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Abstract. We propose a new class of multi-objective benchmark prob-
lems on which we analyse the performance of four well established multi-
objective evolutionary algorithms (MOEAs) – each implementing a dif-
ferent search paradigm – by comparing run-time convergence behaviour
over a set of 1200 problem instances. The new benchmarks are created by
fusing previously proposed single-objective interpolated continuous opti-
misation problems (ICOPs) via a common set of Pareto non-dominated
seeds. They thus inherit the ICOP property of having tunable fitness
landscape features. The benchmarks are of intrinsic interest as they de-
rive from interpolation methods and so can approximate general problem
instances. This property is revealed to be of particular importance as our
extensive set of numerical experiments indicates that choices pertaining
to (i) the weighting of the inverse distance interpolation function and
(ii) the problem dimension can be used to construct problems that are
challenging to all tested multi-objective search paradigms. This in turn
means that the new multi-objective ICOPs problems (MO-ICOPs) can
be used to construct well-balanced benchmark sets that discriminate well
between the run-time convergence behaviour of different solvers.

Keywords: multi-objective continuous optimisation · evolutionary al-
gorithms · performance analysis · large-scale benchmarking.

1 Introduction and Motivation

A multi-objective optimisation problem (MOOP) can be defined as:

minimize F (x) = (f1(x), . . . , fm(x))T , (1)

where the search space is multi-dimensional (i.e., x ∈ V d ⊂ Rd) and the m ∈
{2, 3} real-valued objectives of F (x) need to be minimized simultaneously. The
conflicting nature of the m objectives means that the general solution of a MOOP
is given by a Pareto optimal set (PS) that aggregates all solution candidates
x∗ ∈ V d with the property that they are not fully dominated – i.e., @y ∈ V d :
fi(y) ≤ fi(x

∗),∀i ∈ {1, . . . ,m} and F (y) ̸= F (x∗). The Pareto front (PF) is the
objective space projection of the PS.
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Because of their ability to discover high-quality PS approximations called
Pareto non-dominated sets (PNs) in single runs, multi-objective evolutionary al-
gorithms (MOEAs) have emerged as some of the most successful MOOP solvers
[3]. As an increasing number of MOEA practitioners (e.g., mechatronic engi-
neers [19], industrial designers [16], quality assurance analysts [28]) are tackling
ever more challenging real-world problems, difficulties stemming from relying on
experimentation/simulation-driven F (x) values are being brought to the fore-
front. A costly evaluation of solution candidate quality (i.e., fitness) greatly
reduces the number of fitness evaluations (nfe) that can be computed during
an optimisation and runs might be stopped prematurely. Furthermore, running
multiple optimisation runs often becomes infeasible and only a single solver (with
literature recommended parameter settings) is applied despite the well-known
implications of the No Free Lunch Theorems for Optimisation (NFL) [22, 4] re-
garding the benefits of algorithm and/or parameter selection.

To alleviate the aforementioned difficulties of real-world MOEA application,
researchers have explored several avenues. Among them, promising results have
been delivered by both (i) the integration of surrogate modeling techniques [13,
17] that reduce solver dependency on costly fitness evaluations and (ii) the de-
velopment of multi-method solvers that can deliver a robust performance over
large (benchmark) problem sets with a fixed parameterisation [21, 23]. While
surrogate techniques are often demonstrated on MOOP formulations bound to
“closed” simulation or experimentation environments, most MOOP benchmark
problems share biases like analytically engineered challenges and strong inter-
problem correlations [2]. The present work aims to aid both research streams by
introducing a new class of MOOPs with tunable fitness landscapes that:
(i) are intrinsically interesting for benchmark construction as they propose chal-

lenges to several state-of-the-art MOEAs, when instantiated randomly;
(ii) can be used to effortlessly generate easy-to-share, lightweight interpolation-

based surrogate formulations, when instantiating with real-world data.

2 Multi-Objective Interpolated Continuous Optimisation
Problems

2.1 Interpolated Continuous Optimisation Problems

First proposed in a single-objective context [12], ICOPs are defined by the fol-
lowing elements:
1. A search space Ω: a set, whose elements we refer to as candidate solutions,

that defines the optimisation problem domain. For continuous problems, this
will be a (subset of) real space of chosen dimension. In this paper, we have
chosen our search spaces to be the d-dimensional cubes: Ω = [−5, 5]

d.
2. A distance function, e(x, y) : Ω × Ω → R defining the distance between

two solutions x and y. The pair (Ω, e) with these definitions is a metric
space. A natural choice of distance function for continuous search spaces is
the Euclidean distance.
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3. A set of seeds S ⊂ Ω: a (generally finite) set of distinct candidate solutions
with an assigned fitness. Elements of S and their assigned fitness values will
define the entire optimisation problem via interpolation.

4. An interpolation function fS : Ω → R : in this paper, we apply the
inverse distance weighting method, originally defined by Shepard [18] for
use in spatial analysis. Assuming the seed set S contains N seeds, labelled
S = {s1, ..., sN}, and with the assigned fitnesses U = {u1, ..., uN}, we define
for any solution candidate x ∈ Ω:

fS,U (x) =


∑N

j=1

uj

e(x,sj)
k∑N

j=1
1

e(x,sj)
k

if e (x, sj) ̸= 0 for all j

uj , if e (x, sj) = 0 for some j

(2)

where k is a positive real number called the power parameter. Higher values
of k increase the relative influence of nearby seeds on the interpolated value.

5. An optimisation objective: e.g., the minimisation of fS .

2.2 Multi-Objective ICOPs

Multi-Objective ICOPs (MO-ICOPs) can be obtained by associating each single-
objective fi(x), i ∈ {1, . . . ,m} from Equation 1 with a distinct ICOP. Given that
in a real-world optimisation scenario, we would expect each solution candidate x
to be evaluated across all m objectives to be optimised, it would make sense that
the individual ICOPs share the same seeds (i.e., solution candidate samples), but
differ on the fitness values associated to each seed1. Hence, a MO-ICOP is defined
by the tuple (S,U1, . . . , Um) and the value of k and Equation 1 can be rewritten:

minimize F(S,U1,...,Um)(x) = (fS,U1
(x), . . . , fS,Um

(x))T , (3)

One major caveat is that the PF of a MO-ICOP cannot be computed an-
alytically and must be estimated in an iterative fashion by aggregating the
best (Pareto non-dominated) solutions found during multiple optimisation runs.
Sampling-based PF discovery was also required for real-world visualisable (i.e.,
x ∈ V 2) distance-based MOOPs [9], but for this problem type, restrictions can
be imposed to generate artificial instances with prescribed PFs [8].

2.3 The k Parameter

The power parameter k defines the influence of each seed on the interpolation of
the rest of the search space as illustrated in Figure 1. k increase the importance
of distance weighting in the interpolation function. Lower values of k create flat
fitness landscape around the average of the seed’s value with sharp peaks and
pits around the seeds. Higher values of k create large basins of attraction around
each seed. This in turn influences the PF of resulting MO-ICOPs, as illustrated
in the third row plots of Figure 1.
1 A similar strategy of composing MOOPs from single-objective problems was recently

used for creating the bbob-biobj test suite [1].
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Fig. 1. MO-ICOPs with two objectives for d = 2 based on the same tuple (S,U1, U2)
but different k values. The first two rows show the impact of k on the fitness landscape
of each sub-contained ICOP. Non-dominated seeds are marked with red and dominated
ones with blue; axes correspond to decision variables x1 and x2; lighter shades ⇒ lower
values. The third row shows how this translates to different shapes of the MO-ICOP
objective space (gray) and PF (black) when grid sampling 106 candidate solutions.

3 Experimental Setup

3.1 Test Problems

While the properties of MO-ICOPs seeded with real-world data do warrant rig-
orous examination, in this preliminary study we focus on analysing the run-time
convergence behaviour of established MOEA search paradigms with respect to
the inherent characteristics of MO-ICOPs by considering a large set of 1200
two-objective random problem instances.

Randomly constructing a MO-ICOP is centred on embedding the seeds in
objective space. We define Snd as the set of Pareto non-dominated seeds and Sd

as the set of dominated seeds such that S = Snd ∪ Sd. We start to randomly
sample fitness values for each seed in Snd ensuring that no seed in Snd fully
dominates another seed in Snd. We then randomly sample fitness values for each
seed in Sd, ensuring that every seed in Sd is fully dominated by at least one
seed in Snd. The idea behind this construction is to create randomly generated
problems that may provide some different PF shapes. Finally, the positions of
the seeds in the search space are obtained by random uniform sampling.

For our benchmark set we generated 50 distinct objective-space seed set
embeddings and corresponding search space positions for 4 different dimensions
d ∈ {5, 10, 20, 30}. We obtained the final MO-ICOP instances by associating
each of the 200 resulting combinations with 6 values of k ∈ {1, 2, 3, 4, 5, 6}. For
each problem, the number of non dominated seeds (|Snd|) was randomly chosen
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between 5 and 20 and the number of dominated seeds (|Sd|) was randomly chosen
between 1 and 80. For each problem, the PF was estimated using 20 million
fitness evaluations spread across 400 independent optimisation runs. This data
can be accessed at: https://github.com/czavoianu/PPSN_2020.

3.2 Solvers and Parameterisation

The four MOEAs used in our tests were chosen because they exemplify different
well-proven strategies for solving multi-objective optimisation problems.

NSGA-II [6] is one of the best-known and most widely applied multi-objective
solvers. It has popularised alongside SPEA2 [25] a highly elitist multi-objective
evolutionary paradigm in which the population of iteration t+ 1 is obtained by
applying a two-tier selection for survival (i.e., filtering) operator on the union
between the population of iteration t and all the offspring generated at iteration
t. The filtering relies on a primary Pareto non-dominated sorting criterion and a
secondary crowding criterion (for tie-breaking situations). The success of NSGA-
II has also popularised two genetic operators for real-valued MOOPs: simulated
binary crossover (SBX) and polynomial mutation (PM) [5].

The GDE3 [11] solver maintains the two-tier selection for survival operator
introduced by NSGA-II, but aims to also exploit the very good performance of
the differential evolution (DE) paradigm [20] on continuous optimisation prob-
lems by replacing the SBX and PM operators with a DE/rand/1/bin strategy.

MOEA/D-DE with Dynamic Resource Allocation [24] is a state-of-the-art
solver that achieves highly competitive solutions for a wide-range of MOOPs.
MOEA/D-DE refines the multi-objective search paradigm proposed in MOGLS
[10] as it decomposes the original MOOP into several single-objective sub-problems
that are the result of weighting-based aggregations of the original MOOP objec-
tives. During the run, individuals are evolved via DE/rand/1/bin to become the
solution to one or more of the sub-problems. Provided a proper choice of weight
vectors, the solver population should provide a very good PS approximation.

The DECMO2++ [23] solver was designed for rapid convergence across a
wide range of MOOPs as it integrates and actively pivots between three differ-
ent search paradigms implemented via coevolved sub-populations. Specifically,
while one sub-population implements Pareto-based elitism via the SPEA2 evo-
lutionary model and the associated SBX and PM operators, the other actively
co-evolved sub-population uses the DE-centred GDE3 search strategy. Decompo-
sition is implemented via a largely passive archive based on a uniformly weighted
Tschebyscheff distance measure that aims to maintain the best achieved approx-
imation of the PS at each stage of the search process.

We used the standard / literature recommended parameterisation for all
four MOEAs and allowed a total computational budget of nfe = 50,000 for each
optimisation run. In the case of NSGA-II, GDE3 and DECMO2++ we used a
population/archive size of 200. In the case of MOEA/D-DE DRA we used an
archive size of 300 – the recommended setting for MOOPs with two objectives.
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3.3 Performance Evaluation

The PN quality measure we track during the run-time is IndH - a normalised
version of the hypervolume [26] that evaluates a PN by relating the size of the
objective space it dominates to that of the objective space dominated by the PF.

Hypervolume-ranked performance curves (HRPCs) have been proposed in
[27] as a means to quickly estimate the comparative differences in the run-time
convergence behaviour of several MOEAs across large benchmark sets. For each
MOOP, the strategy is to rank the MOEAs that aim to solve it after every 1000
newly generated individuals (pre-defined comparison stages) using IndH values
averaged over 100 independent runs. Under a basic ranking schema, the solver
with the lowest average IndH in a set of ns MOEAs will receive the rank ns and
the best performer will receive the rank 1. A bonus rank of 0 can be given to
solvers that are estimated to have fully converged on the problem (i.e., IndH >
0.99). By averaging for each MOEA at each comparison stage the ranks achieved
on individual MOOPs, one can rapidly obtain an overview of the comparative
convergence behaviour across the entire benchmark set.

HRPCs are constructed via two-by-two comparisons between the tested solvers
in increasing order of IndH -indicated performance. As we also wish to illustrate
the magnitude of the differences in run-time convergence behaviours, we com-
plement the basic ranking schema with:

– a pessimistic ranking schema under which different ranks are awarded in the
stage-wise two-by-two comparison only if the difference between the average
IndH values of the two MOEAs is higher than a th = 0.01, th = 0.05 or
th = 0.10 predefined threshold 2;

– a statistical ranking schema under which different ranks are awarded only
if the difference between the stage-wise average IndH values is statistically
significant when using a one-sided Mann-Whitney-Wilcoxon test [14] with a
considered significance level of 0.025 after a Bonferroni correction [7].

It is noteworthy that in [27] the ranking was based on the average IndH
assessment of the run-time MOEA populations at each comparison stage. In
the present work, motivated by the interactive way in which engineers employ
MOEA-based searches in practice [19], the IndH averages over independent runs
are computed by considering the set of all the Pareto non-dominated individuals
that have been discovered by the MOEA till each comparison stage.

4 Results and Analysis

Before going into run-time performance analysis, it worth noting the performance
of the four algorithms at nfe = 50,000. On the 1200 problems tested, MOEA/D-
2 If the difference between the IndH -measured qualities of two PNs is larger than
th = 0.05, the interpretation is that the objective space dominated by the best PN
is larger than its counterpart by a size that is equivalent to at least 5% of the size
of the objective space dominated by the solution of the MOOP (i.e., the PF).



Run-Time EA Performance on Multi-Objective ICOPs 7

DE obtained the highest IndH 545 times, followed by NSGA-II with 509 end-of-
the-run wins. GDE3 and DECMO++ obtained respectively 125 and 21 wins. In
the top left plot of Figure 2 we present the run-time IndH -averaged performance
of the four tested MOEAs across the entire benchmark of 1200 MO-ICOPs.
For nfe > 10,000, the plot indicates that MOEA/D-DE DRA achieves the best
average performance, ahead of NSGA-II and DECMO2++. GDE3 constantly
achieved the lowest run-time IndH average values.
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Fig. 2. Results across the entire benchmark of 1200 MO-ICOPs: d ∈ {5, 10, 20, 30}
and k ∈ {1, 2, 3, 4, 5, 6}. A bonus rank of 0 is awarded for full convergence – i.e., when
IndH > 0.99.

In the early phases of the optimisation runs (i.e., nfe < 7,000), both NSGA-II
and DECMO2++ achieve slightly better average IndH values than MOEA/D.
This is confirmed by the HRPC plots from Figure 2 as they indicate a slight
advantage in early convergence for NSGA-II and DECMO2++ even when con-
sidering a pessimistic ranking with a threshold th = 0.05. Surprisingly, the
general picture of the five rank-based comparisons indicates that NSGA-II edges
MOEA/D-DE DRA as the best performer throughout the run-time. Since this is
contrasting with the results of the IndH -averaged performance plot, it is worthy
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to focus the analysis on NSGA-II and MOEA/D-DE and thus remove the impact
of convergence behaviour cliques on the relative rankings.

Furthermore, by not awarding a bonus rank of 0 for full convergence (i.e.,
when IndH > 0.99), the restricted NSGA-II vs. MOEA/D-DE analysis high-
lights more clearly at each ranking stage the difference between the number of
problems on which one solver performs better than the other. Thus, since only
ranks of 2 and 1 can be awarded, achieving an average value of 2 at a certain
ranking stage is a clear indication that a solver is not better than its counter-
part (given the considered ranking criterion) across any MOOPs in the chosen
benchmark set. Conversely, HRPC values very close to 1 indicate a clear better
performance. More formally, in a one-on-one comparison with no bonuses, a rank
value of 1.x associated with a solver, indicates that the solver outperforms its
counterpart on (1− 0.x)× 100% of the problems considered in the benchmark.

In light of strong empirical evidence (please see Figure 1) that the power
parameter used in the interpolation function k from Equation 2 has a significant
impact on the geometry of the resulting MO-ICOP problem, it is natural to
analyse if and how this translates into divergent MOEA run-time behaviours.

Therefore, in Figure 3, we present present the comparative convergence be-
haviour of NSGA-II and MOEA/D-DE when only considering a benchmark sub-
set containing the 600 MO-ICOPs with the lowest weights of the inverse distance
interpolation function: i.e., k ∈ {1, 2, 3}. The average IndH values from the top
left plot indicate that MOEA/D-DE generally outperforms NSGA-II in all stages
of the optimisation runs. Furthermore, this subset of benchmark MO-ICOPs is
more challenging as, for both solvers, the achieved average IndH values are lower
than those reported in Figure 2 over all 1200 problems.
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Fig. 3. Results across the benchmark subset with 600 MO-ICOPs with d ∈
{5, 10, 20, 30} and k ∈ {1, 2, 3}. No bonus rank is awarded for full convergence.
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The different convergence behaviours of the two solvers for low k values is
confirmed by all three corresponding HRPC plots. These also highlight that,
for nfe > 15,000, the IndH -measured performance of MOEA/D-DE solutions is
better across ≈ 40% of the problems in this benchmark subset when considering
a IndH threshold th = 0.05.
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Fig. 4. Results across the benchmark subset with 600 MO-ICOPs with dim ∈
{5, 10, 20, 30} and k ∈ {4, 5, 6}. No bonus rank of is awarded for full convergence.

The plots in Figure 4 indicate that for a higher weight of the inverse distance
interpolation function (i.e., k ∈ {4, 5, 6}), the IndH -measured performance of
NSGA-II solutions is:

– consistently better across ≈ 50% of the MO-ICOPs in this benchmark subset
when considering the one-sided Mann-Whitney-Wilcoxon statistical signifi-
cance test;

– consistently better across ≈ 30% of the MO-ICOPs, when considering a
IndH threshold of 0.01.

– only better by large margins (i.e., th = 0.05) across ≈10-25% of the MO-
ICOPs in the early stages of the optimisation runs: 5000 < nfe < 10,000.

It is also noteworthy that on the MO-ICOPs associated with higher values
of k, both multi-objective solvers perform well and are able to reach average
benchmark-wide IndH values higher than 0.9 after 10,000 fitness evaluations.

The plots in Figure 5 illustrate the run-time convergence behaviour of NSGA-
II and MOEA/D-DE on problems with a lower dimension: d ∈ {5, 10}. The
HRPCs show that while solver performance is similar early on, for nfe > 5,000,
when comparing based on statistical significance, NSGA-II performs better across
≈50-60% of the 600 MO-ICOPs and MOEA/D-DE perform better across ≈20-
30% of the problems. Smaller differences that progressively favour NSGA-II as
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Fig. 5. Results across the benchmark subset with 600 MO-ICOPs with d ∈ {5, 10} and
k ∈ {1, 2, 3, 4, 5, 6}. No bonus rank is awarded for full convergence.

the nfe increases are also observed when imposing a small IndH ranking thresh-
old of th = 0.01. However, when looking at the larger thresholds of 0.05, NSGA-II
doesn’t outperform on any problem in the benchmark while MOEA/D-DE still
perform better across ≈10-20% of the problems throughout the entire run-time.
The fact that NSGA-II performs better on more problems but with a lower mar-
gins (i.e., th < 0.05) while MOEA/D performs better on fewer problems but
with higher margins (i.e., th ≥ 0.05) helps to explain the average benchmark-
wide IndH plot (top-left) associated with this benchmark subset. As a side note,
when considering Figures 4 and 5, the HRPCs provide valuable insight that helps
to differentiate convergence behaviours captured by largely similar benchmark-
wide IndH averaging plots.

The plots in Figure 6 show that on the benchmark subset of 600 MO-ICOPs
with a higher dimension – i.e., d ∈ {20, 30} – MOEA/D-DE consistently out-
performs NSGA-II for nfe > 15,000 across ≈ 60% of the problems (based on a
statistical significance and pessimistic th = 0.01 criteria) and ≈ 30-40% of the
problems (when considering the stricter th = 0.05 criterion). It is noteworthy
that in the early part of the runs (nfe < 15,000), NSGA-II performs notably
better than MOEA/D-DE across all the considered comparison criteria.

Finally, in order to better understand the interplay between the inverse dis-
tance weighting parameter and the MO-ICOP problem dimension on one side
and the comparative solver performance on the other, we can compute a (k, d)
preference matrix at a fixed point of interest during the run-time. For example,
the top-left plot of Figure 2 indicates that all solvers are past their knee-point
in convergence at nfe = 20,000 (i.e., ranking stage no. 20). When considering
the statistical significance ranking criterion, we can compute the preference for
MOEA/D-DE over NSGA-II for the 24 (k, d) combinations by subtracting the
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Fig. 6. Results across the benchmark subset with 600 MO-ICOPs with d ∈ {20, 30}
and k ∈ {1, 2, 3, 4, 5, 6}. No bonus rank is awarded for full convergence.

percentage of problems on which NSGA-II outperforms (at ranking stage no.
20) from the percentage of problems on which MOEA/D-DE performs better.
The resulting (k, d) preference matrix shown in Figure 7 indicates that while
MOEA/D-DE obtains better results than NSGA-II on problems with low k pa-
rameters and larger dimensions, NSGA-II performs better on problems with
large k values and lower dimensions. Low k values (in particular k = 1) result in
very discontinuous point-wise PFs (as illustrated in Figures 1 and 7) that highly
favour the directional decomposition search strategy of MOEA/D-DE. Higher k
values generate more continuous PFs that are generally easier to converge on for
both solvers, but on which the decomposition strategy is at a slight disadvantage
(please see Figure 4) as its more rigid exploration mechanism likely generates
PNs with an inferior spread.

5 Conclusions and Future Work

In this paper we (i) describe a new class of multi-objective interpolated contin-
uous optimisation problems (MO-ICOPs) constructed using a weighted inverse
distance function and we (ii) proceed to analyse the comparative run-time per-
formance of four established MOEAs on a benchmark of 1200 random MO-ICOP
instances using multiple criteria.

The optimisation results indicate that MO-ICOPs propose challenges to all
tested multi-objective optimisation paradigms. GDE3 consistently achieves the
lowest benchmark-wide average hypervolume attainment levels despite obtaining
the best approximation of the PF on 10% of the problems tested. DECMO2++
only demonstrates its characteristic fast converging behaviour during the very
start of the run (i.e., nfe < 5,000) and is outperformed by both MOEA/D-DE and
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Fig. 7. Preference of MOEA/D-DE over NSGA-II when considering differences in aver-
age performance over 100 independent runs confirmed by statistical significance testing
(left). Example of the impact of k on the PF shape of 9 MO-ICOPs with d = 20 (right).

NSGA-II. The comparative performance of NSGA-II and MOEA/D-DE DRA
is strongly influenced by the weighting of the inverse distance function and the
dimension of the problem.

Since the observed convergence behaviours of GDE3 and DECMO2++ some-
what contrast with those previously reported on widely used benchmarks [23],
moving forward we plan to (i) investigate more closely the causes that impact
the general performance of all four algorithms on MO-ICOPs (ii)and complement
existing benchmark sets with both random and real-world based MO-ICOPs in
order to obtain a well-balanced test rig that can effectively support the discovery
of robust MOEAs and/or robust MOEA parameterisations.

Finally, we believe that more comprehensive test sets can provide a better
insight on algorithm performance by characterising problems through the de-
velopment of landscape and objective space features. As it is already the case
in single-objective optimisation [15], such advancements could lead to the ap-
plication of landscape and objective space features for algorithm selection or
algorithm performance prediction.
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