-Aguilar, N. S. T. Hirata, Symbol detection in online hand-

written graphics using faster R-CNN, CoRR abs/1712.04833. arXiv:690

1712.04833.

URL http://arxiv.org/abs/1712.04833

[46] A. Pacha, K. Choi, B. Coasnon, Y. Ricquebourg, R. Zanibbi, H. Eiden-

berger, Handwritten music object detection: Open issues and baseline re-

sults, in: 2018 13th IAPR International Workshop on Document Analysis695

Systems (DAS), 2018, pp. 163–168. doi:10.1109/DAS.2018.51.

[47] R. Rahul, S. Paliwal, M. Sharma, L. Vig, Automatic information extraction

from piping and instrumentation diagrams, CoRR abs/1901.11383. arXiv:

33

http://www.sciencedirect.com/science/article/pii/S0020025516305783
http://www.sciencedirect.com/science/article/pii/S0020025516305783
http://www.sciencedirect.com/science/article/pii/S0020025516305783
http://dx.doi.org/https://doi.org/10.1016/j.ins.2016.08.007
http://www.sciencedirect.com/science/article/pii/S0020025516305783
http://www.sciencedirect.com/science/article/pii/S0020025516305783
http://www.sciencedirect.com/science/article/pii/S0020025516305783
https://doi.org/10.1007/s10032-009-0100-1
https://doi.org/10.1007/s10032-009-0100-1
https://doi.org/10.1007/s10032-009-0100-1
http://dx.doi.org/10.1007/s10032-009-0100-1
https://doi.org/10.1007/s10032-009-0100-1
https://doi.org/10.2514/1.I010570
https://doi.org/10.2514/1.I010570
https://doi.org/10.2514/1.I010570
http://arxiv.org/abs/https://doi.org/10.2514/1.I010570
http://arxiv.org/abs/https://doi.org/10.2514/1.I010570
http://arxiv.org/abs/https://doi.org/10.2514/1.I010570
http://dx.doi.org/10.2514/1.I010570
https://doi.org/10.2514/1.I010570
http://www.mdpi.com/2076-3417/8/9/1488
http://www.mdpi.com/2076-3417/8/9/1488
http://www.mdpi.com/2076-3417/8/9/1488
http://dx.doi.org/10.3390/app8091488
http://dx.doi.org/10.3390/app8091488
http://dx.doi.org/10.3390/app8091488
http://www.mdpi.com/2076-3417/8/9/1488
http://arxiv.org/abs/1712.04833
http://arxiv.org/abs/1712.04833
http://arxiv.org/abs/1712.04833
http://arxiv.org/abs/1712.04833
http://arxiv.org/abs/1712.04833
http://arxiv.org/abs/1712.04833
http://arxiv.org/abs/1712.04833
http://dx.doi.org/10.1109/DAS.2018.51
http://arxiv.org/abs/1901.11383
http://arxiv.org/abs/1901.11383
http://arxiv.org/abs/1901.11383
http://arxiv.org/abs/1901.11383
http://arxiv.org/abs/1901.11383
http://arxiv.org/abs/1901.11383


1901.11383.

URL http://arxiv.org/abs/1901.11383700

[48] A. Ali-Gombe, E. Elyan, Y. Savoye, C. Jayne, Few-shot classifier gan, in:

2018 International Joint Conference on Neural Networks (IJCNN), 2018,

pp. 1–8. doi:10.1109/IJCNN.2018.8489387.

[49] A. Ali-Gombe, E. Elyan, C. Jayne, Multiple fake classes gan for data aug-

mentation in face image dataset, in: 2019 International Joint Conference705

on Neural Networks (IJCNN), 2019, pp. 1–8. doi:10.1109/IJCNN.2019.

8851953.

[50] A. Antoniou, A. Storkey, H. Edwards, Data augmentation generative ad-

versarial networks, arXiv preprint arXiv:1711.04340.

[51] A. Ali-Gombe, E. Elyan, Mfc-gan: Class-imbalanced dataset classification710

using multiple fake class generative adversarial network, Neurocomputing

361 (2019) 212–221.

[52] M. Mirza, S. Osindero, Conditional generative adversarial nets, arXiv

preprint arXiv:1411.1784.

[53] A. Odena, C. Olah, J. Shlens, Conditional image synthesis with auxiliary715

classifier gans, International conference on machine learning,page 2642-2651

70 (AUG 2017) 2642–2651.

[54] G. Mariani, F. Scheidegger, R. Istrate, C. Bekas, C. Malossi, Bagan: Data

augmentation with balancing gan, arXiv preprint arXiv:1803.09655.

[55] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once:720

Unified, real-time object detection, in: 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016, pp. 779–788. doi:

10.1109/CVPR.2016.91.

[56] E. Arroyo, X. L. Hoang, A. Fay, Automatic detection and recognition of

structural and connectivity objects in svg-coded engineering documents, in:725

34

http://arxiv.org/abs/1901.11383
http://arxiv.org/abs/1901.11383
http://arxiv.org/abs/1901.11383
http://dx.doi.org/10.1109/IJCNN.2018.8489387
http://dx.doi.org/10.1109/IJCNN.2019.8851953
http://dx.doi.org/10.1109/IJCNN.2019.8851953
http://dx.doi.org/10.1109/IJCNN.2019.8851953
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2016.91


2015 IEEE 20th Conference on Emerging Technologies Factory Automation

(ETFA), 2015, pp. 1–8. doi:10.1109/ETFA.2015.7301510.

[57] Learning from class-imbalanced data: Review of methods and applications,

Expert Systems with Applications 73 (2017) 220 – 239.

35

http://dx.doi.org/10.1109/ETFA.2015.7301510

	coversheet_journal_article
	ELYAN 2020 Deep learning
	Introduction
	Related Work
	Engineering Drawings
	GAN Models

	Methods
	Symbols Recognition
	Dataset - P&ID Diagrams
	Data Exploration & Pre-processing
	MFC-GANs

	Experiment & Results
	Symbols Recognition
	Results

	MFC-GAN for Class-Imbalance
	Results


	Conclusion & Future Direction




