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Beta-alanine (BA) supplementation increases muscle carnosine content (MCarn), and

has many proven, and purported, ergogenic, and therapeutic benefits. Currently, many

questions on the nature of the MCarn response to supplementation are open, and the

response to these has considerable potential to enhance the efficacy and application of

this supplementation strategy. To address these questions, we conducted a systematic

review with Bayesian-based meta-analysis of all published aggregate data using a dose

response (Emax) model. Meta-regression was used to consider the influence of potential

moderators (including dose, sex, age, baseline MCarn, and analysis method used) on

the primary outcome. The protocol was designed according to PRISMA guidelines and

a three-step screening strategy was undertaken to identify studies that measured the

MCarn response to BA supplementation. Additionally, we conducted an original analysis

of all available individual data on theMCarn response to BA supplementation from studies

conducted within our lab (n = 99). The Emax model indicated that human skeletal

muscle has large capacity for non-linear MCarn accumulation, and that commonly used

BA supplementation protocols may not come close to saturating muscle carnosine

content. Neither baseline values, nor sex, appeared to influence subsequent response to

supplementation. Analysis of individual data indicated that MCarn is relatively stable in the

absence of intervention, and effectually all participants respond to BA supplementation

(99.3% response [95%CrI: 96.2–100]).
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INTRODUCTION

Beta-alanine (BA) supplementation is a widely used dietary
strategy, due to its proven efficacy in increasing skeletal muscle
carnosine content (MCarn) (Harris et al., 2006). Carnosine is a
dipeptide formed from the amino acids beta-alanine (BA) and
L-histidine, and is present in high concentrations in human
skeletal muscle (∼20–30 mmol·kg−1 dry muscle). Its purported
roles include: proton buffering (Dolan et al., 2018), anti-
oxidation (Boldyrev et al., 2010), anti-glycation (Ghodsi and
Kheirouri, 2018), metal chelation (Boldyrev et al., 2013), and
influencing calcium sensitivity (Dutka and Lamb, 2004), and
hencemuscle contractility. These diverse physiological properties
allow carnosine to contribute to multiple processes in skeletal
muscle metabolism, and considerable research efforts have been
made to investigate both means to increase it, and in what
situations such increases are beneficial. BA availability is the
limiting factor in intramuscular carnosine synthesis (Harris et al.,
2006) and it is widely recognized that supplementation with this
amino acid substantially increases MCarn. This supplementation
strategy has proven efficacious in many situations, with the
majority of research focusing on its ergogenic properties (Hill
et al., 2007). A strong body of literature attests to the ability
of BA supplementation to improve high-intensity exercise
performance, with meta-analytic data indicating that it exerts
its greatest ergogenic influence in capacity-based exercise tests
that last between 30 s and 10min (Saunders et al., 2017a). This
ergogenic effect likely occurs due to MCarn’s buffering action
(Boldyrev et al., 2013; Dolan et al., 2019a), and has earned BA
its place as one of the world’s most popular, scientifically-backed
and widely endorsed sports supplements available (Maughan
et al., 2018). The therapeutic efficacy of BA supplementation
is less well-investigated, although it appears to be a promising
strategy, given its ability to increase MCarn, which in itself,
may, potentially, have numerous therapeutic applications (Artioli
et al., 2018), including roles in anti-senescence (Boldyrev et al.,
2010), neuroprotection (De Marchis et al., 2000; Dobrota
et al., 2005), tumor growth attenuation (Renner et al., 2010),
improved clinical outcomes in participants with Parkinson’s
disease (Boldyrev et al., 2008) and enhanced glucose sensitivity
(de Courten et al., 2016). It is important to highlight, that many of
these purported benefits are based on animal, or in vitro, models,
and it is yet to be determined whether BA supplementation can
impact these processes and conditions. As such, further research
is warranted to confirm the therapeutic or clinical efficacy of
BA supplementation.

These wide-ranging proven, or purported, benefits of BA
supplementation have created an ever-increasing market, and it
is a very commonly used dietary supplement. But many questions
remain open about the MCarn response to BA supplementation,
and these questions must be addressed in order to optimize the
efficacy and applicability of this nutritional strategy (Perim et al.,
2019). It seems that substantial amounts of BA are required
to increase MCarn, with most studies using doses of ∼3.2–
6.4 g·day−1, for periods ranging from 4 to 24 weeks. It is
likely that these large amounts of BA are required because the
incorporation of ingested BA into the muscle is very low, with

∼3–6% of ingested BA estimated to contribute toward MCarn
accumulation (Stegen et al., 2013; Blancquaert et al., 2015).
BA uptake into the muscle seems to be rapid and efficient,
however the ability of carnosine synthase to incorporate it into
MCarn is far slower (Bakardjiev and Bauer, 1994; de Souza
Goncalves et al., 2020) and so the remaining BA is likely to
be converted toward other processes such as transamination or
oxidation (Blancquaert et al., 2016). Despite this inefficiency in
the use of supplemental BA to synthesize MCarn, very large
increases, to the order of 200%, have been reported (Saunders
et al., 2017b). The capacity of the muscle to uptake and increase
MCarn, and the quantity of BA required to achieve saturation
is not, however, currently known. Inter-individual variability
in response to supplementation seems to be high (Saunders
et al., 2017b), yet little is known about what factors underpin
this variation, nor what the individual proportion of response
to BA supplementation actually is. Factors such as age, sex,
and baseline carnosine content may all theoretically impact
subsequent response to supplementation, although consideration
of individual datasets indicates that this may not be the case
(Baguet et al., 2012; Stellingwerff et al., 2012). To address these,
and other, questions, we conducted a comprehensive analysis,
comprising various modeling techniques, to synthesize existing
understanding about the nature of the MCarn response to BA
supplementation. We also analyzed individual participant data
from studies conducted within our laboratory; and considered
these findings within the context of published summary data,
which was analyzed using a frequently used dose-response
model (Emax). All analyses were conducted from a Bayesian
perspective, the advantages of which is that it allowed the
flexibility to use a range ofmodels in order tomore fully represent
the available data, while simultaneously allowing the results to be
interpreted intuitively and probabilistically (Dunson, 2001).

MATERIALS AND METHODS

The protocol for this study was designed according to the
Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) guidelines. The Population, Intervention,
Comparator, Outcomes and Study Design (PICOS) approach was
used to guide the inclusion and exclusion of studies for this
review and are described in Table 1. In addition to conducting
a systematic search of available literature, we also combined
all available individual data from studies conducted within the
authors lab, all of which used a dosing strategy of 6.4 g·day−1,
for periods varying between 4 and 24 weeks. Muscle carnosine
content was measured using HPLC analysis of muscle biopsy
data, and the full protocol for this analysis is described elsewhere
(Saunders et al., 2017b).

Search Strategy
The search strategy was based on a three-step screening
(title/abstract screening, full-text screen and full text appraisal),
independently undertaken by two reviewers. This search was
originally conducted to inform a systematic risk assessment
on the use of BA supplementation (Dolan et al., 2019b).
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TABLE 1 | Study inclusion and exclusion criteria.

Population Healthy individuals of any age or physical activity level.

Intervention Original studies investigating the effects of oral BA

supplementation on skeletal MCarn content.

Comparator No human comparators were required in the studies included in

this review, although the data from placebo groups were used to

quantify biological variability across the time periods investigated,

when available.

Outcomes The primary outcome was the effect of BA supplementation on

skeletal MCarn concentration. Potential moderators to this

response included dose, sex, age, baseline MCarn, and the

method used to measure MCarn.

Study design Controlled or uncontrolled intervention studies.

This risk assessment included all BA supplementation studies
(including both human and animal models). One hundred and
one human studies were included in that investigation and were
subsequently screened to identify those that included an MCarn
measurement. The protocol for that review was prospectively
registered (PROSPERO registration no. CRD42017071843).

Data Analysis
The present study comprised both individual and aggregate
data meta-analyses from a Bayesian perspective. Individual data
were pooled using mixed effects multilevel models. Analyses
were performed on the outcome variable MCarn (absolute
value) to quantify the effects of BA supplementation and
random noise due to biological variation and measurement
error. Additionally, proportion of response was estimated across
controlled studies by calculating inter-individual difference in
response to supplementation and comparing this to a non-zero
increase in MCarn (Swinton et al., 2018). Bayesian estimates
of the standard deviation in observed change from active
and placebo groups were used to obtain the intervention
response standard deviation (σ∧,_IR) describing inter-individual
difference in response. Aggregate data meta-analyses were
performed using published pre- and post-intervention mean
and standard deviation values. Values were transformed into
standardized mean differences (SMD) and sampling variance
calculated using methods described previously (Saunders et al.,
2017a). Three-level mixed effects models were used to quantify
the effects of supplementation dose. Insufficient data were
available to allow investigation of the interaction between daily
dose and intervention duration and so the total cumulative
dose ingested was selected as the primary outcome, which
previous research has identified as being more influential
than either daily dose or intervention duration (Stellingwerff
et al., 2012; Church et al., 2017; Dolan et al., 2019b). Subset
analyses using study covariates were used to assess the effects
of sex, age, or measurement method on the main effect of
BA supplementation. Finally, a model-based approach was
employed to investigate the dose-response relationship between
cumulative BA supplementation and the SMD. A standard four
parameter sigmoid predicted maximum effect (Emax) model was
estimated with:

E = E0 +
Emax × Cγ

EC
γ

50 + Cγ

Where E is the effect size (SMD), E_0 is the baseline effect,
E_max is the maximum effect, EC_50 is the cumulative dose that
provides 50% of the maximum effect, C is the input (cumulative
dose) and γ is the Hill coefficient controlling the slope of the
sigmoid response. Inferences from all models were performed
on posterior samples generated by Markov Chain Monte Carlo
with Bayesian 95% credible intervals (CrIs) constructed to enable
probabilistic interpretations of parameter values. Models were
run in OpenBUGS (version 3.2.3, MRC Biostatistics Unit) and
in R (version 3.3.1 R Development Core Team) using the
R2OpenBugs package.

RESULTS

Group Study Characteristics
Twenty-six studies were identified in the systematic search and
included in the meta-analysis (Harris et al., 2006, 2010; Derave
et al., 2007; Hill et al., 2007; Kendrick et al., 2008, 2009; Baguet
et al., 2009, 2010; del Favero et al., 2012; Stellingwerff et al.,
2012; Stegen et al., 2013; Bex et al., 2014, 2015; Chung et al.,
2014; Danaher et al., 2014; Gross et al., 2014; Kresta et al., 2014;
Cochran et al., 2015; Blancquaert et al., 2017; Church et al., 2017;
Saunders et al., 2017b; Varanoske et al., 2017, 2018; Black et al.,
2018; Carvalho et al., 2018; da Eira Silva et al., 2020). We also
included data from two other, currently unpublished, studies
conducted within the authors lab. These studies met all of the
inclusion criteria described herein. The decision to include them
was based on the additional power that the increased sample
brought, as well as to ensure that the statistical analysis generated
the best possible estimate of the true value (see Figure 1 for search
flow diagram). In total, 575 participants (comprising 486 men
and 89 women) were included in the meta-analysis, of which
382 consumed BA, with the remaining 193 allocated to a placebo
intervention. The majority of studies were conducted on healthy
young adults (mean age (yrs) = 23.89, SD = 5.46), with only
one study conducted on older adults [mean age (yrs) = 64.34,
SD = 4.99 (del Favero et al., 2012)] and none on younger adults
(<18 years). An overview of all included studies is presented in
Supplemental Table 1. Analyses were completed on subsets of
the data depending on the specific analysis and suitability of each
study set, as described below.

Individual Data
Complete individual data sets were available for 99 participants
(BAn = 67, PLAn = 32) comprising a total of 232 observations,
some of which was previously published (Saunders et al.,
2017b; Carvalho et al., 2018; da Eira Silva et al., 2020). All
studies were conducted on young men and provided a BA
dose of 6.4 g·day−1 with observations ranging from 4 to 24
weeks post baseline. BA supplementation increased MCarn on
average by 16.0mmol·kgDM−1 [95%CrI: 12.4–19.6] compared to
placebo. Regression analyses with duration centered at 4 weeks
were completed to determine if the effects of supplementation

Frontiers in Physiology | www.frontiersin.org 3 August 2020 | Volume 11 | Article 913

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Rezende et al. MCarn Response to Beta-Alanine Supplementation

FIGURE 1 | Search flow diagram.

increased beyond this point (BAn = 50, 134 total observations).
The mean change in MCarn at 4 weeks was 14.0 mmol·kgDM−1

[95%CrI: 10.1–18.1], with a positive regression slope indicating
a further 0.5 [95%CrI: 0.2–0.7] mmol·kgDM−1 increase per
week. Analyses of the same data also demonstrated that baseline
levels of MCarn were not associated with changes due to
supplementation (−0.1 [95%CrI: −0.3–0.1]). The amount of
random noise in MCarn values due to biological variation

and measurement error (i.e., typical variation) was estimated
using observations from placebo groups. The standard deviation
of residuals from the multilevel model representing typical
variation was 4.1 mmol·kgDM−1 ([95%CrI: 3.4–5.1], PLAn =

18, 61 total observations). The intervention response standard
deviation (σ∧,_IR) was estimated as 6.6 mmol·kgDM−1 [95%CrI:
3.4–9.4] and the proportion of individual response was 99.3%
[95%CrI: 96.2–100].
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Aggregate Data
Aggregate analyses were based on effect sizes calculated from
all available studies using the SMD pre to post change in
MCarn levels. One hundred and eight effect sizes were available
from BA groups only, six of which were removed as they
were outliers (ES > 5). The multilevel meta-analysis with no
study covariates estimated a large pooled effect size of 1.5
[95%CrI 1.2–1.8], with substantial between (τ∧20.5 = 0.6) and
within (ǫ∧20.5 = 0.7) study variance (Figure 2). The same
model applied to effect sizes calculated with supplementation
and control group data (22 studies and 56 effect sizes) also
produced a large pooled effect size of 1.7 [95%CrI: 1.3–2.1],
with substantial between (τ∧20.5 = 0.8) and within (ǫ∧20.5
= 0.5) study variance (Figure 3). Using a simple linear model,
the effects of cumulative BA dose was assessed by centering
on the mean value (208 g). Results demonstrated a large effect
at the mean cumulative dose (1.5 [95%CrI: 1.2–1.8]) and an
estimated 0.23 [95%CrI: 0.06–0.49] increase in effect size per
additional 100 g. Similar results were obtained for effect sizes
calculated with supplementation and control group data (effect
at mean: 1.7 [95%CrI: 1.3–2.1]; effect per additional 100 g: 0.16
[95%CrI: 0.01–0.31]). Insufficient data were available to ascertain
if age altered the effects of BA supplementation, but subset
analyses were conducted to investigate the impact of sex and
the method used to measure MCarn, using effect sizes generated
from supplementation groups only. Sixteen studies were selected
that used the most common dosing protocol (cumulative dose
between 130 and 180 g) comprising a total of 56 effect sizes. For
the sex comparison there were eight effect sizes from a female
only group, 38 effect sizes from a male only group and 10 effect
sizes from a mixed group. No substantive evidence of an effect
of sex was obtained (male vs. female: −0.32 [95%CrI: −1.1–
0.43]; male vs. mixed: −0.00 [95%CrI: −0.95–0.88]). Across the
16 studies, 40 effect sizes were obtained from MCarn values
measured with non-invasive scanning devices (i.e., HR-MRS)
and 16 effect sizes obtained with muscle biopsy based analyses
(mainly assessed by HPLC, with one study using UPLC and
one using mass spectrometry), with some evidence of increased
effects with HPLC (0.16 [95%CrI: 0.01–0.43]).

Emax Model
The predicted maximum effect of BA supplementation (Emax)
was 3.0 [50%CrI: 2.2–3.7] and the estimated total cumulative dose
(g) required to achieve 50% of this maximum effect (ED50) was
377 g [50%CrI: 210–494]. A density plot with the Emax curve
generated frommedian parameter values is provided in Figure 4.
An extrapolation of posterior samples from the Emax model was
performed to estimate probabilities that percentage of maximum
effect could be achieved with cumulative doses ranging from
1,000 to 1,500 g (see Table 2). These results estimated, for
example, that the probability of obtaining at least 70% of
maximum effect with a cumulative dose of 1,000 g was 0.68.

DISCUSSION

The purpose of this study was to conduct a comprehensive
analysis with various modeling techniques to synthesize existing

knowledge about the MCarn response to BA supplementation.
Collectively, our findings, based on all models employed,
indicated that human skeletal muscle has large capacity for
MCarn accumulation, and that commonly used protocols (e.g.,
4 weeks at 6.4 g·day−1) may not come close to saturating
MCarn. Baseline values do not appear to influence subsequent
response to supplementation and the non-linear response
to supplementation was not influenced by sex. Analysis of
individual data indicate that MCarn is relatively stable in the
absence of intervention, and that effectually all (99.3% [95%CrI:
96.2–100]) participants respond to BA supplementation.

Our analyses indicate humans have large capacity for non-
linear MCarn accumulation in response to BA supplementation.
Figure 4 shows that BA supplementation can lead to a maximum
effect size of ∼3. Take, for example, the individual data set
used in the current analysis, which had a baseline mean ±

SD MCarn of 22.9 ± 8.7 mmol·kgDM−1. Intake of 1,500 g of
BA is estimated to lead to an approximate increase of three
times this standard deviation, (i.e., ∼26.1 mmol·kgDM−1). It
is important to highlight that these estimates are based on
the median expected effect, and considerable inter-individual
variation is likely. Additionally, estimates at the higher end of the
curve described in Figure 4 should be interpreted with caution,
as a paucity of data based on very high doses limits precision
regarding the point at which human skeletal muscle saturation
occurs. Despite these caveats, our data provides new insight into
the nature of the MCarn response to BA supplementation, and
how this differs to other commonly used dietary supplements,
such as creatine. Human skeletal muscle appears to reach creatine
saturation at ∼140–160 mmol·kgDM−1 (Harris et al., 1992) and
this can be achieved within 5 days of high-dose supplementation.
Response to creatine supplementation is largest in those with
lowest baseline levels, whereas individuals whose creatine content
is habitually closer to this saturation point gain smaller benefit
from supplementation (Harris et al., 1992). In contrast, we
observed no evidence that baselineMCarn influenced response to
supplementation. This makes sense when considered in relation
to our predictive model, as it seems that humans have large
capacity to accumulate MCarn—far greater than is achieved
with commonly used protocols (e.g., 179.2 grams provided
as 6.4 g·day−1 for 4 weeks). This may be because baseline
MCarn contents (∼25 mmol·kgDM−1) are substantially lower
than predicted maximum capacity, whereas humans seem to
habitually maintain creatine content at levels far closer to the
proposed creatine saturation limit of∼140–160 mmol·kgDM−1.

Our model indicates that MCarn increase in response to BA
supplementation is non-linear, and that the greatest increases
occur in the earlier stages of supplementation. This finding aligns
with a recent theoretical model proposed by Spelnikov andHarris
(2019), which describes absolute MCarn increases as a product
of both synthesis and decay, with carnosine synthesis considered
to be constant in relation to time and first order to daily BA
dose. Similarly, carnosine decay is also considered to be first
order, but to relate to total MCarn content. As such, carnosine
decay increases when absolute content is higher and so the rate of
MCarn accumulation due to BA induced elevations in synthesis
will slow, as illustrated in Figure 4. Tissue saturation represents
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FIGURE 2 | Bayesian forest plot of multilevel meta-analysis with non-controlled effect sizes.

the point at which the rates of synthesis match decay, and so
content remains constant despite continued supplementation.
The exact point, and nature, of this saturation point is not
currently known. Does human skeletal muscle have a largely
uniform saturation point, after which no further increases can be
attained (as seems to be the case with creatine)? Or does capacity
to accumulate MCarn vary widely between individuals, with each
having their own upper limit? Currently, insufficient data using
very high BA protocols onMCarn precludes the answering of this
question, but one thing that is clear is that human skeletal muscle
has large capacity to uptake BA and to increase MCarn, and that
in the absence of intervention, MCarn is maintained at levels far
below its maximal capacity.

The Emax model illustrated in Figure 4 clearly shows that
very large amounts of BA are required to reach MCarn
saturation. Theoretically, the greater the increase in MCarn
content, the greater its ability to buffer, and to contribute to
other processes such as anti-oxidation and anti-glycation, and
so intuitively, attaining the largest increases possible seems
desirable. But evidence on this hypothesis is conflicting. Two

individual studies reported that larger MCarn increases were
associated with greater performance effects (Hill et al., 2007;
Saunders et al., 2017b), but this assertion is not supported
by meta-analytic data, which indicates that the total dose
ingested does not influence its effect on exercise performance
(Saunders et al., 2017a). It would be counterintuitive to believe
that performance benefits could linearly increase with ever-
increasing MCarn, given that numerous factors, apart from
acidosis, contribute to fatigue, and so it makes sense that at
some point, performance benefits must plateau. Identification
of the lowest MCarn increase necessary to elicit an ergogenic
effect, along with the point after which no further benefits can be
obtained would have large potential to enhance the applicability
and efficacy of BA supplementation strategies. For example,
it seems that the largest gains in MCarn are attained in the
earlier phases of supplementation (see Figure 4). It would be
of interest to identify if strategies such as meal co-ingestion
(Stegen et al., 2013), intake in proximity to training (Bex et al.,
2015), or intake in slow-release capsules (Varanoske et al., 2018)
can influence the early response to supplementation (Perim
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FIGURE 3 | Bayesian forest plot of multilevel meta-analysis with controlled effect sizes.

et al., 2019) and whether this, in turn, meaningfully impacts
exercise performance.

In addition to investigating whether or not greater MCarn
increases are likely to bring about greater benefits, it is also
important to weigh up the potential cons, against the potential
pros, of this approach. From a practical point of view, dosing
protocols of the magnitude required to cause saturation would
be challenging. Additionally, BA supplementation in its current
doses is regarded as having no adverse effects (Dolan et al.,
2019b), but it is unknown if this will remain true at the
substantially higher doses that are apparently required to reach
saturation. Paresthesia, which is commonly described as a
“pricking” or “tingling” sensation, commonly occurs during BA
supplementation, likely due to the binding of BA to the peripheral
neuronal receptor MrgprD (Liu et al., 2012). This sensation is
not considered to be harmful but may be deemed unpleasant by
some individuals. Paresthesia intensity is related to the timing
of peak blood BA concentrations (Harris et al., 2006) and it is
possible that large dosing increases, of the magnitude predicted
to be necessary to achieve MCarn saturation, may invoke

sensations deemed intolerable. Another theoretical adverse effect
of prolonged BA supplementation is a decrease in taurine
content, given that the two share a transporter (Tau-T) (Shaffer
and Kocsis, 1981).We have previously reported that very high BA
doses (namely those commonly used in animal trials) result in a
substantial depletion of intracellular taurine (Dolan et al., 2019b)
but the same does not hold true for human studies (Dolan et al.,
2019b; Saunders et al., 2020), likely due to the substantially lower
doses typically employed (Dolan et al., 2019b). It is possible that
the very high doses apparently required for MCarn saturation,
may lead to taurine reductions, and so some caution must be
taken in attempting to implement substantially higher doses than
those currently in use. Similarly, previous research highlighted
that L-histidine is also required for carnosine synthesis, and that
chronic BA supplementation may cause depletion of the free
histidine pool, which in itself may have implications given the
wide range of physiological processes that histidine contributes
to Blancquaert et al. (2017). Similar to that which was observed
for taurine, meta-analytic data indicated that BA dosing protocols
within the ranges commonly used do not impact the free histidine
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FIGURE 4 | Density plot of Bayesian Emax model predicting effect of cumulative BA supplementation on muscle carnosine content. Darker areas represent more

common Emax trajectories. White triangles represent Emax generated with median parameter values. The dotted line represents the predicted maximum effect of BA

supplementation on MCarn.

pool (Dolan et al., 2019b), however no evidence currently exists
to indicate whether or not this would remain true in the event
of substantially increased BA dosing protocols. Collectively, the
available evidence indicates that achieving the very high MCarn
levels that the current Emaxmodel indicates are possible, butmay
not be desirable, due to practical and safety issues. We suggest
that in lieu of investigating means of maximizing intracellular
carnosine content, future research efforts should instead focus on
the point at which maximum ergogenic benefits are attained, as
well as the point after which no further ergogenicity occurs.

The current analysis also brought to light some
interesting points about the nature of the MCarn response
to supplementation, which has implications for future study
design. In the absence of intervention, MCarn seems to be
relatively stable, likely due to low intramuscular carnosinase and
roughly equivalent synthesis and degradation rates (Boldyrev
et al., 2013). Our analysis of individual data indicated typical
variation of ∼4 mmol·kgDM−1 across a 4-weeks period.
Reliability data indicate that two muscle samples taken from
the same biopsy cut vary by ∼1 mmol·kgDM−1, and so
measurement error likely accounts for at least a quarter of this
variation, and probably a lot more given that this estimate was

based on samples taken moments apart and from the same
biopsy cut. Interestingly, both within and between study variance
were large and similar. A large proportion of this sampling
error is likely due to small sample sizes. Typically, the use of a
control group would be recommended to normalize the effects
of the intervention against those of usual biological variability
(Swinton et al., 2018). But in this situation, we observed
little variation in placebo group MCarn, while the effects of
intervention studies when analyzed both with, and without,
controlling for the effects of the placebo group were similar (ES
[95%CrI]: 1.7 [1.3–2.1] vs. 1.5 [1.2–1.8]). This implies that the
control group adds little value to the analysis, likely because
of MCarn stability and the large effect of supplementation. In
future investigations of the MCarn response to BA in young
healthy males (and particularly those for which resources are
limited) it may be prudent to direct resources toward the
intervention group, in order to reduce within study variance.
It is important to note that this recommendation applies only
to studies on the MCarn response to BA supplementation. The
influence of BA supplementation on exercise performance, or
clinical outcomes, is far less well-characterized and subject to
substantially more sources of internal and external variability
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TABLE 2 | Probability table representing the chance that various cumulative

doses (columns) create a response greater than the specified percentage of EMax

(rows) based on Bayesian model generated.

% EMax 1,000 g 1,100 g 1,200 g 1,300 g 1,400 g 1,500 g

70% 0.68 0.73 0.77 0.80 0.83 0.85

80% 0.45 0.48 0.51 0.54 0.56 0.59

90% 0.31 0.33 0.35 0.37 0.38 0.40

Values in table represent probabilities (p) 0 ≤ p ≤ 1.

and so control groups are essential in studies for which
exercise, or clinical effectiveness, is the primary outcome
of interest.

In addition to characterizing the nature of MCarn response to
BA supplementation, we also considered the influence of various
potential moderators on this response. In relation to the method
of assessment, it seems that lower effect estimates are generally
observed when MCarn is measured using the H-MRS technique
when compared to those obtained using HPLC analysis of muscle
biopsies. Only one study showed no MCarn increase, despite
using a commonly used dosing protocol of 6.4 g·day−1 for 28
days (Black et al., 2018). It is important to highlight that the
MRS measurements reported in that study used a 1.5T magnet,
as opposed to all others which used a 3T magnet. Given the
incongruency of this finding in comparison to all others, it seems
plausible that this may have occurred due to methodological
inadequacies. When considering the influence of non-modifiable
factors on the MCarn response to supplementation (namely
age and sex), we could not conduct analyses on the influence
of age, as insufficient data in older groups, and no data on
younger groups, were available. Further research investigating
the influence of BA supplementation on MCarn in older adults,
along with potential therapeutic or ergogenic benefits, would
be of interest, although it is worth highlighting that the one
study that investigated a group aged 60–80 years did show
comparable increases to other studies conducted in younger
populations (del Favero et al., 2012). Women have previously
been reported to have lower MCarn than men (Mannion et al.,
1992; Everaert et al., 2011), which may be due to factors such
as gender dimorphism in sex steroid concentrations (Peñafiel
et al., 2004) or to variation in fiber-type composition (Dunnett
et al., 1997; Hill et al., 2007; Painelli et al., 2018). Despite these
differences, our data indicate that both men and women have
a similar response to BA supplementation, indicating that the
lower values previously reported in women are unlikely to relate
to an inherent gender dysmorphism in the biological factors that
underpin carnosine metabolism.

In conclusion, our findings indicate that human skeletal
muscle has large capacity to accumulate carnosine. MCarn

remains stable in the absence of intervention and neither low
baselineMCarn levels, nor sex, influence the subsequent response
to BA supplementation. In turn, these findings lead to other
questions, the response to which may have large implications for
future practice. From the point of view of athletic performance,
key questions include: what is the absolute MCarn increase
required to elicit an ergogenic effect, along with the point after
which no further benefits are attained? It is clear that 4 weeks of
BA supplementation can be ergogenic, but can this be achieved
earlier? Can strategies to enhance the early response to BA
supplementation meaningfully impact the subsequent ergogenic
benefits? The response to these questions may progress practical
application of this supplementation strategy, with potential
benefit to many athletic and clinical populations.
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Supplemental Table 1: Overview of studies included in the meta-analysis 

Author (date) Population N 
(PLA/BA) 

Dosing Strategy / 
TCD (g) 

MCarn 
measureme

nt (unit) 
Device Pre MCarn 

(PLA) 

Post 
MCarn 
(PLA) 

Pre MCarn 
(BA) 

Post 
MCarn 

(BA) 

Baguet et al. (1)   Recreationally 
trained men 7/8 

2.4g for 2 days (4.8g) 
3.6g for 2 days (7.2g) 

4.8g for 42 days 
(201.6g) 

(Total = 213.6g) 

SOL 
TA 

GAS 
MRS3 

5.85 ± 0.76 
5.51 ± 0.62 
6.98 ± 1.20 

5.89 ± 0.91 
4.55 ± 1.25 
7.18 ± 1.38 

5.63 ± 0.94 
6.25 ± 1.11 
7.66 ± 1.37 

7.83 ± 1.74 
7.93 ± 1.70 
9.45 ± 1.78 

Baguet et al. (2)  
Trained men 
and women 

rowers) 
9/8 5g for 49 days (245g) SOL 

GAS MRS3 3.45 ± 0.62 
4.87 ± 1.07 

3.29 ± 0.57 
4.69 ± 1.30 

3.13 ± 0.58 
4.57 ± 0.56  

4.48 ± 1.33 
5.86 ± 1.63 

Bex et al. (3) 

Trained men 
(road cyclists, 

swimmers, 
flat-water 
kayakers)  

0/35 6.4g for 23 days 
(147.2g) 

SOL 
GAS 
DEL 

MRS3 - - 
0.14 ± 0.04 
0.16 ± 0.04 
0.14 ± 0.03 

0.21 ± 0.04 
0.22 ± 0.03 
0.22 ± 0.03 

Bex et al. (4) 

Trained and 
sedentary men 
(jogging and 

cycling) 

0/28 6.4g for 23 days 
(147.2g) 

SOL 
GAS MRS3 - - 5.00 ± 0.86 

8.33 ± 1.35 

7.83 ± 1.38 
11.38 ± 

2.33 

Black et al. (5) Recreationally 
trained men 10/10 6.4g for 42 days 

(268.8g) 

VM 
VL 
RF 
WT 

MRS1.
5 

0.21 ± 0.10 
0.24 ± 0.08 
0.18 ± 0.07 
0.23 ± 0.13 

 0.20 ± 0.07 
0.29 ± 0.15 
0.17 ± 0.06 
0.23 ± 0.10 

0.18 ± 0.05 
0.21 ± 0.07 
0.15 ± 0.12 
0.20 ± 0.08 

0.16 ± 0.05 
0.21 ± 0.09 
0.15 ± 0.07 
0.19 ± 0.08 



Blancquert et al. (6)  
Recreationally 

trained men 
and women 

0/20 6g for 23 days 
(138.0g) 

SOL 
GAS 
VL 

MRS3 - - 
4.56 ± 0.74 
7.31 ± 1.11 
5.06 ± 1.47 

6.91 ± 0.78 
9.51 ± 1.89 
6.54 ± 0.96 

Carvalho et al. (7) Trained men 
(cyclists) 14/14 6.4g for 28 days 

(179.2g) VL HPLC/
MS 1.08 ± 0.62 1.21 ± 0.78 1.18 ± 0.51 1.85 ± 0.75 

Chung et al. (8)  
Trained men 

(cyclists, 
triathletes) 

13/14 6.4g for 42 days 
(268.8g) 

SOL 
GAS MRS3 3.77 ± 1.43 

5.56 ± 1.76 
4.30 ± 1.55 
6.55 ± 1.11 

3.95 ± 2.56 
5.56 ± 1.55 

9.41 ± 1.86 
11.70 ± 

1.92 

Church et al. (9) 
Recreationally 

trained men 
and women 

20/10 

6g for 28 days (168g) 
12g for 14 days 

(168g) 
(Total = 336g) 

VL HPLC 8.24 ± 1.63 7.55 ± 2.06 8.06 ± 3.60 
6.87 ± 2.14 

12.22 ± 
6.19 

9.68 ± 3.06 

Cochran et al. (10)  Recreationally 
trained men 12/12 3.2g for 70 days 

(224g) VL UPLC 6.40 ± 1.80 6.20 ± 1.70 6.40 ± 1.30 9.70 ± 1.60 

Da Eira Silva (11) Recreationally 
trained men 0/14 6.4g for 28 days 

(179.2g) GAS HPLC - - 22.17 ± 
10.10 

34.67 ± 
12.85 

Danaher et al. (12) Recreationally 
trained men 5/3 

4.8g for 28 days 
(134.4g) 

6.4g for 14 days 
(89.6g) 

(Total = 224g) 

SOL 
GAS MRS3 5.94 ± 0.56 

8.73 ± 1.08 
6.33 ± 0.89 
7.42 ± 0.74 

5.57 ± 0.25 
8.08 ± 0.68 

10.48 ± 
1.35 

13.11 ± 
1.97 

Del Favero et al. (13) Sedentary men 
and women 6/12 3.2g for 84 days 

(268.8g) GAS MRS3 1.35 ± 0.41 1.41 ± 0.38 1.20 ± 0.73 2.02 ± 0.85 

Derave et al. (14) 
Trained men 

(track-in-field 
athletes) 

7/8 

2.4g for 4 days (9.6g) 
3.6g for 4 days 

(14.4g) 
4.8g for 20 days 

(96g) 
(Total = 120g) 

SOL 
GAS MRS3 7.25 ± 1.47 

8.56 ± 1.88 
7.85 ± 1.04 
9.99 ± 1.31 

7.76 ± 1.36 
10.16 ± 

1.91 

11.39 ± 
1.38 

13.90 ± 
2.60 



Gross et al. (15) 

Trained men 
(team sports, 

cycling, 
running, 
triathlon) 

9/8 3.2g for 38 days 
(121.6g) 

TA 
GAS 
VI 
VL 

MRS3 

6.80 ± 1.10 
9.60 ± 1.20 
5.70 ± 1.30 
7.10 ± 0.70 

7.10 ± 0.90 
9.20 ± 1.60 
6.10 ± 1.00 
7.20 ± 1.00 

6.90 ± 0.80 
8.80 ± 1.00 
5.60 ± 1.10 
7.40 ± 1.60 

9.40 ± 0.80 
10.80 ± 

1.10 
8.20 ± 1.10 
9.20 ± 1.40 

Harris et al. (16) Recreationally 
trained men 6/10 

3.2g for 28 days 
(89.6g) 

5.2g for 28 days 
(145.6g) 

(Total = 235.2g) 

VL HPLC 23.63 ± 
5.95 

25.49 ± 
4.97 

19.58 ± 
3.71 

24.23 ± 
5.28 

27.38 ± 
2.97 

35.37 ± 
6.17 

Harris et al. (17) Sedentary men 0/7 3.2g – 28 days 
(89.6g) VL HPLC - - 25.90 ± 

4.30 
41.30 ± 

5.50 

Hill et al. (18)  Recreationally 
trained men 6/6 

4g for 7 days (28g) 
4.8g for 7 days 

(33.6g) 
5.6g for 7 days 

(39.2g) 
6.4g for 56 days 

(358.4g) 
(Total = 459.2g) 

VL HPLC 23.60 ± 
2.40 

23.90 ± 
2.50 

19.90 ± 
1.90 

34.70 ± 
3.70 

Kendrick et al. (19) Recreationally 
trained men 13/13 6.4g for 28 days 

(179.2g) VL HPLC 29.17 ± 
9.82 

27.29 ± 
9.52 

23.96 ± 
5.94 

36.77 ± 
8.26 

Kendrick et al. (20)  Recreationally 
trained men 7/7 6.4g for 28 days 

(179.2g) VL HPLC 

22.60 ± 
2.10 

24.20 ± 
3.90 

24.70 ± 
3.70 

23.40 ± 
3.40 

21.60 ± 
7.80 

25.20 ± 
3.90 

31.30 ± 
6.90 

31.80 ± 
5.70 

Kresta et al. (21) 

Trained 
women 

(running, 
cycling, 

swimming, 

7/8 6.1g for 28 days 
(170.8g) VL HPLC 15.70 ± 

4.70 
16.53 ± 

4.80 
19.74 ± 

8.69 
23.68 ± 

1.56 



resistance 
training, 

fitness classes) 

Saunders et al. (22) 

Trained men 
(running, 

cycling, team 
sports) 

9/15 6.4g for 168 days 
(1075.2g) VL HPLC 23.18 ± 

5.90 
23.46 ± 

3.70 
22.38 ± 

4.46 
42.52 ± 

9.11 

Stegen et al. (23) Sedentary men 
and women 0/34 3.2g for 46 days 

(147.2g) 
SOL 
GAS MSR3 - - 3.46 ± 0.70 

4.54 ± 1.08 
5.21 ± 0.83 
6.25 ± 1.16 

Stellingwerf et al. (24) Sedentary men 10/21 

3.2g for 28 days 
(89.6g) 

1.6g for 28 days 
(44.8g) 

1.6g for 56 days 
(89.6g) 

(Total = 224g) 

GAS 
TA MRS3 9.09 ± 0.51 

6.01 ± 0.41 
9.05 ± 0.50 
5.97 ± 0.45 

8.88 ± 0.44 
5.69 ± 0.22 

10.77 ± 
0.62 

7.84 ± 0.43 

Varanoske et al. (25) Sedentary men 
and women 8/12 6g for 28 days (168g) VL HPLC 7.28 ± 2.19 7.35 ± 2.29 7.28 ± 2.19 10.72 ± 

3.67 

Varanoske et al. (26) 
Recreationally 

trained men 
and women 

8/21 6g for 28 days (168g) VL HPLC 8.12 ± 1.59 6.96 ± 3.61 7.38 ± 2.35 11.08 ± 
2.64 

 

SOL = Soleus; GAS = Gastrocnemius; TA = Tibialis Anterior; VI = Vastus Intermedius; VL = Vastus Lateralis; VM = Vastus Medialis; DEL = Deltoid; 
RF = Rectus Femoris; WT = Whole Thigh; MRS1.5 = Proton Magnetic Resonance Spectroscopy 1.5-T; MSR3 = Proton Magnetic Resonance 
Spectroscopy 3-T; HPLC/MS = High-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry; HPLC = 
High-Performance Liquid Chromatography; UPLC = Ultra-performance Liquid Chromatography 
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