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Abstract
This paper presents a new technique for introducing and tuning parallelism for het-
erogeneous shared-memory systems (comprising a mixture of CPUs and GPUs), 
using a combination of algorithmic skeletons (such as farms and pipelines), Monte–
Carlo tree search for deriving mappings of tasks to available hardware resources, 
and refactoring tool support for applying the patterns and mappings in an easy and 
effective way. Using our approach, we demonstrate easily obtainable, significant 
and scalable speedups on a number of case studies showing speedups of up to 41 
over the sequential code on a 24-core machine with one GPU. We also demonstrate 
that the speedups obtained by mappings derived by the MCTS algorithm are within 
5–15% of the best-obtained manual parallelisation.

Keywords Heterogeneous parallel computing · Monte–Carlo tree search · 
Optimisations

1 Introduction

Heterogeneous multicore systems are increasingly common. Programming such 
systems remains difficult, however, since common programming techniques, such 
as OpenCL or CUDA+OpenMP, are very low level and require the programmer 
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to make non-trivial scheduling and data-transfer decisions. Moreover, applica-
tions generally have many sources of parallelism: deciding which of the possible 
parallel structures should be exploited is especially challenging on heterogenous 
architectures. In this paper, we introduce a new technique for programming heter-
ogeneous parallel systems that: (1) automatically discovers which parallel struc-
ture to exploit; (2) computes a near-optimal mapping of work onto the various 
heterogeneous processing elements; and, (3) provides a semi-automatic way of 
introducing the chosen parallel structure into the original program, and instantiat-
ing this with the derived mapping information. Our technique is based on a com-
bination of algorithmic skeletons [11] for defining the parallel structure, a method 
of finding a mapping for tasks on heterogeneous architectures and refactoring tool 
support for user-guided introduction of the skeletons and mapping decisions.

We show the generality of our technique by using realistic use-cases from three 
different domains (image processing, heuristic optimisation and molecular dynam-
ics), programmed using the FastFlow  [3] skeleton library for C++, which uses 
OpenCL and CUDA for GPU computations. While some particular parts of the 
technology (e.g.  refactoring) necessarily depend on the syntax of C++ language, 
the general methodology could, in principle, be applied to other languages and para-
digms (e.g. Erlang [18]). The paper makes the following research contributions: 

1. we introduce a new technique for building heterogeneous parallel programs semi-
automatically, based on refactoring and algorithmic skeletons;

2. we introduce a mechanism for discovering efficient mappings of parallel applica-
tion threads to heterogeneous CPU and GPU hardware, based on Monte–Carlo 
Tree Search simulations; and,

3. we show that, using our technique, it is possible to derive a parallel structure 
and the corresponding mapping information, achieving performance that can be 
within 5% of the best-obtained manual parallelisation.

2  Background

2.1  Skeletons

In this paper, we take a pattern-based approach, in which the parallel application 
is developed by composing and/or nesting algorithmic skeletons. An algorithmic 
skeleton [11] is an abstract computational entity that models some common pat-
tern of computation. A skeleton is typically implemented as a higher-order func-
tion that abstracts over low-level details such as thread creation, communication, 
synchronisation, load balancing, etc. We consider two categories of skeletons: 
sequential skeletons, abstracting the structure of a purely sequential computation 
with no added parallelism; and, parallel skeletons, which implement specific par-
allel patterns. In our skeleton definitions, we assume that all of the input tasks are 
independent. We consider two sequential skeletons:
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• The Compose ( ◦ ) skeleton represents sequential function composition applied to 
a sequence of inputs, where f1◦f2 denotes a sequential composition of two func-
tions, f1 and f2.

• The Order (;) skeleton represents the execution of two functions on a sequence 
of inputs, where the execution of the first function needs to be completed for 
all input values before the execution of the second one can start. f; g, therefore, 
requires synchronisation between f and g. This skeleton can be used, for example, 
in the map-reduce like computations, such as the one described in Sect. 5.2, to 
synchronise between the map and reduce phase.

We also consider two widely-used parallel skeletons:

• A Farm ( � ) skeleton, �(nwCPU, nwGPU, f , x) , represents the application of a 
single function, f, to the sequence of independent inputs,

  x1, x2, x3,… , xn , in parallel. In the farm implementation that we consider, a 
specific number of worker threads is created, and the inputs are assigned to these 
worker threads in a round-robin fashion. Here nwCPU/nwGPU are, respectively, 
the number of worker threads executed on CPUs/GPUs.

• The Pipeline ( ∥ ) skeleton applies the composition of the functions
  f1, f2,… , fn , in parallel to a sequence of independent inputs x1, x2,… , xm , 

where the output of fi is the input to fi+1 . Parallelism arises from the fact that 
fi(xj) can be computed in parallel with fi+1(fi(xj−1)) . In the implementation that 
we consider, a separate thread is assigned to each pipeline stage (function fi ). We 
denote the pipeline skeleton by (f1 ∥ f2 ∥ ⋯ ∥ fn)(x) . Note that the pipeline skel-
eton does not accept the number of workers as an input, because a pipeline stage 
is always executed in one thread. If we want multiple threads to execute a single 
pipeline stage, to parallelise processing of items from its inputs, we compose it 
with the farm skeleton.

We also allow nested skeletons. It is, therefore, possible to, for example, nest 
a pipeline inside a farm, �(nwCPU, nwGPU, f1 ∥ f2, x) . A skeletal configura-
tion abstracts over the skeleton parameters (e.g. the number and type of work-
ers in a farm), thus focusing only on the nesting structure of the skeletons. In a 
skeletal configuration, we denote �(nwCPU, nwGPU, f , x) simply by �(f ) , and 
(f1 ∥ f2 ∥ ⋯ ∥ fn)(x) by f1 ∥ f2⋯ ∥ fn . For example, the skeletal configuration 
�(f ) ∥ (g◦�(h)) denotes a pipeline of two stages, (1) a farm whose worker function 
is f, and (2) a sequential composition of function g with a farm whose worker func-
tion is h.

2.2  Refactoring

Refactoring is the process of changing the structure of a program while preserving 
its functional semantics in order, for example, to increase code quality, programming 
productivity and code reuse. The term refactoring was first introduced by Opdyke in 
his PhD thesis in 1992  [22], and the concept goes back at least to the fold/unfold 
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system proposed by Burstall and Darlington in 1977  [10]. Refactoring is a semi-
automatic approach that is much more general than fully automated parallelisation 
techniques, which typically only work for a very limited range of cases under limited 
conditions. Additionally, unlike simple loop parallelisation, refactoring is applicable 
to a much wider range of possible parallel structures, since the parallelism is intro-
duced in a controlled way via skeletons. In this paper we make use of a refactoring 
extension [7] for Eclipse, that introduces and tunes parallelism in C++ by introduc-
ing a nesting of skeletons into the application semi-automatically by user-guidance.

3  Programming Heterogeneous Parallel Machines

In this section we introduce a new parallel programming technique aimed at increas-
ing the programmability of heterogeneous parallel systems. Our technique aims to 
support both the inexperienced parallel programmer with little knowledge on par-
allel programming techniques; and also the experienced parallel programmer, who 
seeks to maximize productivity with the appropriate tool support to automate the 
process. Our general technique is shown in Fig. 1 and comprises a number of steps, 
described below. 

1. Identifying initial structure. The programmer starts with a (possibly parallel) 
application. The first step is to identify an initial skeleton structure in the code cor-
responding to the skeletons defined in Sect. 2. This skeleton structure is recorded 
in a text file, which encapsulates the basic sequential structure of the algorithm, 
together with its basic units of computation (components) and tasks. Components 

Fig. 1  Overview of our technique for programming heterogeneous multi-core systems
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correspond to functions of the source code. We also record what implementations 
(CPU, GPU or both) exist for which components.

  As a simple example, consider the piece of code in Fig. 2 at lines 162–166.
  The structure of this code is a composition of two functions, read_image and 

rprocess_image, on a stream of input files, imageFiles. Components are 
the functions read_image and process_image, and the tasks are applica-
tions of these functions to the elements of the array, imageFiles. We might 
only have a CPU implementation of the read_image function, and both CPU 
and GPU implementations (kernels) of the process_image function. Using 
the notation from Sect. 2, we can denote this by r◦p , where r is read_image 
function, p is process_image function, and ◦ is the sequential composition.

2. Profiling. After we have identified the skeleton structure of the application and its 
components, we do time profiling of the components. That is, we run each avail-
able version (CPU or GPU) of each component on a sample of input tasks in order 
to determine the average time it takes for each component to process one input 
task. In the case of the GPU computation, this also includes the time it takes to 
transfer the data to/from the GPU. This timing information is used in subsequent 

Fig. 2  Source code for image convolution before refactoring
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steps of our methodology. This step is carried out manually by the programmer, 
and its time complexity depends on the runtime of components for the sampled 
inputs.

  In our working example, using profiling we can obtain information that running 
CPU version of read_image on one image takes 0.2 ms, running CPU version 
of process_image on one image takes 6.6 ms and running GPU version of 
process_image on one image takes 0.08 ms.

3. Enumerating Skeleton Configurations. Given the text file with the identified skel-
eton from the original application, produced in step 1, all possible equivalent 
skeleton configurations are automatically generated (up to a given depth of nest-
ing) resulting in a number of different possible parallelisations. Given an initial 
configuration, each composition ( ◦ ) can be transformed into a parallel pipeline 
( ∥ ) and a farm skeleton ( � ) can be introduced for any skeleton configuration.1 
Similarly the inverse of these transformations can also be applied; for example, 
we can transform a parallel pipeline into a sequential composition, or eliminate 
a farm skeleton altogether. This step is computationally very cheap and fully 
automatic.

  In our example, in the step 1 we identified the initial structure to be r◦p ; 
therefore, the possible skeleton configurations are r◦p , �(r◦p) , �(r)◦p , r◦�(p) , 
�(r)◦�(p) , r ∥ p , �(r) ∥ p etc.

4. Filtering Using Cost Model. Using profiling information obtained in step 2, the 
skeleton configurations are filtered using a cost model to restrict the number of 
possibilities that need to be considered. This allows us to eliminate parallelisa-
tions with little or no potential speedup at an early stage of development. In 
Sect. 5, we use a simple high-level cost model to predict the best possible run 
times for each configuration on a given hardware. At this stage, exact timing 
information is not needed, as only very poor potential speedups lead to exclusion. 
Since we use simple cost models, this step is computationally very cheap, and 
also fully automatic.

  In our example, the cost model may predict that �(r) ∥ �(p) , �(r) ∥ p and 
�(r)◦�(p) are the best candidates from all possible factorisations.

5. Ranking the Configurations and Deriving Mappings. The remaining configura-
tions are then analysed in more detail, deriving optimal (or near-optimal) static 
mappings for each of them, together with the estimated runtime. A static map-
ping is an assignment of number of workers for each farm skeleton in a skeleton 
configuration, together with the type of each worker and each pipeline stage 
(the type can be CPU or GPU). Possible types of a farm worker/pipeline stage 
depend on the type of implementation that we have for that kind of worker/pipe-
line stage. This phase, therefore, outputs for each configuration, all the missing 
skeleton parameters. It also gives the ranking of the configurations in terms of 
their expected performance. In this paper, we present one possible model for 
deriving static mappings for a given skeleton configuration, based on the Monte 

1 Since we assume that all functions operate on streams, it is always possible to replace a function with a 
farm skeleton operating on elements of the input stream in parallel.
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Carlo Tree Search (MCTS) algorithm [9]. This step is fully automatic, and is also 
computationally the most expensive part of the technique. Exactly how much time 
it takes to rank the configurations and derive mappings depends mostly on the 
method used for estimating the application runtime with a particular static map-
ping. If full simulation is used, the cost is very high, whereas if some analytical 
model is used (e.g. some more precise cost model than in step 4), the cost can be 
very low.

  In our example, this step can tell us that the best parallelisation on a given 
machine (e.g. comprising of 24 CPU cores and 1 GPU) is �(r) ∥ �(p) , where 15 
CPU workers are used for �(r) and 9 CPU and 1 GPU workers are used for �(p).

6. Refactoring the Application. The programmer then chooses one of the paral-
lelisations together with its static mapping and refactors the original application 
from Step 1, introducing the desired skeleton configuration from Step 5 using the 
refactoring tool. The refactoring tool performs all the required program transfor-
mations and condition checking automatically, introducing the skeleton structure 
and the parameters from Step 4. This part is semi-automatic and computationally 
cheap.

  Considering the example code from Step 1 and the skeleton configuration, 
�(r) ∥ �(p) , the refactoring tool may produce the output as in Fig. 3, where the 
refactoring tool introduces FastFlow farm and pipeline skeletons (ff_farm and 
ff_pipeline) including the number of CPU and GPU workers for the farm 
skeletons, readFarm and processFarm. These worker parameters are taken 
directly from the output of Stage 4.

7. Executing the Application. The refactored program can then be executed on the 
available heterogeneous hardware, and the process can be repeated if necessary. 
For example, if the programmer decides to port the application to a different 
architecture, or if the programmer discovers that an alternative configuration 
given at Step 5 would be better suited.

Fig. 3  Source code for image convolution after refactoring
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4  Deriving Mappings Using Monte Carlo Tree Search

In this section, we describe a model that we use to derive, for a given skeletal config-
uration, a good static mapping of its components to the available hardware. A static 
mapping in our case corresponds to a particular choice of values for the parameters 
of skeletons, i.e. the number of workers in each farm, the type (CPU or GPU) of 
each worker in each farm and each stage of each pipeline. The quality of a mapping 
is derived from a specific evaluation function Q, being a combination of the runtime 
and the resource utilisation.

Our model accepts as an input a skeletal configuration and the timings for its 
components (derived from profiling both for CPU and GPU versions, if the GPU 
version of a component is available). As an output, it produces a candidate static 
mapping and the corresponding estimated runtime of the skeletal configuration. 
Since considering all possible static mappings for a given skeletal configuration may 
be computationally intractable, an optimisation method is used. Here, we use the 
Monte Carlo Tree Search (MCTS) approach, well known for generating and evalu-
ating large game trees in Game theory. In our case, the nodes of the generated tree 
correspond to estimated near-optimal mappings (with some of the skeleton param-
eters fixed) and the leaves of the tree correspond to complete mappings. The root of 
the tree corresponds to the near-optimal mapping of the whole skeleton configura-
tion (with none of the parameters fixed). The children of a node represent different 
possibilities for fixing a yet unfixed skeleton parameter.

The MCTS approach starts from a tree that consists only of a single root node 
(i.e. a static mapping where no parameters are chosen). It proceeds by repeating the 
following three steps: 

1. Expansion step—A node (corresponding to a partial static mapping) is selected, 
and one of its children is added to the tree. This is equivalent to assigning a value 
to one previously unassigned parameter;

2. Selection step—Starting from the newly added node, a complete static mapping 
is generated by randomly assigning the remaining unassigned parameters. The 
resulting static mapping is evaluated based on the evaluation function, Q, yielding 
the valuation v;

3. Propagation step—The valuation, v, is propagated back to the node added in step 
1.

Steps 2 and 3 are repeated a fixed number of times, attaining a reliable evaluation 
of the partial mapping in step 1 by evaluating a fixed number of random complete 
mappings that correspond to it. In this way, we avoid the exhaustive search of all 
complete mappings corresponding to that partial one. Then, step 1 is repeated, add-
ing a new value to the partial mapping. Finally, the overall best complete mapping (a 
leaf of the tree) is selected.

The function that we use to evaluate how good static mappings are is based on 
the estimation of the runtime for that static mapping that we obtain using simula-
tions, and the utilisation of the system. The function is
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where S(M) is the estimated throughput of the whole system (i.e. the number of 
tasks per unit of time that get processed, obtained using profiling) �U(M) is the 
standard deviation of the utilisation of components (where the utilisation of a com-
ponent is the ratio between the time the component spends executing tasks and the 
total execution time of the application) and �Q(M) is the standard deviation of the 
utilisation of the connecting queues between the components (where the utilisation 
of a queue is the ratio between the time where at least one task was in the queue and 
the total execution time) in the skeleton. In this way, if two mappings have a simi-
lar throughput, the one which has smaller deviation from the standard utilisation of 
the resources (and which, hence, uses resources more uniformly) will be preferred. 
Using this function, Q(M), rather than using just the throughput, S(M), as an evalua-
tion function, discourages the allocating of more resources to the skeleton configura-
tion, if it only results in marginally improved runtime, which may be important in 
settings where resources are paid for (e.g. clouds).

4.1  Adaptation of the MCTS Technique to the Static Mapping Problem

It is well known that the MCTS technique is most often used to find a single best 
move at the root of the game tree. In our adaptation of this technique to the static 
mapping problem, nodes of the game tree correspond to fixing of the parameters of 
the skeleton configuration. The best move at the root of the tree represent assign-
ments of all the parameters to all the components of the application. This move is 
computed by considering all the children of the tree, which correspond to moves 
where we fix the first parameter of the configuration (i.e. we allocate one type of 
resources, CPUs or GPUs, to one of the skeleton components) and the others are 
chosen freely. Grandchildren of the root represent moves where we fix the first two 
parameters and freely chose the others and so on.

Suitability of Using MCTS to Derive Static Mappings The main target for the 
MCTS-based approach for deriving static mappings are computationally-heavy 
parallel applications that contain nested parallelism in the form of farms and pipe-
lines. Such applications might take hours or even days to execute and may need to 
be executed repeatedly, so the effort required by the MCTS model to derive near-
optimal mappings is well justified by savings in time and energy of the optimised 
parallel applications. In addition, the solution space, even when the degree of nest-
ing of skeletons is relatively small, is sufficiently large to justify the use of MCTS. 

Q(M) = S(M) − (�U(M) + �Q(M)),

Table 1  Solution space and time 
needed for its full evaluation for 
Image Convolution on different 
hardware configurations

CPU cores GPUs App com-
ponents

Sol. size Time for eval. (s)

16 1 4 1240 > 86,400
24 2 4 6624 > 604,800
64 2 4 129,204 > 3,628,8000
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For example, for the Image Convolution problem considered in Sect. 5.1, with the 
depth of skeleton nesting of 2, the Table 1 gives an example sizes of solution space 
for different hardware configurations and the estimated time needed to evaluate all 
of them using full profiling (which is the only way to give the accurate estimation of 
the execution time). From the table, we can see that for even modestly-sized paral-
lel systems, the time to evaluate all parameters would be hundreds of days order of 
magnitude. Since parallel systems are becoming larger and larger, with more CPU 
cores and more GPU devices being available in a single shared-memory system, the 
problem will only become more time-consuming.

4.2  MCTS parameters

The selection strategy that we use is the Upper Confidence bounds applied to Trees 
(UCT) [19]. The formula for UCT is

where n is the number of times the current node has been visited; nj is the num-
ber of times the child, j, has been visited; CP > 0 is a constant value; and, Xj is 
the average reward value given to child node, j. The experiments showed that the 
value of around 1/5th of the average throughput for CP gives the best results, being 
a good tradeoff between reducing the search space and making sure we do not get 
stuck in the local optimum. As for the back-propagation policy, we considered two 
policies—Max policy, where the maximal reward of all the children is propagated to 
their parent, and the Average policy, where the average reward of all the children is 
propagated to their parent. The experiments showed that the Average policy works 
better, being less greedy. For more details, see [14].

5  Case Studies

In this section we demonstrate our technique on three realistic case studies. For each 
application, we show different steps of its parallelisation: 

1. starting from a sequential version, we show a number of different possible skel-
eton configurations;

2. if the number of skeleton configurations is large, we pre-filter these configurations 
using a cost model described in [6] to eliminate weak configurations (i.e. those 
that would only give small speedups);

3. we apply MCTS to the remaining configurations to discover the estimated optimal 
static mappings for each of them, and to find out which configuration (with its 
corresponding static mapping) delivers the best speedup;

4. finally, we evaluate the static mappings for each skeleton configuration resulting 
from Step 3, in order to verify the accuracy of the result returned by MCTS.

UCT = Xj + 2CP

√

2 ln n

nj
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We consider applications that belong to different domains, showing the general-
ity of our parallelisation technique. The applications we consider are Image Convo-
lution, Ant Colony Optimisation and Molecular Dynamics. The evaluations of the 
skeleton configurations in Step 4 are performed on a machine comprising 2 × 2.4 
Ghz 12-core AMD Opteron 6176 CPUs, coupled with an NVidia Tesla C2050 
graphic card with 448 CUDA cores running at 1.16 GHz, running CentOS Linux. 
The speedups reported in the figures are averages over 5 independent runs.

5.1  Image Convolution

Image convolution is a technique widely used in image processing applications 
for blurring, smoothing and edge detection. We consider an instance of the image 
convolution from video processing applications, where we are given a sequence of 
images, each of which is first read from the disk and then subsequently processed by 
applying a filter. This can be represented as a composition of two functions (applied 
to a stream of images), r◦p , where r is the function that reads the file and p is the 
function that processes it. Applying a filter to an image consists of computing a sca-
lar product of the filter weights with the input pixels within a window surrounding 
each of the output pixels:

5.1.1  Configurations and Cost‑Model Filtering

Since the composition of functions is applied to a stream of images, it is possible to 
parallelise both of the functions in it—we can read multiple images at the same time, 
apply a filter to a multiple images at the same time, or do both of these together. 
Table 2 shows all possible skeleton configurations for the image convolution, up to 
a nesting depth of two. The first column shows the skeleton configuration, using the 
notation introduced in 2, and the second column shows the cost-estimated minimal 

(1)output_pixel(i, j) =
∑

m

∑

n

input_pixel(i − n, j − m) × filter_weight(n,m)

Table 2  Skeleton configurations 
and their cost-predicted 
runtimes for the Image 
Convolution

Configuration Est. runtime

r◦p 5.60
r ∥ p 3.88
�(𝐫)∥𝐩 1.60
r ∥ �(p) 4.00
�(𝐫)∥�(𝐩) 0.40
�(𝐫∥𝐩) 0.56
�(r◦p) 5.60
�(r)◦�(p) 2.00
�(r)◦p 2.00
r◦�(p) 5.60
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runtime for that configuration. The minimal runtime is taken over all possible com-
binations of workers in each skeleton farm. Using profiling, we obtained sequential 
timings for functions r and p on one 4096 × 4096 image, where T(rCPU) = 0.2 ms , 
T(pCPU) = 6.6 ms , T(pGPU) = 0.08 s . In Table 2, the bold results are the three best 
configurations we have selected for further processing using the MCTS model.

5.1.2  Optimal Static Mappings Determined by MCTS

Table  3 shows the output of MCTS for the three best skeleton configurations for 
image convolution. The figure shows, for each farm in each configuration, the esti-
mated optimal number of CPU and GPU workers, denoted by a pair (C, G) where C 
is the number of CPU workers and G is the number of GPU workers.

5.1.3  Evaluation of Skeleton Configurations

All experiments are on a stream of 25 4096 × 4096 images. Figure  4 shows 
the actual speedups obtained for �(r) ∥ p skeleton configuration. For this 

Table 3  MCTS predicted optimal mappings for three configurations of the Image Convolution example. 
(C, G) denotes the number of CPU and GPU workers for a farm

Δ(r)||Δ(p) Δ(r)||p Δ(r||p)

Mapping (C,G) (6, 0)||(0, 3) (4, 0)||(0, 1) (5, 5)

Fig. 4  Speedup graph for the Image Convolution configuration �(r) ∥ p , where p is executed on a GPU
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configuration, the first stage of the pipeline is a farm of workers executing r (for 
which only a CPU implementation exists), and the second stage is a single worker 
executing p. Since p is much faster when executed on a GPU, we only consider 
mappings where the second pipeline stage is mapped to one GPU worker. The 
figure shows the speedups with a different number of CPU workers in the farm 
of the first pipeline stage. MCTS predicted the best speedup when 4 CPU work-
ers are used for this stage. As Fig. 4 shows, this mapping gives an actual speedup 
of 39.14. Compared to the best speedup of 39.43 when 8 CPU workers are used 
in the first pipeline stage. The speedup obtained with the predicted mapping is 
within 1% of the best speedup obtainable. The difference in speedup is 0.29, how-
ever, the mapping with maximum speedup also uses more resources, resulting in 
lower hardware utilisation.

In Fig. 5 we show the speedups for �(r) ∥ �(p) skeleton configuration. The x axis 
shows the number of CPU workers for �(r) , whereas each line on the graph corre-
sponds to a fixed number of GPU workers in �(p) , with the number of CPU workers 
in �(p) being 0; this corresponds to the best speedups obtained for this configuration. 
For this configuration, the MCTS predicts the optimal speedup for 6 CPU workers 
for �(r) and (0, 3) CPU and GPU workers for �(p) . Figure 5 shows a speedup of 
39.12 for this mapping. The best overall speedup is 40.91, for 4 CPU workers in �(r) 
and (0, 3) CPU and GPU workers for �(p) . Therefore, the speedup obtained using 
the MCTS predicted mapping is within 4% of the best speedup obtained.

Finally, Fig. 6 shows the speedups for the skeleton configuration, �(r ∥ p) . The best 
speedups for this configuration were obtained when the number of CPU and GPU 
workers are equal for �(r ∥ p) . As Fig. 6 demonstrates, the best speedup obtained for 

Fig. 5  Speedup figures for the image convolution configuration �(r) ∥ �(p) , with 0 CPU and a different 
number of GPU workers for �(p)
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this configuration is 7.45 for (5, 5) CPU and GPU workers for �(r ∥ p) , confirming the 
prediction given by MCTS (Table 3).

5.2  Ant Colony Optimisation

Ant Colony Optimisation (ACO) [13] is a heuristic for solving NP-complete optimi-
sation problems, inspired by the behaviour of real ants. In this paper, we apply ACO 
to the Single Machine Total Weighted Tardiness (SMTWTP) optimisation problem, 
where we are given n jobs and each job, i, is characterised by its processing time, pi , 
deadline, di , and weight, wi . The goal is to schedule the execution of jobs in a way that 
achieves minimal total weighted tardiness, where the tardiness of a job is defined by 
TI = max{0,Ci − di} (with Ci being the completion time of the job, i) and the total 
tardiness of the schedule is defined as 

∑

wiTi . The ACO solution to the SMTWTP 
problem consists of a number of iterations, where in each iteration each ant indepen-
dently computes a schedule, and is biased by a pheromone trail. The pheromone trail is 
stronger along previously successful routes and is defined by a matrix, � , where �[i, j] is 
the preference of assigning job j to the ith place in the schedule. After all ants compute 
their solution, the best solution is chosen as the ‘running best’; the pheromone trail is 
updated accordingly, and the next iteration is started.

5.2.1  Configurations and Cost‑Model Filtering

The basic structure of one iteration of the algorithm is s; p; u, where s is the phase 
which finds the solutions for all ants, p the phase which picks up the best solution 

Fig. 6  Speedup figures for the image convolution configuration �(r ∥ p) , where the number of GPU 
workers and the number of CPU workers for �(r ∥ p) are equal
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and u the phase where the pheromone trail is updated, taking into account the cur-
rent best solution. Sequential ordering of the phases prevents introducing a pipe-
line between any two stages. Also, the phase p cannot be parallelised using a farm, 
so we are left with introducing a farm for s and/or u. Cost-model filtering, how-
ever, showed that introducing the farm for u is not viable, so we will consider only 
the configuration where a farm is introduced for s, giving a skeleton configuration, 
�(s);p;u . For s, we have both CPU and GPU implementations.

5.2.2  Optimal Static Mapping Determined by MCTS

Table  4 shows the output of MCTS for the �(s);p;u configuration for the ACO 
example.

5.2.3  Evaluation of Skeleton Configurations

Figure 7 shows speedups for the �(s);p;u configuration. Each line shows the speed-
ups with a fixed number of GPU workers and varying number of CPU workers for 

Table 4  MCTS predicted optimal mappings for the �(s);p;u configuration for the ACO example. (C, G) 
denotes the number of CPU and GPU workers for a farm

�(s);p;u

Mapping (C,G) (9, 5)

Fig. 7  Speedup graph for the ACO configuration �(s);p;u
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�(s) . From the figure, we can observe that the best speedup of 7.04 is obtained with 
(7,  5) CPU and GPU workers. The MCTS model predicted the best speedups for 
(9,  5) CPU and GPU workers, and for this mapping we obtained the speedup of 
5.95. Therefore, the mapping returned by the MCTS model (shown in Table 4) gives 
the speedup that is within 15% of the best obtained. In the figure, we have omit-
ted the speedups when more than 12 CPU workers are used for �(s) , as (due to the 
NUMA architecture and the fact that our version of ACO is very data-intensive) 
these speedups are smaller than when fewer CPU workers are used.

5.3  Molecular Dynamics

Molecular Dynamics (MD) simulation computes a system of N particles on the 
atomic level  [5]. Once the system is initialised, the interactions between the mol-
ecules are evaluated explicitly, allowing for the numerical integration of Newton’s 
equations of motion. The molecular trajectories in time yield the thermodynamic 
properties of the system.

The molecular simulation code used here (CMD) is designed for basic research 
into HPC MD. In the BasicN2 variant investigated in this paper, all intermolecular 
distances are evaluated in order to identify interaction partners. However, a special 
flavour of BasicN2 is used, where the domain is decomposed into subdomains of 
approximately 1000 molecules in order to counter the prohibitive scaling of neigh-
bour search (otherwise O(n2)) . These subdomains are distributed among FastFlow 
CPU and GPU workers. As inferred from profiling data, the force calculation routine 
dominates the simulation time and is therefore parallelised. The force calculation 
itself is decomposed into two kernels, intra-domain and inter-domain (with the use 
of halos) interactions.

5.3.1  Configurations and Cost‑Model Filtering

r denotes intra-domain interactions, and h denotes inter-domain.
In CMD, the two units of computation r and h need to be applied to the set of 

input elements (molecules). Both are compute intensive and can be farmed ( �(r) and 
�(h) ). There are three possible skeleton structures that can be configured: 

1. r and h can be executed sequentially and farmed, �(r◦h)
2. r and h can be executed concurrently (different threads working on same input 

set of elements in both routines), �(r;h).
3. r and h can form a pipeline, where once r for ith element is computed, then h on 

same ith element can be computed. This makes a nested skeleton with pipeline 
of two farms, �(r) ∥ �(h) .

The best configuration as determined by the cost-predicted runtime is �(r◦h) . There-
fore we have selected this configuration for further processing using MCTS. The key 
parameters here are: (1) how much work to offload onto the GPU (GPU workers), as 
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the CPU and the GPU can work on the farm concurrently; and, (2) how many CPU 
workers should be utilised.

5.3.2  Optimal Static Mapping Using MCTS

Table 5 shows the output of the MCTS model applied to the best skeleton configura-
tion. The figure shows the estimated optimal number of CPU and GPU workers for 
the �(r◦h) configuration.

5.3.3  Evaluation of Skeleton Configurations

Figure 8 shows the speedups for a domain of 1000 molecules for the �(r◦h) skeleton 
configuration. In the figure, the x axis corresponds to the number of CPU workers, 
and each line in the graph corresponds to a fixed number of GPU workers. In the 
figure, the best obtained speedup for this configuration is 23.43 for 22 CPU workers 
and 4 GPU workers. As Table 5 illustrates, the predicted mapping is (22, 1) (i.e., 22 
CPU workers and 1 GPU worker). From Fig. 8, we can see that the (22, 1) mapping 

Table 5  MCTS predicted optimal mapping for Molecular Dynamics example with �(r◦h) configuration. 
(C, G) denotes the number of CPU and GPU workers for a farm

�(r◦h)

Mapping (CPU, GPU) (22, 1)

Fig. 8  Speedup graph for the Molecular Dynamics configuration �(r ∥ p)
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gives us a speedup of 20.65. The accuracy of the MCTS prediction for this configu-
ration is therefore within 12% of the best possible speedup obtained.

6  Related Work

Since the 1990s, the skeleton research community has been working on high-level 
languages and methods for parallel programming [11]. A rich set of skeleton rewrit-
ing rules, used to derive functionally equivalent programs that exploit different 
kinds of parallelism, has been proposed in [2, 4, 26]. Usually cost models are used 
to determine the best of a set of equivalent parallel programs. The technique pre-
sented in this paper builds on this and similar work by providing refactoring tool-
support supplemented by a programming methodology that aims to make structured 
parallelism more accessible to a wider audience.

There has so far been only a limited amount of work on refactoring for parallel-
ism [16]. In [6, 7, 8], we introduced a parallel refactoring methodology for introduc-
ing and tuning skeletons in Erlang and C++ programs, respectively. However, unlike 
the technique proposed in this paper, both of these methodologies did not support 
heterogeneous architectures, or provide support for deriving mapping information.

There is an extensive body of work on mapping task, data and pipeline parallel-
ism to parallel architectures providing static partitioning  [20, 24, 27], using runt-
ime scheduling  [23], heuristic-based mappings  [15], analytical models  [21]. Each 
of these can improve the performance of the system. There are some heuristic based 
approaches which automate the process of mapping to multi-core architectures for 
specific frameworks, such as the learning approach used for partitioning streaming 
in the StreamIt framework  [28] or the runtime adaptation approach used in Flex-
Stream [17] framework. Despite the amount of work done in the homogeneous envi-
ronment, to our best knowledge there is little work done for mapping to heterogene-
ous (CPU/GPU) architectures. In [25], Serban et al. use an analytic model to devise 
partitioning between CPUs and GPUs of the tasks from data-parallel computations 
in a heterogeneous computing settings. In [14] we introduced a new mapping tech-
nique for heterogeneous multicore systems, but unlike the approach here, did not 
provide a usable programming methodology. Most of the work on GPUs is primar-
ily focused on application performance tuning [1] rather than orchestration. Monte 
Carlo Tree Search has classically been applied to challenging game playing, for 
example the GO and Bandit problem  [12]. In this paper we establish the applica-
bility of MCTS to the seamless orchestration of heterogeneous components over a 
hybrid (CPU, GPU) platform.

7  Conclusions and Future Work

In this paper we introduced a new heterogenous parallel programming technique 
that employs new refactoring and static mapping technology, and is based on algo-
rithmic skeletons. The technique presented here suggests promising candidates 
(skeletal configurations and corresponding static mappings) which are introduced 



601

1 3

International Journal of Parallel Programming (2020) 48:583–602 

automatically via the refactoring tools. This allows the programmer to concentrate 
on the correctness of the application, rather than the parallelisation. We have used 
the Monte Carlo Tree Search (MCTS) algorithm to predict good mappings of com-
ponents of a parallel program to processing elements of heterogenous machines, 
which are within 5–15% of the best speedups that are obtainable. However, alterna-
tive, like exhaustive search over the parameter space, are also possible, as we have 
shown in Sect. 5 to verify our MCTS predictions. Our technique therefore supports 
tuning the invested computing time vs. the quality of the results, while the refactor-
ing tool allows for straight-forward exploration of different skeletal configurations. 
intention, in time, to develop a generic refactoring and mapping technique capable 
of using a common set of refactoring rules and skeletons.

In the future, we will extend our technique to cover a wide range of parallel 
skeletons including parallel workpools, divide-and-conquer, map-reduce and other 
domain-specific parallel patterns, such as parallel orbit enumerations. In addition, 
we intend to demonstrate the use of our technique on a further set of case studies, 
showing greater skeleton nesting and heterogeneity.
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