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Abstract: As the unscented Kalman filtering algorithm is sensitive to the battery model and susceptible to the uncertain 

noise interference, an improved iterate calculation method is proposed to improve the charged state prediction accuracy of 

the lithium ion battery packs by introducing a novel splice Kalman filtering algorithm with adaptive robust performance. 

The battery is modeled by composite equivalent modeling and its parameters are identified effectively by investigating the 

hybrid power pulse test. The sensitivity analysis is carried out for the model parameters to obtain the influence degree on 

the prediction effect of different factors, providing a basis of the adaptive battery characterization. Subsequently, its 

implementation process is carried out including model building and adaptive noise correction that are perceived by the 

iterate charged state calculation. Its experimental results are analyzed and compared with other algorithms through the 

physical tests. The polarization resistance is obtained as Rp = 16.66 mΩ and capacitance is identified as Cp=13.71 kF. The 

ohm internal resistance is calculated as Ro = 68.71 mΩ and the charged state has a prediction error of 1.38% with good 

robustness effect, providing a foundational basis of the power prediction for the lithium ion battery packs. 

Keywords: charged state prediction; lithium ion battery pack; composite equivalent modeling; splice Kalman filter; 

model adaptive; noise correction 
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Highlights: 

 An improved composite equivalent modeling method is put forward for the lithium ion battery packs. 

 A novel splice Kalman filtering algorithm is proposed to realize the charged state prediction. 

 The model parameters are identified accurately by investigating the hybrid power pulse test. 

 The feature decomposition is conducted by investigating the Bayesian sequential decision strategy. 
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 An effective charged state estimation is carried out by the adaptive modeling and noise correction. 

 

1. Introduction 

The lithium ion batteries are increasing dramatically to the aerospace and automotive application fields, which are used as the powerhouse 

to provide the uninterrupted energy supply. At the same time, it replaces other batteries gradually and becomes one of the main power 

sources expanded day by day because of its light weight, high specific energy and no pollution advantages [1]. In order to meet the high 

power requirements in aerospace and automotive fields, the batteries are usually used in the packing types and taken as the main choices of its 

power supply application [2-4]. However, it is quite difficult to maintain its energy storage and output safety in the group working application 

conditions due to the imbalance phenomenon between the internal connected battery cells and the interaction of its series and parallel 

structure which should be realized online, resulting in its time varying charge-discharge characteristics [5, 6]. When the large changes occur, 

the traditional open circuit voltage and Ampere-hour integral methods cannot be used for estimating the charged state value online because of 

its low accuracy disadvantages, so the improved state estimation methods are urgently needed to improve its prediction effect. 

The charged state is one of the core state parameters in the management system of the lithium ion battery packs together with its affiliates in 

the charged state prediction that should be distinguished from other parameters [7-9]. Since the battery charged state is a physical quantity 

that cannot be measured directly [10, 11], it should be estimated by the information such as voltage, current, internal resistance and 

temperature that are related to the operating state of the lithium ion battery packs, so its prediction purpose can be turned into a model 

parameter reorganization problem according to its special impact on the charged state estimation accuracy [12]. Some adaptive estimation 

methods have been proposed to be suitable for different application backgrounds of the lithium ion batteries [13-16], including electric 

vehicles, substations, smart grids and financial uninterruptible power systems. These approaches can be divided into three categories: simple 

calculation, data-driven and battery-based modeling methods [17-20]. The simple calculation ignores the battery internal variation that is 

involved in different battery types and performs the charged state prediction. It is realized through a simple correspondence model between 

the external battery parameters, such as the Ampere-hour integration, open circuit voltage and impedance modeling methods [21-25]. The 

advantage of this typical estimation algorithm is that it does not require the complicated modeling treatment of the battery to be adapted to 

different charged state levels, making it simple and easy application at any time [26]. Whereas, the disadvantage of this strategy is that its 

prediction accuracy is not high, which requires the recombination of some other mathematical calculation processes.  

The data-driven algorithm is similar to the simple calculation method, the difference of which is that the intelligent modeling method is 

used to train the relational ones, such as neural network, fuzzy inference, support vector machine and so on [27-30]. The advantage of this 
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kind of algorithms is that the prediction accuracy is improved and its calculation demand is reduced. Whereas its disadvantage is that a large 

amount of data is required for its offline model adaptation training that takes quite a long time period. The prediction accuracy is affected 

greatly by its training strategy. Meanwhile, the battery is always regarded as a dynamic power storage and supply systems by using the 

battery modeling construction method [31-33]. And then, its state-space description is completed by the battery modeling treatment together 

with its parameter identification. Considering its complex working condition environments, the estimated state quantity is improved by 

various filters or observers [34-39], such as extended Kalman filter, unscented Kalman filter, adaptive Kalman filter, particle filter, sliding 

mode observer and other nonlinear iterate calculation methods. The advantage of these methods is that the prediction accuracy is high and the 

convergence is good, but its disadvantage is that the battery model has higher calculation complexity and the iterate calculation is more 

complicated. As a result, these methods should be combined with the robust energy and power control conducted by the associated battery 

management system.  

The model-based methods are widely used by the related global experts, especially the Kalman filtering based algorithms. In order to 

overcome the shortcomings of such charged state estimation algorithms, the extended Kalman filtering and unscented Kalman filtering 

algorithms are introduced and improved [40]. On the one hand, the ohmic internal resistance is listed as a state variable together with the 

charged state in order to reduce the modeling error, and the memory-redirected partial least square method is also used to identify the model 

parameters adaptively that are consistent with the commitments to integrity [41-45]. The impact on the unknown noise is gradually updated 

but ignored, in which the recursive partial least square method is introduced to identify the battery parameters online to achieve the accurate 

real-time charged state prediction purpose. And then, the variable variance Kalman filtering method is proposed to update the noise variance 

in real time in order to reduce the noise interference that results in the inaccurate charged state estimation values [26, 46-48]. The optimal 

unbiased maximum posterior time-varying estimator can be built to correct the noise statistics online, but the time-varying problem of model 

parameters cannot be solved effectively due to the accumulated calculation effect. Consequently, the improved Sage-Husa adaptive 

unscented Kalman filter algorithm is adopted to the prediction system under strict control that is supplied in accordance with its correction 

strategy [49-51]. As the uncertainty noise of the charged state estimation algorithm is greatly affected by the battery model provided by its 

step-by-step estimation and correction, the model parameters and state variables can be calculated by the double Kalman filtering processes 

respectively and the experimental results show that these two algorithms have strong practical characteristics. As a result, the accuracy and 

robustness can be further improved by the information collected in the real-time working condition power supply process. 

The Kalman filtering algorithm can be introduced into the charged state estimation process combined with the open circuit voltage method, 

which is characterized by the electrical modeling and provides an important phase of a large oscillation with the time-varying temperatures 

[52]. By fitting the curve relationship between open circuit voltage and charged state, the prediction-measurement-correction strategy can be 
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conducted following to the open circuit voltage values as well as its terminal voltage. According to the minimum mean square error principle, 

the dynamic system can be investigated for the optimal charged state estimation, making changes in the working state monitoring patterns 

[53]. And then, the obtained state variable can be updated under the actual measured condition to realize the correction and reduce the 

detection error effect. Its complete phenomenon is known as the closed loop feedback. In order to avoid the introduced noise effectively that 

is taken place in the state and measurement equations, the Kalman filter algorithm minimizes the charged state estimation errors and conducts 

the continuous correction for the target accurate value in real time. As a result, the online internal resistance measurement is applied in the 

capacity and charged state estimation for the lithium ion batteries, in which the prevailing theory predicts that the inner parameters can be 

characterized by the modeling strategies [54]. The charged state estimation is investigated for the lithium ion batteries based on a novel 

reduced-order electrochemical model, which could have a major impact on the energy storage systems worldwide and an advanced machine 

learning algorithm is conducted for the power batteries of diversified drive cycles. As a result, the online charged state estimation algorithm is 

put forward for the lithium ion batteries by using the improved Kalman filtering theory that is adaptive to the surrounding working 

conditions. 

In order to solve the problem that the unscented Kalman filter algorithm is sensitive to battery model and vulnerable to unknown noise, an 

improved splice Kalman filtering method is proposed further to improve the charged state prediction accuracy. It also makes the calculation 

process adaptive to the robust performance of the lithium ion battery packs. Based on the composite equivalent modeling and its correction 

treatment, the splice Kalman filtering algorithm is realized to estimate the charged state value by using the open circuit voltage characteristic 

towards different charged state levels combined with the Ampere-hour integration methods, and its prediction accuracy is improved 

dramatically on the lithium ion battery packs according to the iterate calculation process that represents the mathematical description of the 

inner electrical variations. Meanwhile, the composite equivalent circuit model is built and its parameters are identified, in which the battery 

modeling characteristic sensitivity experiment is designed and investigated. The steps of adapting the key parameters are obtained by 

conducting the dimensional expansion, in which the mean value can be solved by the state equation based on its iterate calculation process. 

When the latest value of the covariance is used, its linear propagation is conducted directly instead of the unscented transformation, which 

simplifies the calculation complexity. And then, the noise correction form is built by using the covariance matching and optimal unbiased 

maximum posterior methods. Finally, the complex working condition tests are investigated along with its experimental consequences, 

according to which the charged state prediction accuracy and robust performance are improved effectively comparing with the traditional 

iterate calculation algorithms. 
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2. Mathematical analysis 

2.1. Improved equivalent circuit modeling 

The battery modeling is the mathematical basis of the related working condition monitoring strategy that the battery management system 

must contend with. At present, the usual lithium ion battery models can be roughly divided into three sorts of categories. The first type is the 

mechanism model based on the electrochemical mechanism of the lithium ion batteries. The second type can be named as the empirical 

model obtained by the simplified development of the electrochemical model, which can be also called as the simplified electrochemical 

model that differs from one model to another. The third kind is the equivalent circuit modeling method that can be trained in ways to realize 

the accurate charged state estimation, in which an equivalent electrical circuit is used to simulate the external characteristics of the lithium ion 

battery of competition and influences. After considering the battery polarization effect and modeling complexity fully, the improved 

equivalent circuit model is constructed, which has simple structure but great influence on the accurate description of the working 

characteristics for lithium ion battery packs. The related parameters have clear physical meanings, which can simulate the charging and 

discharging characteristics accurately to meet its stable power supply requirement. The specific circuit is established for the accurate working 

characteristic expression as shown in Fig. 1. 

Rp

Cp

ICp(t)

Rd

Rc

Ro

UOC

Rs

Is(t)
Uδ Rδ

UL

I(t)

Rcd

 

Fig. 1.  The improved equivalent circuit model 

In Fig. 1, the model assumptions are summarized and listed in detail as follows. Uoc represents the open circuit voltage. Rs is used to 

illustrate the self-discharge effect, which can be described as the battery degrades effectively to avoid large discrepancies. Ro represents the 

battery ohmic internal resistance. Rc and Rd are the charge and discharge differential resistances, which can be gathered to be Rcd for its 

optimizational calculation. Rp and Cp are the polarization resistance and capacitance that have great effect on the battery charged state 

prediction respectively. I(t) is the circuit loop current. UL is the load voltage. Up is the polarization voltage that is obtained by the potential 

difference across the resistance-capacitance network. Uδ is the balancing reverse voltage and Rδ is the balancing resistance, which are used to 

describe the battery cell-to-cell differences. This modeling method can obtain the mathematical expression by different battery effect 

description, in which the internal resistance is used in the equivalent process with high accuracy characteristics. The series-connected 

resistance is introduced into the model that is mixed with other circuit components, which is then connected to the parallel reverse diodes to 
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characterize the resistance difference when set to be in charging and discharging conditions. As a result, it can realize the comprehensive and 

accurate battery characterization compared with other models, in which the battery charge-discharge and polarization effects are taken into 

account as well as the environmental influence.  

The correction treatment is required in the mathematical methods by the iterate calculation process, providing an opportunity for the 

accurate charged state estimation. Consequently, the electrochemical, neural network and equivalent models are commonly considered in 

applications, which are strongly tele-connected to the primeval state parameters. The electrochemical model is used to study the influence of 

internal chemical mechanism and reaction on the model construction process but with high estimation accuracy, which is not suitable for this 

application due to its large calculation amount. Then, the neural network model is investigated to study how to estimate the energy state value 

by using the input and output relations to open spaces in the over-lying input factors used for the accurate characterization, which forms many 

experimental data sequences. Eventually, the estimation error will be large if the data is insufficient which should be escaped due to its 

dependence on the experimental data. According to Kirchhoff law, the relationship between these parameters can be obtained respectively 

and accommodated scarcity of the calculation demands as shown in Equation (1). 

 
L o p

p p p p

U E IR U

I U R C dU dt

  


 
  (1) 

Wherein, UL(k) is the voltage value between the two electrodes of the lithium ion batteries. E is the battery ideal electromotive force. I is the 

total circulating circuit current of the battery system. Ro is the internal resistance. Up is the voltage across the polarization resistance-

capacitance network, in which Rp and Cp are the resistance and capacitance separately. The working characteristics can be revealed by the 

iterate calculation process of greater transparency by using the basic accumulative calculation treatment, in which the general introduction 

and calculation requirement are considered in the interact through the mathematical treatment of the equivalent model. According to the 

accumulation of the environmental influence that erupts into a sudden time point, its charged state is affected by the battery factors such as 

temperature, charge-discharge state, self-discharge, aging effect etc. The internal chemical reaction is variable and its characteristics are 

highly nonlinear, which makes the energy state estimation difficult due to the high requirement of the input parameters. There are many 

charged state estimation methods, in which the ampere-time integration error is large and the open-circuit voltage method is mainly used for 

the offline energy state estimation. The high-precision methods of the energy state estimation include neural network, fuzzy inference and 

Kalman filtering that have been studied consciously, in which the Kalman filtering is an optimized autoregressive data processing algorithm. 

According to the Ampere-hour calculation results and the influence of the surrounding environments with its accurate risk assessment, the 

charged state definition can be obtained and estimated at external influences as shown in Equation (2). 

      
0

0

t

N
t

S t S t I t dt Q    (2) 
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Wherein, S(t) is the charged state value at time point t and S(t0) is used for the time point t0. η is the Coulomb efficiency coefficient. I(t) is 

the current value at time point t and QN is the battery calibration capacity. Aiming to realize its accurate estimation, the large error 

disadvantage of the ampere-time integration approach is overcome effectively by combining with the splice Kalman filtering methods. 

Meanwhile, the open-circuit voltage is mainly used for the correction step, and the high-precision energy state estimation is investigated by 

combining the thought of neural network, fuzzy reasoning, and Kalman filtering algorithms together, which is an optimized autoregressive 

data processing method that is quite suitable for the nonlinear working state estimation. Combining the above equations, the discretization 

process can be used and dissolved to obtain the immune state-space and observation equations. It is used to indicate the working state of the 

lithium ion battery packs effectively. The calculation process can be described as shown in Equation (3). 
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2

1 0 1 1
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10 exp 1 exp 1

s N
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T QS k S k w k
I k

U k U kT R C R T R C w k

U k E S k U k R I k v k

         
                         


      

 (3) 

Wherein, S(k) is the charged state value at time point k and S(k-1) is used for the time point k-1. Up(k) is the voltage value of both point ends 

to the polarization resistance-capacitance circuit and Up(k-1) is used for the time point k-1. In the upper part of Equation (3), two state 

variables of S(k) and Up(k) are formed into the state equation matrix. η is the Coulomb efficiency coefficient. Ts is the sampling time interval 

which is set as Ts = 1 s in the experiment, that is, the sampling frequency is 1 Hz. QN is the calibration battery capacity. Rp and Cp are the 

polarization resistance and capacitance. I(k-1) is the current value at time point k-1. w1 and w2 are the process noises for both of the ampere-

hour iterate calculation and the polarization effect separately ,which are Gaussian white noise with mean value of zero and covariance of Q. 

In the second half of the Equation (3), the observation calculation process is realized. UL(k) is the voltage value of the two battery electrodes. 

The operator E[S(k)] is the battery ideal electromotive force that is described by using the mathematical nonlinear function based on the 

charged state estimation results, in which the open circuit voltage characteristic curve towards different charged state levels can be obtained 

corresponding to the charged state variation. v(k) is the observation noise with covariance value of R. And then, its aggregated value can be 

calculated by using the shared precise information along with the charged state estimation process based on the model parameters. 

2.2. Parameter identification considering charge-discharge effect 

The parameters that the model needs to identify include Ro, Rp, Cp and the open circuit voltage characteristic relationship towards different 

charged state levels, which are all time-varying parameters that change along with the environmental factors such as ambient temperature, 

charge-discharge rate and battery life degradation in inquiry. In order to obtain the reliable initial value of the model parameters for the 

charged state prediction algorithm, it is necessary to identify these parameters by means of pulse power discharging experiments, which are 

implemented to realize the model parameter identification of the lithium ion batteries surrounded by the environmental factors. The 
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experimental object is the socialized lithium cobalt oxide batteries for instance. The experimental conditions and processes are designed as 

follows. Considering the charge-discharge effect, the pulse charge-discharge process of lithium-ion battery packs for the experiment, 

according to which the anti-phase symmetry effect can be utilized effectively. And then, the model parameters can be calculated by 

considering both of the charging and discharging processes, making its accuracy to be better. The 1 C constant current discharge is conducted 

for 360 seconds and the ambient temperature is set as 25 ℃, which is followed by the shelved treatment effectively. The specific pulse 

charge-discharge process is shown in Fig. 2. 

0 20 40 60 80 100 120 140

-4

-2

0

2

4

t11(U11)
t10(U10)

t6(U6)

t3(U3)

t0(U0)

 I

 UL

t (s)

I 
(C

)

t9(U9)

t8(U8)

t7(U7)

t5(U5)

t4(U4)

t2(U2)

t1(U1)

28.5

28.6

28.7

28.8

28.9

29.0

29.1

29.2

29.3

 U
 (

V
)

 

Fig. 2. The specific pulse processes 

Wherein, the complete response curve of the terminal voltage is described under the condition of one pulse charge-discharge process, 

which is recorded as UL(t). U0-U1 is the initial stationary stage and U1-U2 is the sudden voltage drop stage during the pulse discharging 

maintenance process. U2-U3 is the constant current discharge stage and U3-U4 is the terminal voltage changes in the end of the pulse 

discharging process when the battery pack is not discharged any more during this time point. U4-U5 is the zero input response state of the 

terminal voltage after the battery discharge period ends. The battery terminal voltage basically does not change from the U5-U6 phase, which 

returns to the rest state completely. U4 - U3 and U8 - U9 are defined as the potential change of the ohmic internal resistance in the case of 

power failure, according to which Ro can be identified accurately. U6 - U4 and U9 - U11 are the voltage change between the two ends of the 

RC loop during the discharging and charging processes, and then Rp can be identified accurately. The calculation process of these two 

parameters is shown in Equation (4). 
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  (4) 

Wherein, Ro is calculated by the voltage change of considering both of the charging and discharging effects as well as Rp, so that the 

parameter identifying accuracy can be improved effectively. The energy state essence of the lithium ion battery pack is estimated by using the 
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 9  

ampere-time integration method to calculate its value accurately, in which the charge-discharge current is assumed to be measured with high 

precision. And then, the measured voltage value is used to correct the energy state value that is obtained from the model prediction together 

with the ampere-hour integration. Consequently, a suitable equivalent battery model is established for the accumulated energy description of 

the lithium ion batteries, in which the estimation accuracy mainly depends on its mathematical description effects. The battery is regarded as 

a magnitude power system and the energy state is a state parameter of the system. Meanwhile, the battery charge-discharge current is taken as 

the input factor of the system and the terminal voltage is used as its output parameter. The system state is updated continuously by the 

devastating error of the observed terminal voltage and the energy state can be estimated at the nearby time points, thereby the energy state can 

be generated with minimum-variance characteristics by the iterate calculation treatment. The time parameter should be calculated by using 

the experimental voltage values of different time points combined with the battery output factor measurement influenced by the surrounding 

working conditions. The calculation process of the time constant τ is described as shown in Equation (5). 
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 (5) 

Wherein, τ is the time constant. t4, t6, t11 and t9 are the time points corresponding to U4, U6, U11 and U9 as shown in Fig. 2. U1 is the initial 

voltage before the pulse charge-discharge test. According to the relationship between polarization capacitance Cp, polarization resistance Rp 

and time constant τ, the parameter Cp can be obtained incapable of producing the great sudden voltage change. By conducting the inspection 

of the mathematical calculation process, its strict regulations can be complied as well as the qualifications and its mathematical calculation 

method is shown in Equation (6). 

 p pC R  (6) 

Wherein, Cp is the polarization capacitance. τ is the time constant and Rp is the polarization resistance. The open circuit voltage value can be 

obtained by fully sinking the terminal voltage that comes up with the electromotive force establishment of the voltage points including U6 

and U11, according to which it is recorded conveniently and recognized as efficient to be E as shown in Equation (7). 

  6 11 2E U U   (7) 

Wherein, E is the electromotive force. U6 and U11 are the voltage change between at the time points of t6 and t11, so that the discharging and 

charging influence can be offset by conducting these two symmetric time points. It is a question that the time parameter should be applied to 

realize the iterate calculation process and establishing the reasonable state and observation equations should be the most critical step of the 

iterate calculation process, so an accurate battery model must be established to gain its predictive value. However, since the battery system 

exhibits strong nonlinearity, it is not ideal for this nonlinear energy state estimation system if only taking the basic Kalman filtering theory 
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 10  

into account. Therefore, the splice Kalman filtering algorithm is put forward to linearizing the nonlinear system through Taylor expansion to 

forecast its future state. After linearization, the traditional Kalman filtering treatment can be conducted and behaved to estimate the state 

parameters, according to which the expected variables are estimated, providing a good choice to use double unscented transformation to 

estimate the energy state value accurately. In addition, when the parameter measuring accuracy is not high and the calculation error is not 

considered seriously therefore, it is hard to distinguish the energy state that is stored by the battery system. Because this algorithm ignores the 

higher order terms other than the second-order after the Taylor expansion treatment, its estimation error mainly depends on the correcting 

calculation process. By analyzing the transient response of the resistance-capacitance structure of the t4-t5 phase, τ=RpCp can be identified and 

prepared for the steadily built up characteristics, the identification process of which is shown in Equation (8). 

   /t

L pU t E R Ie    (8) 

Wherein, UL(k) is the voltage value between the two battery electrodes when the lithium ion battery is set to be charging or discharging 

conditions. E is the battery ideal electromotive force that is calculated by using Equation (7). I is the total circulating circuit current of the 

battery system. t is the time point and τ is the time constant. Combined with the recognition of the above equations, the corresponding 

parameters of the experimental application case can be obtained by the curve fitting treatment, and the varying pattern of the open circuit 

voltage towards the charged state characteristic is obtained by the experimental cycling hybrid pulse power characterization tests. As for the 

hybrid pulse power characterization test, the detailed process is designed as follows. Firstly, 1 C constant current discharge is investigated in 

the environmental temperature conditions of 25 °C, and the discharging time of 360 seconds ensures that the charged state interval between 

each pulse charge-discharge treatment is 0.1. And then, the stewing time of 600 seconds ensures that the terminal voltage change rate is less 

than 1 mV / min. The experimental results of the cyclic pulse discharging maintenance are obtained by the accumulated calculation in small 

amounts of its discharging energy that are shown in the left part of Fig. 3. 
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(a) Cyclic pulse discharging maintenance (b) Open circuit voltage characteristics 

Fig. 3. The specific pulse discharging process and its open circuit voltage characteristics 
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As can be known from the left part of Fig. 3, the open circuit voltage value can be accumulated along with its energy state variation. It is 

obtained at the time point before each pulse discharge maintenance. Then, the corresponding battery terminal voltage value can be extracted 

by the discrete data points, according to which the open circuit voltage characteristics towards different charged state levels as shown in the 

right part of Fig. 3. Thus, the open circuit voltage characteristic towards different charged state levels can be obtained by curve fitting tool of 

the Matlab software, the functional relationship of which is shown in Equation (9). 

 
1 2 3 4 5 6

0 1 2 3 4 5 6E a a s a s a s a s a s a s        (9) 

Wherein, s expresses the charged state and ak (k=1~6) are the constant and magnitude parameters of this equation by decoding the inner 

information of the experimental results. 

2.3. Iterative calculation with time-varying internal resistance 

As the unscented Kalman filter algorithm is sensitive to the battery model and susceptible to the interference from unknown noise, the 

splice Kalman filtering algorithm is put forward to handling these problems well. Its implementation process is introduced in detail, including 

two parts named as the model adaptation and the noise adaptation. Therefore, the system noise is generally approximated as white noise 

in accordance with the Gaussian distribution as well as its process noise, the expectation value of which is linearized along with its 

covariance value of the estimation process. The linear state equation is used to estimate the system state by using the input-output data. 

Because it is estimated completely at the time domain, there is no mutual conversion to realize the translation treatment for the time 

domain and the frequency domain, so the calculation amount is quite small but has good real-time estimation effect. The model 

parameter adaptation is realized by conducting the dimensional prediction in that the key model parameter Ro is listed as the state variable that 

can be estimated together as well as S and Up. And then, the state-space equation is modified accordingly as shown in Equation (10). 
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 (10) 

Wherein, S(k) and S(k-1) are the charged states at the time points of k and k-1. Up(k) and Up(k-1) are the voltage values of the polarization 

resistance-capacitance circuit at the time points of k and k-1. In the upper part of Equation (10), three state variables of S(k), Up(k) and Ro(k) 

are formed into the state equation matrix. η is the Coulomb efficiency coefficient. Ts is the sampling time interval and QN is the calibration 

capacity. Rp and Cp are the polarization resistance and capacitance. I(k-1) is the current value at time point k-1. Ro(k) and Ro(k-1) are the 

internal resistances at the time points of k and k-1. w1, w2 and w3 are the calculation process noises for the ampere-hour, polarization effect 

and internal resistance. In the second half of the Equation (3), the observation calculation process is realized. UL(k) is the voltage value of the 
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two battery electrodes, in which the time-varying Ro(k) is introduced into the iterate calculation process. The operator E[S(k)] is the battery 

ideal electromotive and v(k) is the observation noise. To estimate the energy state value of the lithium ion battery pack, it is required to be of 

white noise characteristics for the process and observation noises together with the Gaussian distribution. In this case, the process noise can 

be facilitated and the covariance of the observed noise is controlled for the estimation process, in which the Taylor expansion is applied to 

unfold the system model of the lithium ion battery pack. And then, the first-order linearization model is left by removing the high-order 

terms. After obtaining the linearization model, the energy state of the lithium ion battery pack is further estimated by the traditional Kalman 

filter, and its calculation algorithm flow can be obtained accordingly. Then, the lithium ion battery packs can release more energy than usual 

by considering much about its legitimate application. This is because they have been stored since the last common charging treatment, 

according to which the above state and observation equations can be recorded as shown in Equation (11). 
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Wherein, X(k) is the state variable matrix at k time point and U(k) is the input matrix by supposing Y(k) as the observation matrix. f and h 

are the transfer functions, in which W(k) and V(k) are the system noise and observation noise respectively that can be ascribed to the fact that 

the default value of them is the uncorrelated Gaussian white noise. The symmetric sampling strategy is selected for the unscented 

transformation process mainly because of its advantages in adaptive calculation without tedious calculation. The mean and covariance values 

of the scientific calculation process can match the real value of the third-order Taylor expansion, and it is significantly higher than the 

accuracy of the extended Kalman filtering algorithm, which is made up largely due to its high correction features.  

As for the lithium ion battery packs, the tectonic energy state parameter is affected by the factors such as temperature, charge-discharge 

current rate, self-discharge and aging effect. The internal chemical reaction is variable and it beneaths the out-detective parameters. Its 

characteristics are highly nonlinear due to the colliding influence of the lithium ions. Because of these characteristics, the accurate energy 

state estimation is very difficult and the promotion process of the high-power lithium ion battery packs tends to be pent-up. By the real-time 

optimal correction of its state variables, the estimation accuracy of the energy state can be improved by combining with the measurement 

input factors, which performs the first-order linearization on Taylor expansion of the nonlinear functions. The remaining high-order terms are 

ignored and written off, according to which the nonlinear characteristics are expressed in the precision calculation step [50], so that it can be 

applied to the nonlinear energy management system.The specific steps are shown as follows. 
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(1) As the estimation results are always influenced by the initial value of the parameters, the mean and variance values should be initialized 

accordingly and this is also the reason why the precious factor initialization should be conducted as the origin charged state through the 

foundation of the model factors. The related variable initialization can be realized by Equation (12). 
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  (12) 

Wherein, X0(k) is the initial state variable matrix that is obtained by calculating the expected value of X(0). P0(k) is the covariance matrix 

that is obtained by combining the calculation of X0 and X(0) together.  

(2) The 2L+1 sigma points can be generated and recognized that comes from the experimental data onto the mathematical techniques as a 

result of the decoding evidences. What is happening to the short-term timescale is that it is actually imposed on a long-term cycling charge-

discharge working conditions. And then, the corresponding factor weights can be calculated resulting from the parameter values of the last 

time point, which are calculated by using the Equation (13). 

    

 

 

, 0

2 , 0

m c

i i

L i
W W

L i

 

 

 
  

    
  (13) 

Wherein, the weight coefficient matrix W
m
 is used to calculate the mean value of the state parameters and W

c
 is used to calculate the 

covariance matrix. λ is the proportional coefficient, which is chosen and used to adjust the distance between the sigma point and X0, affecting 

the deviation caused by the high-order matrices. L represents the dimension of the state variable and its value is 3. Its relationship satisfies 

λ+L=3, the calculation process of which is shown in Equation (14).  
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 (14) 

Wherein, the prediction value of the state parameter matrix X can be obtained under different conditions by considering the relationship 

between i and L, in which the covariance matrix P is used for the correction treatment of the prediction process. The sequence and size of the 

data matrices also have great influence on the calculation complexity. In response to the regional demands of the power supply process of the 

lithium ion battery packs, it can also be fine-tuned in the middle according to the actual situation. 

(3) The one-step time updated state variable and its mathematical treatment can be investigated by using the following calculation process. 

The eventual formality of receiving the calculation result can be obtained in the last calculation step, which has maintained to be strong and 
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productive for the charged state prediction of the lithium ion battery packs. The normal one-step state prediction and its error covariance 

matrices can be obtained and involved by the weighted calculation process of a long time with its predictive value, the calculation process of 

which is shown in Equation (15). 
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  (15) 

Wherein, the state parameter matrix X is obtained for all the sampling particles, which is then used for the overall state matrix calculation by 

the weighted calculation using the weight coefficient matrix W
m
. The covariance matrix P is also calculated by the weighted calculation of 

the weight coefficient matrix W
c
. The purpose of the above equation is to realize the one-step state prediction together with its error 

covariance matrix calculation. Since the state-space equation is linear, it can be solved by the covariance linear propagation directly away 

from the traditional calculation treatment. The battery model is suitable for the energy storage and discharge, which makes it difficult to be 

forecasted accurately. Plus, it is hard to identify the energy stored by the battery at least. As a result, it should be figured out how to effectively 

put a voltmeter in a battery cell to investigate the charged energy for the first time. The proposed iterate calculation algorithm does not require 

the nonlinear transmission links to the same model building process, which simplifies the calculation process as shown in Equation (16). 
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Wherein, X is the state parameter matrix and f(*) is its nonlinear transformation function by taking the state value and measured parameter 

value U(k-1) of the last moment as input. P is the covariance matrix. F is the state transition matrix taken into the several calculation process 

that provides the intellectual underpinning for this important region, according to which the error correction can be realized in the real-time 

fundamental energy management with effective architecture. Q is the covariance matrix of W for the process noise description. 

(4) When it is used to estimate the energy state value of the lithium ion battery packs, the process noise is initialized along with the 

observation noise to overcome the limitation of the basic Kalman filtering methods. In this case, the process noise can be facilitated to get 

everything right, and the covariance of the observed noise is controlled. The state variable sigma point can be corrected without lingered 

suspicions to avoid the native error accumulation effect, which is realized by the calculation treatment as shown in Equation (17). 
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Wherein, s is the weight coefficient for the unscented transform and X is the state matrix. P is the covariance matrix. The prediction value of 

the state parameter matrix X can be obtained under different conditions by considering the relationship between i and L, in which the 

covariance matrix P is used for the correction treatment of the prediction process. 

(5) There is a certain error between the true value and the estimated value, the reason is that there is a certain error between all the measured 

parameter values obtained by the mathematical model and the actual measured values. The observed prediction values and the covariance of 

the sigma points can be obtained to keep up with the iterate calculation of the charged state monitoring process of its practical treatment, in 

which the correction maintenance can be made as a confluence that is shown in Equation (18). 

 

    

     

     

2

, , ,

0

2

, ,

0

2

, ,

0

ˆ ˆ ˆ ˆ, ;

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

n
c

k i k i k k ii
i

n T
c

y k i k k i ki
i

n T
c

xy k i k k i ki
i

Y h sX U k Y W Y

P W Y Y Y Y R

P W sX X Y Y







 




 


        
       







  (18) 

Wherein, Yk,i is used as the observation matrix. f(*) is the nonlinear observation equation transformation function by taking the state value 

Xk,i and measurement parameter value U(k) as input. s is the weight coefficient and X is the state matrix. The overall observation matrix value 

is then calculated by the weighted sum using the weight coefficient matrix W
c
. Py is the autocorrelation coefficient matrix only for the 

observation matrix Y. Pxy is the cross correlation coefficient matrix for both of the state matrix X the observation matrix Y. R is the covariance 

matrix of V for the observation noise expression. 

(6) Along with more detailed records of the charged state in its energy supply application, the accurate estimation is investigated by 

conducting the real-time correction treatment to prevent the huge estimation errors. As a result, the Kalman gain is calculated by using the 

covariance as shown in Equation (19). 

  
1

k xy yK P P


  (19) 

Wherein, Kk is the Kalman gain, which is calculated by taking the autocorrelation coefficient matrix Py and the cross correlation coefficient 

matrix Pxy. It is then used in the correction treatment as shown in Step 7. 

(7) The long records are revealing very useful things to express the long-term cycling characteristics, which are described in the 

mathematical ways and used in the real-time charged state estimation. The state variable measurement and covariance updating treatment can 

be conducted as shown in Equation (20). 
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  (20) 

Wherein, Xk
+
 is used as corrected state matrix value and Xk

-
 is used as the state matrix value before correction. In the correction calculation 

process, the correction amount is obtained by calculating the residual between the calculated value and the predicted value of the observation 

matrix Yk, which is then multiplied by the Kalman gain Kk. Pk
+
 is used as corrected covariance matrix and Pk

-
 is used as the covariance matrix 

value before correction. During the correction process of the covariance matrix, the correction amount is calculated by using the Kalman gain 

Kk and the autocorrelation coefficient matrix Py.  

As can be known from Equation (12) to Equation (20), the whole structure of this iterative calculation is a linear combination of the 

measurement parameters for each step to simplify the estimation process, and the detailed parameters are obtained by the nonlinear correction 

treatment to correct the accumulated errors as the battery degrades over time by using the time-varying parameters including Ro. 

2.4. Noise covariance correction strategies 

In addition to the battery model parameters changing along with the stress conditions, the noise in the actual environment is also uncertain, 

so it is necessary to adapt the time-varying noise based on the model adaptation, according to which the prediction accuracy of this algorithm 

is further improved. The algorithm corrects the noise covariance to make it as close as possible to the true noise level and underpins for the 

next calculation step, and the estimator starts the recursive calculation from the time point of k=m+1. When k<m+1, the noise can be 

calculated by the optimal unbiased time-varying estimator statistically, in which m is the window width. According to experience, the 

window width is set to be m=20 and it is particularly suitable for the manifested parameters in the correction process. Then, the noise data is 

processed by the unbiased time-varying estimator by doing high-quality studies together with its large scale demands, according to which the 

weighting strategy of the data is investigated by using the indexed weighting methods. The innovation and forgetting operators can be 

initialized accordingly with the long-term pattern and particular treatment to obtain the high accuracy estimation results, the calculation 

process of which is shown in Equation (21). 

 
      
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z k y k h X U k

d k b b

  


  

 (21) 

Wherein, z(k) is the residual between the measured parameter value of y(k) and its observation value using the previous time point state 

factor value. d(k) is the correction coefficient weight. b is a forgetting factor that is used to weaken the weight of noise data onto the filtering 

window, which is conducted with a long-term time period of several hours or more. However, it generally takes a value of 0.98 over the long 
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term because it is mostly constant, leaving things to be adaptive. Therefore, combining the system-state at the previous time moment with 

the error covariance and the Kalman gain, a priori prediction value can be obtained for the expected time period. The two parameter 

values are true values before and after the one-step calculation, which are not available in the actual working conditions. The posterior 

state estimation is used at the previous time moment, so it is also necessary to predict the state value of the next step in advance. 

According to the measurement function of the mathematical model, the measured value is a function of estimating the calculation 

value, but the estimated value cannot be obtained in actual cases. In the case of the linearization error, its calculated value can be 

obtained from the mathematical model, which should be equal to the physical value that is directly measured by the management 

system. It is also named as the measured true value, according to which the linearization error of the mathematical model should be 

pulsed in the prior estimation step. After that, the parameter Q is estimated by holding accuracy in the iterate calculation process of 

particular area to check the experimental results, which is described as shown in Equation (22). 

    11 T T

k k k k k k k kQ d Q d Kz z K P P 

      (22) 

Wherein, Q is replaced in the original expression by using the latest prediction value of Qk, in which the most common problem of the 

calculation processes is the balancing treatment for the estimation accuracy and the calculation complexity. There is a certain error between 

the true value and the estimated value because of the measurement error between all the measured values obtained by the 

mathematical model compared with the actual measured values. The splice Kalman filtering algorithm is based on the ordinary 

Kalman filtering algorithm, which is a technique for online linearization that is used to linearize the estimated parameters for 

performing the iterate calculation treatment, thereby achieving the accurate energy state estimation of the lithium ion battery packs. 

Therefore, the parameter R is estimated and experienced in the iterate calculation process to avoid its error rising phenomenon above its 

safety levels, which is described with high complexity as shown in Equation (23). 

    11 T

k k k k k k yR d R d z z P     (23) 

Wherein, R is replaced in the original expression of the latest prediction value of Rk. When k ≥ m +1, the noise is estimated in real time by 

using the proposed special impact correction method. The approximation of the charged state and the terminal voltage covariance is realized 

by the limited calculation process, in which the estimated value is filled with noise when the measurement error of the closed circuit voltage 

is large. The correction strategies are developed for serious conditions as the primary components, in which the calculation process is 

obtained as shown in Equation (24). 
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Knowing how to ensure the stability and safety of its power supply under the battery cell difference influence is a key issue, as for the wide 

temperature range dynamic operating environment. A state parameter - correction strategy is proposed to realize its stability guarantee, in 

which the power supply index of the battery system is guaranteed by improving the stability of the dynamic queue. The research objectives 

and various research contents are considered comprehensively according to the phased research progress requirements of key steps such as 

theoretical analysis, model construction and experimental verification. Q is the variation in the correction treatment of the process noise and 

its expression requires different ways to satisfy various calculation purposes, which is shown in Equation (25). 

 
K

k kQ KC K   (25) 

Wherein, the parameter Q is replaced in the original expression of the latest prediction value of Qk, because these parameters are far apart 

from each other. As a result, it is not only using different types but different expressions. The technical methods of its modeling and state 

estimation are analyzed, in which the key points of modeling and estimation techniques are mainly addressed by its basic theoretical research. 

Furthermore, the test environment is established to ensure the scientificity of research through analysis, verification and comparison. As the 

measurement noise R prediction grasses the calculation with many different factors, the correction is realized with an improved approach 

conveniently as shown in Equation (26). 

    
2

,

0

ˆ ˆ ,
L

c

k k k i k ki
i

R C W Y h X u



   
    (26) 

Wherein, R is replaced in the original expression by using the latest prediction value of Rk. As the mathematical treatment of Equation (26) 

has high correction effect on the measurement noise, the calculation restrains quickly with high precision characteristics by the correction 

accent on these different expressions modeled on the correction step of the iterative calculation process. It is then verified by the pulse power 

charge-discharge test and the experimental analysis of complex combined working conditions. Its energy and safety management issues are 

resolved by the theoretical research, simulation analysis and experimental verification from the perspective of energy decay mechanism 

analysis and state collaborative estimation. According to the full analysis of temperature, aging and internal resistance influence, the 

characteristic models are established for both of the battery cells and packs respectively, and it is also used to realize the general mathematical 

description of its external measurable parameters. And then, a multi-constraint model is established for the charged state prediction, according 

to which the aging mechanism and performance evolution law are further analyzed to gather the prediction results and the modeling database 
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is updated. Finally, the equivalent simulation process is improved and the estimation method is modified through the experimental analysis of 

the working conditions to obtain the whole life cycled state prediction and correction strategies. 

3. Experimental analysis 

In order to verify the actual prediction effect of the proposed algorithm, the traditional unscented Kalman filter and extended Kalman filter 

are used for the comparative analysis, in which the specific indicators are the prediction accuracy and robustness. The model parameters and 

noise statistical characteristics can be estimated in real time by its combined iterate calculation with the special equivalent circuit modeling 

approach. In this experiment, the lithium cobalt oxide batteries are used as the experimental objects and the pulse cycle discharge at 25 °C is 

conducted as the target working conditions. Then, the corresponding discharge process is obtained and analyzed experimentally. 

3.1. Experiment platform design and realization 

In order to obtain parameters such as battery terminal voltage, current and temperature, a battery charging and discharging test and 

performance test system platform is established. It is mainly composed of the measurement system, charge-discharge control circuit, signal 

detection circuit, electronic load, incubator and direct current power supply as well as the target lithium ion battery packs. The designed 

system and platform is described as shown in Fig. 4.  

 

Fig. 4. Experimental platform for the battery pack 

The main function of this battery test platform should be realizing the charge-discharge experiments for the lithium ion battery packs of the 

supposed working conditions, and the collected data is stored at the same time when the experimental test is conducted. The computer sends 

an instruction in the electronic load through the serial port firstly, which presents its charging and discharging working conditions. Then, the 

four relay switching states (S1~S4) can be controlled through the digital output function of the data acquisition card with the preset. The 

working conditions are switched between the charging and discharging states according to the predetermined timing process. Meanwhile, the 

data onto the current, voltage and ambient temperature can be collected in real time by using the peripheral component inter-connected data 
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acquisition cards. Finally, the collected data is processed and the charged state prediction results can be graphically stored and displayed in 

the general-purpose computers.  

3.2. Model parameter identification and correction 

Taking the 7ICP series lithium cobalt oxide battery pack as the experimental object, the hybrid pulse power characterization test is 

performed to obtain its dynamic characteristics and then the battery model parameters are calculated. In the hybrid pulse power 

characterization test process, the battery pack is charged with 1C charging current rate firstly, and then the cyclic hybrid pulse powered 

characterization tests can be performed on it. The 10 s pulse discharge process is performed by using the 1 C discharging current. After its 

shelved treatment for 10 seconds, the 10 s pulse charging process is performed at 1 C current rate and then left for 40 seconds. It is discharged 

at 1 C current rate for 3 minutes on the typical charge-discharge experiments, according to which 0.2 Ah current rate is released and the 

charged state value is decreased by 0.05. The next cyclic hybrid pulse powered characterization is performed after 1 hour of shelving 

treatment. The charged state points can be selected to be 0.05, 0.10, ... 0.90, and the open circuit voltage values corresponding to each 

charged state level are approximately the measured voltage before the start of the hybrid pulse power characterization test. The current 

variation and its corresponding voltage variation on the hybrid pulse power characterization tests are obtained as shown in Fig. 5. 

0 20 40 60 80

-4

-2

0

2

4

0 20 40 60 80

28.6

28.8

29.0

29.2

t
5

t
4t

3

t
2

I(
A
)

t(s)

t
1

U
5

U
4

U
3

U
2

U
1

U
(V
)

t(s)

 

Fig. 5. Hybrid pulse power characterization test  

According to the experimental results shown in Fig. 5, the voltage changing curves are analyzed. It is mainly caused by the ohmic internal 

resistance of the lithium ion battery packs. In addition, the vertical change of the voltage can be described together with its pulse charge-
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discharge current. According to the hybrid pulse power characterization test of the expected temperature, the parameter values of the 

equivalent circuit model are calculated as shown in Table 1. 

Table 1. Model parameters 

S(1) UOC(V) τ(s) Ro(mΩ) RP(mΩ) CP(kF) 

1 28.91 174.05 61.8 19.09 9.12 

0.95 28.61 179.86 61.11 18.4 9.77 

0.90 28.33 188.74 60.01 17.44 10.82 

0.85 28.04 194.78 58.23 16.34 11.92 

0.80 27.72 206.02 58.37 15.24 13.52 

0.75 27.46 204.71 59.6 15.38 13.31 

0.70 27.22 197.22 60.15 15.66 12.6 

0.65 27.04 199.51 60.7 15.52 12.86 

0.60 26.89 199.33 61.66 15.66 12.73 

0.55 26.76 191.3 62.35 16.48 11.61 

0.50 26.66 191.37 65.64 17.3 11.06 

0.45 26.56 194.03 66.47 17.17 11.3 

0.40 26.44 202.62 67.84 16.75 12.09 

0.35 26.29 208.12 69.9 16.62 12.52 

0.30 26.2 201.43 74.3 18.4 10.95 

0.25 26.06 214.38 75.94 17.58 12.2 

0.20 25.9 221.3 77.32 17.3 12.79 

0.15 25.82 243.32 78.28 16.34 14.89 

0.10 25.08 310.94 79.1 14.01 22.2 

0.05 22.98 415.85 88.85 15.79 26.33 

0 22.55 408.33 95.31 17.44 23.41 

 As can be known from Table 1, the ohmic internal resistance of the whole hybrid pulse power characterization test process remains almost 

unchanged when the charged state is greater than 0.3, and the external polarization internal resistance remains substantially unchanged. The 

polarization capacitance increases only when the charged state is less than 0.2. Therefore, the mean value can be taken into the calculation 

during the charged state prediction process. The polarization internal resistance is established as Rp = 16.66 mΩ and the polarization 

capacitance is set as Cp = 13.71 kF. Meanwhile, the ohm internal resistance is set as Ro = 68.71 mΩ. The variation curve of UOC with respect 

to the changing charged state is fitted according to the least square principle and the experimental result is obtained as shown in Fig. 6. 
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Fig. 6.  Open circuit voltage characteristics 

The functional relationship parameters between the fitted open circuit voltage and charged state are obtained as A=[a0, a1, …, a6]=[22.29, 

32.79, -91.07, 81.13, 61.19, -134.08, 56.69]. The estimation effect verification is performed by the experimental analysis of short-time 

discharge, which is a combination of different durations and long-term discharge conditions. Furthermore, the comparison of the simulation 

results from complex working conditions and the estimation result analysis is carried out under different noise effects, and the modeling 

effect is reliably verified in combination with the balance state correction effect experiments. 

3.3. Charged state prediction results under complex current working conditions 

The experimental object is the battery packs in which 7 lithium cobalt oxide lithium ion battery cells are connected altogether serially with a 

capacity of 4 Ah as an exportable commodity. Firstly, the battery pack is fully charged with 1 C current rate for the temperature of 25 ℃. 

After standing for one hour, the battery pack reaches a steady state which is set as an integral part of the energy supply system. The 

simulation experiment is carried out with a parameter sampling interval of 1 s. The parameters used for the simulations are obtained by 

conducting the realistic experimental tests. Relevant simulation experiments are carried out and analyzed to obtain the estimation effect. The 

experiments are designed and realized, including instrument inspection, ignition and emergency output of each stage in the application of 

working conditions. The experimental test process is shown in Fig. 7. 
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Fig. 7.  The experimental test process 

The charged state value of the battery pack is estimated and compared with the actual value, according to which the prediction result is 

obtained. The analysis charts show that the proposed splice Kalman filtering algorithm applied to the voltage traction follows the voltage of 

the terminal voltage variation on the lithium ion battery packs with high precision under current varying conditions, and the coincidence 

degree with the terminal voltage curve in the actual state is higher than the traditional extended Kalman filtering and unscented Kalman filter 

methods, indicating that it is suitable to be applied to the charged state prediction of the battery pack based on the natural patterns of high 

adaptation. The complex current variation experimental tests are conducted under two different conditions named as C1 and C2. The 

Experimental conditions for C1 is set as Ta =50, Tb =5, Tc =20, Td =10, Te =30, which are set as Ta =30, Tb =5, Tc =20, Td =10, Te =80 for 

C2. The prediction results of the complex current variation experimental tests can be obtained with high accuracy as shown in Fig. 8. 
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(a) Voltage tracking effect for C1 (b) Charged state estimation effect for C1 
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(c) Voltage tracking effect for C2 (d) Charged state estimation effect for C2 

Fig. 8. Terminal voltage tracking and charged state prediction curve 

As can be seen from Fig. 8, the charged state curve estimated by the proposed algorithm coincides with the actual charged state curve 

completely. It has the same relationship with the references when the estimation process is conducted by using the Gauss-Hermite particle 

filter and extended Kalman filter techniques as well as considering its teperature-compensated modeling treatment. By observing the 

estimation error between the estimated charged state and its actual value, it can be concluded that the error of the charged state prediction is 

within 1.38% and its accuracy is greatly improved compared with the traditional extended Kalman filtering and unscented Kalman filter 

methods. As can be known from the experimental results, current density and voltage have been considered fully and have little influence on 

the estimation accuracy or robustness when they are employed into the charge-discharge process of the lithium-ion battery pack for the 

experiment. The temperature influence and effect will be considered in the ongoing research, which will be described by using the 

temperature correction factors. The temperature change law can be obtained with time-varying environmental conditions in the thermostat 

equipment shown in Fig. 4. And then, the temperature correction factors can be obtained for the real-time correction.  

4. Conclusion 

The charged state is estimated accurately at the packing lithium ion batteries and its prediction error is reduced greatly by combining the 

equivalent circuit model and the improved splice Kalman filtering algorithm, which has a good prospect of complex working conditions. 

Based on equivalent circuit model analysis, the battery modeling and parameter identification are completed, in which the model parameter 

sensitivity is improved and the influence degree of each parameter on charged state prediction is considered effectively. The influence of the 

varying battery model parameters on the charged state prediction is different, in which the ohmic internal resistance is the most critical 

parameter that is followed by the effects of the polarization resistance and capacitance as a potential treatment. Considering the time-varying 

model parameters and noise interference effects, its prediction accuracy is improved significantly and its robust performance is excellent. It 
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not only provides a mathematical supply side of the knowledge creation, but also responds to the demand side of societal challenges to the 

security measures in the packing lithium ion battery energy management. 

Nomenclature 

The symbols used in this paper are described as shown below. 

Symbol Description Symbol Description 

Uoc open circuit voltage E ideal electromotive force 

Rs self-discharge effect S(t) charged state value at time point t  

Ro ohmic internal resistance S(t0) charged state value for the time point t0 

Rc charge differential resistance η Coulomb efficiency coefficient  

Rd discharge differential resistance QN battery calibration capacity 

Rcd optimizational calculation of Rc and Rd w(k) process noise with covariance value of Q 

I(t) circuit loop current at time point t v(k) observation noise with covariance value of R 

UL load voltage τ time constant 

Up polarization voltage Ts sampling time interval 

Uδ balancing reverse voltage Rδ balancing resistance 
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