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Abstract

The performance of deep learning models is unmatched by any other approach in su-

pervised computer vision tasks such as image classification. However, training these

models require a lot of labeled data which are not always available. Labelling a massive

dataset is largely a manual and very demanding process. Thus, this problem has led to

the development of techniques that bypass the need for labelling at scale. Despite this,

existing techniques such as transfer learning, data augmentation and semi-supervised

learning have not lived up to expectations. Some of these techniques do not account

for other classification challenges such as class-imbalance problem. Thus, mostly un-

derperforming than fully supervised approaches.

In this thesis, we propose new methods to train a deep model on image classification

with limited number of labeled examples. This was achieved by extending state-of-the-

art generative adversarial networks with multiple fake classes and network switchers.

These new features enabled us to train a classifier using large unlabeled data while

generating class specific samples. The proposed model is label agnostic and is suitable

for different classification scenarios ranging from weakly supervised to fully supervised

settings. This was used to address classification challenges with limited labeled data

and class-imbalance problem.

Extensive experiments were carried out on different benchmark datasets. Firstly, the

proposed approach was used to train a classification model, and our findings indicated

that the proposed approach achieved better classification accuracies, especially when

the number of labeled samples is small. Secondly, the proposed approach was able

to generate high-quality samples from class-imbalance datasets. The samples quality

is evident in improved classification performances when generated samples were used

in neutralising class-imbalance. The results are thoroughly analyzed and overall, our

method showed superior performances over popular resampling technique and AC-GAN

model. Finally, we successfully applied the proposed approach as a new augmentation

technique to two challenging real-world problems, namely, face with attributes and
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legacy engineering drawings. The results obtained demonstrate that the proposed ap-

proach is effective even in extreme cases.

keywords: Deep Learning, Image Classification,Generative Adversarial Networks

(GAN).
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Chapter 1

Introduction

1.1 Overview

Image classification is the process of identifying the object in a given image and is an

essential area in computer vision. It has witnessed significant progress over the last

decade. Image classification is used in different computer vision domains such as: self-

driving cars to isolate road lanes from pavements [202]; in face recognition systems to

identify individual faces [141]; and in the medical domain to predict the presence or

absence of disease from images such as CT-scans and X-rays images [160].

Traditional image processing methods combine hand-crafted features and supervised

machine learning algorithm to classify images. Input images are converted into rep-

resentations (or features) from pixel values and a classifier such as Support Vector

Machine (SVM) is then trained. Examples of these representations include Scale In-

variant Feature Transform (SIFT) [119], Speed Up Robust Features (SURF) [16] and

Haar features [179]. These approaches are known to be quite efficient in dealing with

some image classification challenges. For instance, SIFT keys have demonstrated to be

resistance to image scale, orientation and substantial occlusion. The shortfall of these

approaches is the reliance on domain knowledge to code representations. Consequently,

model performances depend on how efficient these representations are. Moreover, the

freedom and generalisation of these approaches is limited.

Deep learning is a branch of machine learning which relies on artificial neural networks

to make predictions from data. It is an emerging field that has improved the accuracy

of image classification by a wide margin. The accuracy of these models is unmatched by

traditional approaches. Deep learning uses raw pixel values with no feature engineering

required. These models learn hierarchical patterns during training from simple features

1



like edges and colour to more complex features like an object’s part that makes up the

image. Researchers have embraced deep learning models because they generalize better

to samples not seen in training. However, massive data is required to achieve the best

performances.

1.2 Background

Different domains have benefited from advancements in deep learning such as speech

recognition, text generation and video synthesis. In specific domains such as image

classification, large volumes of labeled data are required to ensure good results. To

address this challenge, large datasets have been made available in the public domain

such as ImageNet1, MSCOCO2, PASCALVOC3, and others. These datasets provide a

great resource for developing complex and accurate models. Such datasets have also

opened doors for other approaches such as transfer learning, where a model trained on

a huge and diverse dataset is used to address other problems.

That said, obtaining sufficient labeled examples for a dedicated dataset is crucial in

image classification. However, curating a massive dataset has proved to be a daunting

task. Abundant unlabeled images are readily available, but the process of annotating

and labelling a dataset is labour intensive, time-consuming and costly. One way around

this is to reach out to many people through out-sourcing mediums such as Amazon

Mechanical Turk4 to speed up things at some extra cost. Sometimes, the process

requires an expert’s knowledge to correctly identify the object of interest, such as

in the medical domain. Moreover, experts are not always available, and this may

add to the overall cost of preparing the data. In some domains like video tempering,

collecting tampered videos is challenging [87]; hence, sufficient labeled data can be

difficult to acquire. Generally, the problem of limited labeled data occur when no

labels are available at all or when the dataset is partially labeled or when the dataset

is fully labeled, but few examples exist in the class of interest.

These scenarios led to the proliferation of methods that have been successfully ap-

plied where labeled data is scarce. These methods include, unsupervised [63], semi-

supervised [92], one-shot [178] or few-shot learning [189]. Data augmentation [50] and

synthesis [51] are common practices that have been applied to improve model perfor-

mances. However, models trained only on synthesized data largely under-perform as

1http://image-net.org/
2http://cocodataset.org/home
3http://host.robots.ox.ac.uk/pascal/VOC/
4https://www.mturk.com/
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shown by Bousmalis et al. [25] and Shrivastava et al. [162]. Therefore, it can be ar-

gued that acquiring plausible images and well-labeled training data will continue to be

crucial in image classification.

In recent years, generative models have demonstrated to be powerful frameworks to

obtain plausible training data. This can be very important in cases where labeled sam-

ples are hard to obtain. Recently, Generative Adversarial Networks (GAN) have been

widely recognized as the state-of-the-art in image generation. For example, GAN mod-

els can produce high-resolution images and also diverse categories as shown by Karras

et al. [89] and Odena et al. [140]. This class of generative models are trained using

gradient-based back-propagation and allow single feed-forward sampling. The key ad-

vantage of GANs is that they do not apply mean squared error (or similar estimates) as

correctness measure. They rather apply distance-based similarity of distributions using

Kullback-Leibler divergence [63]. This feature improves reliability while producing the

finest images. Since their creation in 2014 [63], different GAN frameworks have been

proposed and successfully applied to image generation [140], classification [138] and

representation learning [52].

1.3 Motivation

Applying deep models requires collecting a large number of images. As seen in Fig-

ure 1.1, these images are manually annotated with bounding boxes so that labels are

provided to isolate the objects of interest. Bounding box co-ordinates of objects from

the annotated images are retrieved when training a model to recognize the object of

interest. In some instances, images may require cleaning and processing such as crop-

ping, de-blurring and resizing before labelling. However, annotating images is largely

a manual and time consuming task for deep learning practitioners. Furthermore, data

collection in some domains such as astrophysical observation [156] or images of the eye

movements [162] is very challenging, hence no enough data exist to apply deep models.

Large labeled data are central to obtaining the desired performances from deep mod-

els [99]. Obtaining labels for a dataset manually is an expensive task. And automati-

cally annotating and labelling a new dataset still remains an open problem in computer

vision. Although, semi-automatic approaches exist but may require a full or partial su-

pervision [196].

Techniques such as semi-supervised learning [92] have demonstrated to be useful in cases

where a fully labeled dataset cannot be obtained. The key strength of these approaches

is their ability to use publicly available unlabeled data with small labeled data to carry
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Figure 1.1: Image annotation and labelling by manually drawing bounding boxes around the
object of interest (using sloth annotation toola).

ahttps://sloth.readthedocs.io/en/latest/

out a task. Nonetheless, these approaches are lagging in terms of accuracy compared to

fully supervised approaches. Again, these are ineffective in areas where substantial data

cannot be obtained. This has lead to the proliferation of techniques such as transfer

learning. Transfer learning applies a model trained on a task with massive data on a

second problem with fewer examples. This was successfully applied to many problems

and works best when the two tasks are closely related. However, transfer learning

creates other issues such as catastrophic forgetting in neural networks [94], and the

number of fine-tuning steps or the layers to fix is open to experimentation.

Sometimes labeled data may be available, but the number of samples in the class of

interest is small. This is a common occurrence in the real-world. For instance, in fraud

detection, majority of the transactions recorded are legitimate, but only an insignificant

percentage of the transactions are illegal. This scenario creates a bias in the data

categories leading to an imbalanced dataset. A model trained on this type of skewed

data performs poorly on the class of interest [183]. Class-imbalance can occur in binary

classification, multi-class and multi-label label classification problems. Resampling is a

common approach used to rebalance classes; however, simple resampling in a multi-class

or multi-label classification will affect other classes [97].

Data augmentation strategies are used in deep learning to increase variance in sam-

ples. This technique applies a set of predefined transformation functions such as image

translation, noise distortion and affine transforms to existing samples. Since models
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Figure 1.2: Traditional augmentation in road traffic signs. The first row are the initial images
and second row are the augmented samples using simple mirror.

are generalizable, it is assumed that a small distortion in the input should not produce

extraneous results. In spite of that, augmentation uses a finite set of functions that

may be applied before a reasonable limit is reached [50]. The pitfall of using traditional

augmentation in a tightly similar dataset could be disastrous in critical applications

such as a self-driving car. For instance, if we apply a simple translation to the German

Road Traffic Signs (GRTSB), left turn becomes right turn or speed limit changes from

60 to 90 and so on as shown in Figure 1.2. Again, data augmentation in extreme im-

balance cases may not be sufficient. According to Vinyal et al. [178] data augmentation

by itself does not remedy the lack of data but only prevents over-fitting.

When sufficient data is not available, deep learning practitioners may generate artificial

samples through data synthesis. These can be very helpful in instances where data

could not be reasonably collected. Conversely, models trained on synthesized data

under-perform when tested on real examples [162]. Therefore, a massive well-labeled

dataset is necessary in obtaining the desired output from deep models.

1.4 Objectives

The main aim of this research is to develop a method that supports the training of

deep models with limited labeled data. The objectives are:

• A literature review of existing methods that addresses the lack of labeled data in

deep learning.

• Evaluate the performances of deep learning models on datasets that are poorly

annotated and labeled.
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• To create a novel method to train deep models using minimal number of labeled

examples. This will mitigate the problem of insufficient labeled data in image

classification.

• To develop a framework that generates realistic class-specific samples in the ab-

sence of enough labeled instances.

• To address class-imbalance in real-world problems with under-represented class

instances using the methods and techniques developed.

1.5 Thesis Contributions

The contributions in this thesis are in the domain of image generation and classification.

These are as follows.

• An experimental framework to analyze the performance of deep convolutional net-

works. The experiments were designed to evaluate the performances of the models

on poorly annotated samples. We also analyzed existing approaches to improve

model performances such as transfer learning and traditional data augmentation

approaches. The results highlighted limitations of these approaches and some

of the classification challenges when sufficient labeled data is not available. The

findings were presented at the 18th International Conference on Engineering Ap-

plications of Neural Networks 2017 (EANN) in Athens, Greece [6].

• A novel generative adversarial network was developed. The new model extended

the existing framework with multiple fake classes and a network switcher. We also

developed a new method to train a classifier using a large amount of unlabeled

data along with adversarial training. Multiple fake classes improve classifica-

tion performances in a fine-grain classification, and the network switcher enables

training on unlabeled data while reducing model parts redundancy. The results

appeared as part of the proceeding in IEEE World Congress on Computation

Intelligence (WCCI), International Joint Conference on Neural Networks in July

2018 at Rio De Janeiro, Brazil [3].

• Synthesized high-quality class-specific samples using the proposed model from

different class-imbalance datasets. This was used to address the limitations of

traditional augmentation approaches in extreme and multi-class class imbalance

scenarios. The generated minority samples were used as a source of data for

augmentation. Our generated samples showed better diversity and quality when

compared to popular resampling and state-of-the-art GAN models. This was
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published in July 2019 edition of Elsevier NeuroComputing Journal [5].

• Applied the new frameworks in challenging real-world domains, namely, facial

images and engineering drawings. The model was used to generate face images

from extreme under-represented attribute and symbols from multiple minority

classes. We demonstrated the usefulness of these samples by improving classifi-

cation performances in the minority classes. The results from this work is part of

the proceeding at the International Joint Conference on Neural Networks in July

2019 at Budapest [2].

A list of the publications resulting from these contributions are available in appendix A.

1.6 Thesis Structure

The remainder of this thesis is organised as follows.

Chapter 2 Literature Review. This chapter reviews existing approaches to learning

when labeled data is limited. In this chapter, we highlight some of the strengths and

weaknesses of these existing techniques.

Chapter 3 Generative Adversarial Networks. This chapter introduces Generative Ad-

versarial Networks and some basic theoretical background around adversarial training

which forms the basis of the methods proposed. The chapter explores what GANs can

generate, where they can be applied and identify some of the limitations of the frame-

work. The chapter also focuses on the recent advances in this area and categorizes

them accordingly.

Chapter 4 Deep Learning and labeling Dilemma. In this chapter, we evaluate the

performance of deep learning models on a poorly annotated dataset. We also analyze

the performance of traditional augmentation techniques and transfer learning in small

labeled dataset. The experiments carried out, demonstrated that without sufficient

data the model performs poorly.

Chapter 5 Few Shot Classifier GAN. This chapter introduces a novel GAN model to

learn from unlabeled data. This model is used to generate images and train a classifier.

The new model uses multiple fake classes whilst combining both unsupervised and

supervised learning in training using network switchers. The trained classifier achieved

good classification performance even in the presence of substantial unlabeled data.

Chapter 6 Image Generation and Classification from Class-imbalanced Datasets. This

chapter presents a new GAN framework that is capable of generating data from a

7



class-imbalanced dataset. In this chapter, the proposed model was also used as an

augmentation approach to neutralize class imbalanced datasets. We compared the

proposed framework with existing resampling and state-of-the-art GAN framework.

The samples from the proposed model had better diversity which is indicated by the

performances over different metrics.

Chapter 7 Application Domains. This chapter applies the proposed model on two

real-world application domain where labeled training data is scarce. The model is

applied to face generation from under-represented attributes and symbols generation

from P&ID diagram. In both cases, the model demonstrated significant improvements

over the baseline, particularly in extreme conditions.

Chapter 8 Conclusion. The conclusions of the thesis are presented in this chapter.

It summarises the overall findings from the overall body of work. These findings are

discussed and we also provide an insight into some possible future research areas.
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Chapter 2

Literature Review

This chapter reviews traditional image classification and deep learning approaches. We

explore the recent successes of deep learning and the reliance on huge labeled data.

In particular, the chapter surveys established approaches in addressing learning when

sufficient labeled data is not available. The chapter also identifies some of the successes

and limitations of these techniques.

2.1 Traditional Approaches

Traditional machine learning approaches have been used to detect and classify objects,

and over the years, they have become popular in computer vision. These approaches

require features engineering which are hard coded. The traditional approach to image

classification follows the pipeline of preprocessing, feature extraction and classification.

2.1.1 Preprocessing

Preprocessing is a cleaning step that reduces the number of unwanted elements within

an image. This may also be applied to further isolate regions of interest from an image.

Real data such as pictures and videos can be very noisy, complex and redundant. Part

of preparing a dataset for other tasks may be labelling and annotating them. Prepro-

cessing may also include some random cropping [99], resizing [164], image rotation [6],

whitening [164], thresholding [186], morphological operations [42], binarization [144]

and other techniques favouring the classification algorithm. These are valuable tech-

niques that prepare the image by isolating further the region of interest for easy feature

extraction. These techniques are independent of the classification algorithm chosen.
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Figure 2.1: SIFT key proposals drawn across the image by applying the SIFT algorithm. The
center of the circles represents the key points and the circle is the neighbourhood considered.

2.1.2 Feature Extraction

Features in an image can be local when they are specific to a region or global when

they spans the entire image. Image features may include texture, contours, edges, lines,

intensity values, colours or even objects. A feature within an image is a region of in-

terest which can be a segment of an image with a common characteristics. Features

may be identified by sudden change in intensity values or other common characteris-

tics of an image region. Features may also be defined by complex relationships such

as neighbourhoods or transformation functions to bring out the desired results. The

process of identifying these features in an image is known as features extraction. Using

simple features from images, researchers have developed representations that are in-

variant to challenges faced in image classification. For instance, Lowe [119] developed

Scale Invariant Features Transform (SIFT) to address the issue of scale, illumination

and rotation (upto 60◦) in image classification. SIFT keys are generated from image

pyramids obtained by systematically applying Gaussian function to estimate maxima

and minima of a pixel by comparing it to its neighbours. SIFT key representations are

also resistant to image deformation and occlusion to a certain degree. Figure 2.1 shows

SIFT keys identified as circles in the figure.

Scale invariance in an important characteristic of feature representations. However, the

size of key representations, the speed of generation and classification is very important
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in image applications. In order to realize true scale invariance in image detection, Viola

and Jones [179] introduced a new method to generate image features. This technique

generates Haar-like features from pixels. A key contribution of this approach is the

generation of Integral Image based on pixel neighbourhood regions. An integral image

is an image whose pixel values are the summation of the values before it (that is left and

above it). Features are collected from 2, 3 and 4 rectangular regions by the applications

of Haar basis function. Haar functions are an orthogonal family of switch rectangular

waveforms whose value can differ from one function to another [4]. An interesting

attribute of this process is that all this is done in constant time. This simplified object

detection which made tasks such as facial detection applicable and deployable to facial

databases, teleconferencing and portable devices.

Speed Up Robust features (SURF) [16] were introduced as a way to perform interest

point detection and description faster, with more efficiency than previously known

methods. This technique makes use of the idea of Integral Images to generate a robust

features vector. It is invariant to both scale and in-plane rotation. Integral images allow

for fast box-type convolution filters (i.e different filters are applied to image segments

at ones). The speed of detection is increased by the application of Hessian matrix

which is used to detect blobs. The Hessian is a second derivative and second order

cross partial of a scalar function taken at a point [113]. Feature detection is made

visible with gradient change. These are stored in a blob response map on a different

scale. Contrast types are determined by the sign of the Laplacian that allows for faster

matching as well. SURF keys perform well in classification task even in difficult real-life

applications like 3D-reconstruction, camera calibration and mosaicing human retina.

2.1.3 Image Classification

Classification associate data with an existing class and could be between two (binary)

or more (multiple) classes. In some cases, more than one class may be considered

as appropriate (multi-label classification). Classes are encoded using labels usually in

one-hot encoding that represent the target value at the end of the task. Classification

plays an important role in areas such as image recognition [141], scene parsing [31],

autonomous driving [202] and automatic segmentation [118]. Images are represented

as a matrix of pixel values in the computer memory. This representation is subject to

other standards available such as RGB, YUV, HSI and others. Image classification is a

supervised task that groups similar images into a predefined category. While humans

consider image classification a very simple task, image classification is a challenging

task to computers. Some of these challenges include scale, occlusion, illumination,

noise and lack of labeled data. In a general sense, classifying an image may require
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some pre-processing, feature extraction and a classification algorithm.

Machine learning is used in classification task in various domains such as Natural Lan-

guage Processing (NLP), Case Based Reasoning (CBR) and computer vision. Early

successes in image classification were recorded with machine learning by relying on

feature representations to understand the pattern in underlying data. The features

extracted are used to train a model such as logistic regression, Nearest Neighbour (K-

NN), Support Vector Machines (SVM) and Decision Tree (DT). For instance, Setitra

and Larabi [159] performed object classification and retrieval from images by training a

K-NN classifier using SIFT features in a bag of features representation. Closely related

to this, Hossain et al. [78] classified fish species using SVM with Pyramid Histogram of

Words (PHW) which is a variant of SIFT in a Bag Of Words (BOW) representation.

Local Logistic Regression (LLR) is a variant of logistic regression that was used by

Yang et al. [191] to classify images of hand written digits. Although these techniques

work, their accuracy is dependent on the hard coded representations chosen.

2.2 Deep Learning

Valpolka in [177] defined deep learning as an art of estimating deep features in a hi-

erarchical manner. For example in an image problem, these features could start from

simpler ones such as colour, edges and lines in lower layers to more complex ones such

as object parts in upper layers. Deep learning algorithms are representation learn-

ing algorithms that apply non-linear transformation sequentially to data and create a

more abstract representation from the data [62]. Deep learning has been effective in

challenging problems where it is very difficult to formulate a direct solution.

Most deep learning approaches today implement some form of a Neural Networks(NN)

model. There are different kinds of neural networks such as a fully connected network or

Multi Layer Perceptron (MLP), a partially connected network such as a Convolutional

Neural Network (CNN), a Recuurent Neural Network (RNN), a Bayesian network and

others. Generally, a neural network contains a collection of neurons which represent

small computational units. A neuron maybe seen as a single logistic regression unit.

NN usually has an input, hidden and output layers composed of one or more units.

Figure 2.2 shows the structure of a neural network. Deep neural networks are neural

networks that have several layers of hidden units. NN has been around since the incep-

tion of artificial intelligence [62]. Its resurgence is due to the increase in computational

power and the availability of data [164]. Neural networks are popularly trained by

applying back propagation technique [104] to allow gradient flow across different layers
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Figure 2.2: Structure of a typical neural network.

in the model. Back-propagation ensures that the loss from the output layer is dissem-

inated to previous layers through the model. Modern NN employ algorithms such as

Adam Optimizers [91] and Stochastic Gradient Descent [23] in optimizing the model.

Deep learning models work on raw pixel values; thus, no features engineering is re-

quired. These models have gained popularity in image classification domain because of

their distinctive accuracy, especially in the presence of substantial training data. The

number of layers in deep neural networks have increased significantly over the years,

from Alex-Net [99] with less than ten layers to Dense-Nets [80] with over 200 layers.

Efficient parameter tuning, over-fitting handling, vanishing gradient solutions and bet-

ter training techniques have also proliferated. Deeper models have higher accuracies

than shallow ones; however, data requirement increases as the network size increases.

More recently, with the advent of large-scale labeled datasets such as Imagenet [44]

and MSCOCO [112], deep learning algorithms have provided state-of-the-art solutions

in challenging computer vision problems like object detection and classification. For

instance, one of the breakthroughs in this area was after the invention of Imagenet

dataset and competition. Although the labelling process was manual, the dataset pro-

vided very large, cleaned and fully labeled data with 1000 classes. When Krizhevsky et

al. in 2012 applied a deep Convolution Neural Network (CNN) on Imagenet recognition

challenge, their error rate was half that of the runner-up in the same competition [99].

Since then, the winning models has been deep learning algorithms with error rates

continually approaching zero.

Semi-automatic [45] and weakly supervised [30] labelling approaches exist. However,

crowd sourcing remains the most popular and effective choice for labelling a dataset.
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Annotators use manual annotation tools such as Sloth1, LEAR2, VGG Image Anno-

tator3 and FastAnnoation4 as standalone tools for image labelling. Annotation tools

such as LabelMe [153] are available online. For online tools, there may be privacy issues

with data sources and that might not be an option. Some of the challenges confronting

these tools are: what to label, complexity, validation and the label text itself [153].

The major downside of these tools is that users manually annotate the images. Hence,

accuracy and quality of annotations is a bottleneck problem. In order to reduce this

effect, researchers have resorted to automatic and manual selective validations [21, 45].

Others leave this open to the annotator to decide what to label and how to segment it

if required [153].

2.3 Lack of Sufficient labeled Examples

Access to large datasets has been one of the key factors that has pushed further the

boundaries of image recognition and deep learning research as a whole [164]. However,

only a small set of data in the public domain is labeled. Consequently, several ap-

proaches have been proposed to mitigate the lack of labeled data in deep learning such

as transfer learning, unsupervised learning, few-shot learning and generative modelling.

2.3.1 Unsupervised Learning

Unsupervised learning has been used to support classification through representation

learning over unlabeled data which are readily available. A common way to learn

good features is to use an auto-encoder which have been around for a while. An

auto-encoder as an input, a hidden (bottleneck layer) and an output layer. This set-

up is used to compress representations in the input and regenerate them in output

layer. In this way, by reconstructing the inputs correctly, the network will learn the

most important attribute of the input data and describe the latent attributes of the

input data. The auto-encoders proposed by Hinton [77] were used as a dimensionality

reduction tool in images using non-linear transformations. In this approach, training

starts with a layer-wise pre-training of Restricted Boltzmann Machine (RBM) layers

followed by a fine-tuning step using image reconstruction loss. However, scaling up is

a significant limitation for this model [77]. In a similar approach, Lee et al. [107] stack

up RBMs using convolutional layers similar to a deep belief set up called Convolutional

1http://sloth.readthedocs.io/en/latest/
2https://lear.inrialpes.fr/people/klaeser/software-image-annotation
3http://www.robots.ox.ac.uk/ vgg/software/via/
4https://github.com/christopher5106/FastAnnotationTool
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Deep Belief Networks or CDBN. Images used for training were large, which is aimed

at a more realistic scenario. The authors also introduced a novel pooling based on

probabilistic max-pooling. CDBN were evaluated using CALTECH-101 and MNIST

datasets and results obtained are comparable to the state-of-the-art. CDBN also proved

to be effective when tested on unlabeled data to extract representation from images

that the network has not seen.

Raina et al. [147] demonstrated how unlabeled data from different categories than

the target classes could be used to improve classification accuracies. They formalised

the problem as a self-taught learning problem where the model learns basic elements

from unlabeled data by applying sparse coding. In their experiments, images were

pre-processed using Principal Component Analysis (PCA) to reduce dimension before

learning algorithm is applied. An SVM and Gaussian Discriminant Analysis (GDA)

were used for supervised classification by comparing raw pixels, PCA and sparse coding

features. Sparse coding achieved the best performances on Caltech101 images with an

accuracy of 46.6% using this approach, which was significantly better than the first

published supervised approach on the dataset (16%).

Deep models such as Convolutional Neural Networks (CNN) also learn representations

irrespective of the task they perform. These representations are independent of classes.

Thus, deep learning researchers have applied them in performing classification without

the need for labeled data during training. This can be seen in the work of Dosovit-

skiy et al. [50] were they trained a CNN using few data and no labels in an unsuper-

vised fashion. Training samples were generated by randomly selecting a fixed number

of images from a dataset, in this situation STL-10, Caltech-10 and CIFAR-10. These

samples are passed through a set of random transformation functions that generate a

set of surrogates. The surrogates are used to train a CNN nick-named Exemplar-CNN.

Exemplar-CNN had three convolution layers and one fully connected layer. An SVM

was used as a classifier that feeds on the features learned by the CNN. Results ob-

tained were better than the state-of-the-art models on STL-10 dataset in unsupervised

learning. However, training accuracy plateaued when surrogates reached 8000 that is,

increasing the number of surrogates beyond 8000 did not improve the model accuracies.

In a similar direction to [50], Gidaris et al. [60] used geometric transformations to

learn semantic representations from unlabeled data. The authors trained the CNN to

recognise 2D rotation angle of images through classification. Learning these simple

transformations proved significant in learning powerful semantic structures better than

state-of-the-art on different benchmark datasets and significantly closed the gap on su-

pervised learning. Training on the pretext task provided alternative features that have
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improved different vision tasks such as detection, classification and segmentation. Ex-

periments were conducted on CIFAR-10, Imagenet, Places and PASCAL VOC datasets

on different computer vision tasks.

2.3.2 Semi-supervised Learning

Semi-supervised learning addresses part of the label availability by integrating un-

labeled data in the training process. Because both the labeled and unlabeled data

come from the same domain, the unlabeled data can be used to improve supervised

tasks like classification by learning generic tasks. These generic tasks include learning

representations/features [3], predicting image orientation [60] and pseudo labelling of

samples [106]. Semi-supervised learning is particularly justifiable because of the vast

amount of unlabeled data in the public domain; hence, it has attracted a lot of interest

recently. It has been successfully applied to discriminative as well as generative models

where the number of labeled examples are small [69].

Lee [106] carried out semi-supervised learning by performing supervised learning with

pseudo-labels for unlabeled data. Pseudo-labels were obtained from the classifier by

chosen the class with the highest activation during classification and these were treated

as if they were true labels of the samples. Because of the varying number of labeled to

unlabeled examples, the author used a supervised loss function with a hyper-parameter

on unlabeled sample losses. Hence, the neural network was trained using pseudo-

labels as entropy regularization. Experiments were run using a neural network with

one hidden layer and 100, 600 and 3000 labeled examples from MNIST dataset. The

proposed methods achieved state-of-the-art performance on MNIST dataset. Apart

from classification, another task that has benefited from semi-supervised learning is

segmentation. For instance, semi-supervised segmentation was achieved by [167] using

weakly annotated training data, unlabeled data and a set of generated images as extra

training data. Similarly, self-supervision techniques were also used to improve image

generation in [33]. Kuzniestsov et al. [101] also used semi-supervised learning to predict

depth maps from monocular images using auto-encoders.

2.3.3 Transfer Learning

Transfer learning is a technique that takes a model trained on a large dataset (source

dataset) and apply it to a different problem domain (target dataset). The idea behind

this is that since the same hierarchical representations are learned by different converged

networks during training, representations and weights learned should be generalizable
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across different datasets. By intuition, a significant amount of training time can be

saved by providing this knowledge from an already converged network. The common

practice is to replace the top layer(s) of the model, usually the classification layer or in

some cases the fully connected layers as well to accommodate the new problem set [6].

Transfer learning may require further training, also known as fine-tuning, to suit the

target. Learned parameters from state-of-the-art models such as Alex-Net [99], VGG-

Nets [164], Inception model [174] and Res-Net [72] are all available in the public domain.

These have been successfully applied as an alternative to training a model from scratch,

especially when the two domains are similar. Starting from a pre-trained network pro-

motes faster convergence and better accuracies than training from scratch. For instance,

Long et al. [118] trained a fully connected network for semantic segmentation by using

already trained Alex-Net, Google-Net and VGG-16 weights. Pre-trained weights were

also applied in [132] for classification with deep models and to perform domain adap-

tation. However, transfer learning is restricted by model architecture and may fail if

the two domains are very different [6]. Also, the amount of labeled data required to

fine-tune the model may be large. Moreover, transfer learning does not address other

classification challenges like a class-imbalance problem.

2.3.4 Class-Imbalance and Cost-Sensitive Methods

The class-imbalance problem in binary classification is an active research area which

has witnessed the development of well-established techniques. However, little attention

is given to the class-imbalance problem in multi-classification [97]. Imbalanced classes

in a multi-classification problem may require new sampling strategies and data pre-

processing steps [97] other than those used in binary classification. Existing methods

for handling such problem include multi-class decomposition [56], Class Rectification

Loss (CRL) [49] and mean squared false error [183]. Resampling methods such as

oversampling and undersampling are widely used in this area. However, oversampling

is prone to over-fitting and undersampling may discard essential data points [27].

Buda et al. [27] showed in an experimental study how the performance of CNN drops

significantly when the data is imbalanced. Wang et al. [183] modified the learning

algorithm to account for class-imbalance by penalising the misclassification of minority

class instances (i.e., cost-sensitive methods). However, applying such methods require

careful consideration of the cost matrix settings, which can be tricky in a real-life

problem [97].

In deep models such as CNN for example, Class Rectification Loss (CRL) [49] was
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used to handle class-imbalance. CRL algorithm performs hard mining of the minor-

ity class in each batch forcing the model to create a boundary for each minority class

with a hard positive and negative threshold. Similarly, Large Margin Local Embedding

(LMLE) [79] employs clustering among classes to maintain the structure of the minor-

ity data. However, these techniques can be computationally expensive in large data

domains [49].

2.3.5 Data Augmentation

Data augmentation techniques are increasingly becoming an integral part of deep model

approaches for classification. Exemplar CNN [50] was based on systematic augmenta-

tion of data and achieved state-of-the-art results on CIFAR-10 dataset. Data augmen-

tation is a widely used technique to handle class-imbalanced datasets. Ali et al. [6] used

affine transformation and noise distortion across classes to generate more samples and

reduce the impact of class-imbalance. However, trivial augmentation may not suffice

for extreme class-imbalanced data or when sufficient data is not available. Besides,

orientation-related features in some domain may limit the application of simple aug-

mentation approaches [122]. Thus, more sophisticated augmentation techniques such

as image pairing [84] and mixup [199] have been proposed.

In recent years, generative models were successfully used to generate samples. GANs

proved to be state-of-the-art in generating and capturing data [89]. In an imbal-

anced dataset, the aim is to generate class-specific samples, therefore supervised GAN

models such as Conditional GAN (C-GAN) [126] offer potential solution for such

a problem. However, these models and other established GAN frameworks such

as vanilla GAN [63] and Auxiliary Classifier GAN (AC-GAN) [140] have performed

poorly on class-imbalanced datasets by failing to generate the required minority sam-

ples [122, 181]. Recently, good performance was reported by [57] using a Deep Con-

volutional GAN (DCGAN) [146] to synthesize artificial liver lesion images. This

was achieved by using traditional augmentation techniques to oversample the train-

ing set. Similarly, Baur et al. [15] generated high-resolution skin lesion images using

MelanoGAN (a variant of DCGAN + Laplacian GAN [47]) from a small dataset of 2k

samples. The model was used to synthesize more skin lesion samples to reduce the

effect of class-imbalanced data in training a ResNet-50 [73] for classification. These

examples show that trivial data augmentation techniques can be successful in handling

class imbalance related problems ([57], [15]). However, it should be noted that these

examples were applied to binary datasets with no orientation dependent features or

fuzzy class boundaries.
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Other approaches combine GAN with other generative processes such as auto-encoder

training. Features learned by the auto-encoder are then used to initialize the generator

and discriminator of the GAN model. This may require a second training step [122]

or joint training [181] to perform conditional adversarial training. Data Augmentation

Generative Adversarial Networks (DAGAN) [9], Balancing GAN (BAGAN) [122] and

Fine-grained Multi-attribute GAN (FM-GAN) [181] used a similar strategy to synthe-

size more samples. Image refinement is another technique used which preserves the

image class while producing diverse synthetic samples. Zhu et al. [204] applied image

translation to generate minority samples using a reference sample in an emotion recog-

nition task. However, this approach was evaluated using two closely-related classes (i.e

translate a face to another face image). Other approaches re-parametrise the adver-

sarial training by adding extra losses or stricter conditions during generation. This

enforces learning and generation of minority samples such as in DeliGAN [67]. The

latent space in DeliGAN is parametrized by a Gaussian Mixture Model (GMM) whose

parameters are learned alongside the GAN parameters.

2.3.6 Few-shot Learning

One-shot learning was introduced by Fei-Fei et al. [55] as a way to train models with

one or few labeled samples available. The model is simply formulated as a Bayesian

framework, P (θ|X ,A), where θ is the model parameters, X are the features locations

and A is the appearance. This is advantageous in learning classes with one instance

from previously learned classes with many instances. It is useful in applications such as

face recognition [175] where only one image of a person is available. Such applications

are required to cater for newly enrolled users after the system is deployed. Deepface

face recognition system [175] is an example of such an idea. Deepface employs a CNN

that was trained using labeled Faces in Wild (LFW) [81] to learn face representations.

At test time, Chi-squared distance (χ2) was used in the classifier to compare two facial

representations. The authors achieved a 97.3% accuracy on the test set which was

better than all existing approaches. In the same direction, a triplet loss function was

used by Schroff et al.[157] to train their face recognition CNN and achieved a 99.63%

on LFW and 95.12% on YouTube Faces Database [187].

Few-shot learning is an extension of one-shot learning to situations with few labeled

more training examples. The argument is that a classifier is expected to generalize well

to new classes not seen in training given small number of examples. For instance, Xu et

al. [189] applied a novel few-shot model to retrieval/recognition task and reported

better accuracies than state-of-the-art-models on the benchmark datasets. Few-shot
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classification was also used by Mottias et al. [132] to perform supervised domain adap-

tation using a deep model. The target dataset was chosen to be weekly labeled and

the approach combined adversarial learning with few-shot classification to obtain state-

of-the-art results on the benchmark datasets. Common deep models used in few-shot

learning include Siamese networks [175] Memory Networks [172, 178], and Prototypical

Networks [165].

Attention mechanism in matching networks proposed by Vinyals et al. [178] was applied

to learn label embeddings from few examples in order to classify unlabeled samples.

The authors used a non-parametric approach to few-shot classification. The concept

of neural network with memory allowed the framework to train by matching images of

unlabeled samples to labeled data within the label space. This may be explained as a

weighted nearest neighbour classification. The approach showed improved performances

when applied to computer vision problem in Omniglot [102] and miniImagenet [178]

datasets. Using a different approach, Ravi and Larochelle proposed learning a meta-

model in a few-shot regime. The model uses a Long Short Term Memory (LSTM)

module to control the updates to a classifier and the model trains specific classifier

versions for every episode. The results obtained was comparable to other metric learners

such as matching networks.

Prototypical networks [165] use a linear classifier that is based on Euclidean distance

to perform few-shot classification. Prototypical networks are similar to matching net-

works; however, a prototype was used as a support. The prototype is the mean of

a class in embedding space. The intuition behind choosing the mean as support be-

cause similar samples tend to cluster around the class mean. The model also employed

episodic training proposed in [148]. The authors experimented on CUB-200 [180] and

achieved state-of-the-art performances on CUB-200 dataset in zero-shot learning.

2.3.7 Classification using Generative Models

Kingma et al. [92] demonstrated how deep generative models can be useful in learning

a good classifier in the absence of a fully labeled dataset. Generative Adversarial

Networks (GAN) is one approach which has been receiving attention lately. It is an

efficient way to combine other learning techniques such as semi-supervised to address

the availability of labeled data. This was demonstrated in [143] where the authors

predict wealth distribution from a huge dataset of satellite images using Wasserstein

GAN (WGAN) with only 5% of the data being labeled.

GAN was also used to improve classification on synthetic samples in [162]. The au-

thors showed that models trained on refined images perform better than those trained

20



on synthetic images. GAN models are useful tools in handling scarce labeled data. For

instance, conditional GAN was used in [51] to generate a completely new set of data

to solve the problem of imbalanced training data. Adversially Learned Inference GAN

(ALI-GAN) [52] was tested on SVHN and CIFAR-10 dataset for semi-supervised learn-

ing and it outperformed all GAN models in image classification. However, the results

obtained were still below the supervised and the best semi-supervised approach.

An extension to ALI-GAN [52] was proposed by Donahue et al. [48]. The model was

used to learn the inverse mapping from image space into latent space. The proposed

GAN model was trained on pairs of latent representations and images. An encoder net-

work was added alongside the generator and was used to project real images into latent

space. The encoder and generator did not share weights but are made to work together

in fooling the discriminator network. Experiments were run on MNIST, Imagenet and

PASCAL VOC. Features learned were tested on classification, image generation and

segmentation tasks.

The latent spaces in GAN generator have also proved to be useful in classification.

Kumar et al. [100] modified the objective of Bi-directional GAN (BIGAN) [48] to include

a term that approximates the tangent space of data manifold. The tangent spaces is

a directional derivative operator along the transformation function (linear map) in a

manifold. In this context, is simply a set of vectors that define salient features in the

data manifold. The Tangents learned were directly injected into the classifier in order to

improve classification invariance. The proposed approach produced better accuracies

on SVHN than the benchmark but performed poorly on CIFAR-10. However, their

approach was trained on far fewer epochs than the original BIGAN.

2.4 Conclusions

Deep learning models are state-of-art in image classification [80], object detection [88],

semantic segmentation [88] and other related problems on several benchmark datasets.

However, these approaches require massive labeled datasets. The first perspective of

the problem could be to obtain automatic labelling tools and techniques. However,

this remains an open problem in the research community. OpenImages [96] is one of

few datasets that make use of automatic labeling at large scale (9 million images).

Apart from the fact that its validation and test sets were annotated by humans using

crowdsourcing, a large number of its labels comes from Inception model which was

trained on Imagenet [20]. Another attribute of the labels in this setup is the confidence

score, which is a source of concern for users. With humans, the score is binary (either 0
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or 1), but it can assume a range of floating-point values from 0.5 to 1.0 with machine-

generated labels.

The second perspective to the problem is to develop a technique that can handle

datasets with small labeled data. Semi-supervised learning is one such technique that

complements a small labeled data with large unlabeled data to improve performance.

Significant progress has been made in semi-supervised learning domain but substantial

labeled samples are required to achieve optimum results. Moreover, the unlabeled data

employed is usually from the same classes as the small labeled examples and this could

be challenging for domains where data collection is difficult. Few-shot learning is a

promising approach that has been successfully applied to small and less challenging

datasets such as Omniglot. But few-shot learning still falls short when compared to

fully supervised approaches on complex datasets. For instance, the few-shot learning

error on miniImagenet (subset of Imagenet) [178] is far greater than the best-supervised

approach [80] on the fullImagenet dataset. This suggests that as the complexity grows,

the model is unable to scale up as required. Furthermore, few-shot learning is label

agnostic in training but still requires label information to prepare batches and uses a

fully supervised episodic training.

Generative models use distance metrics to estimate the probability distributions over

data. Particularly, the use of Kullback-Leibler divergence as a metric has proved to

be a good estimate in producing better generative models. Despite the great successes

of generative models, their contribution in classification is minimal when compared to

their discriminative counter parts. Existing research has shown that using generative

models such as GANs, to solve limited labels problem can be achieved in two ways. It

can be used to train with partly labeled data by complementing with unlabeled data

such as [143] in a semi-supervised learning set up, but may require some reasonable

amount of labeled data. Alternatively, GANs can be used to generate more samples

to augment the training set [51]. That said, the advancements in both directions are

minimal and far from competing with other classification approaches [52]. GANs have

great potentials but are limited by other factors surrounding their usage such as training

complexity, the fidelity of generated samples and the lack of a clear evaluation criterion.

However, their flexibility to be combined with different learning approaches makes them

strong candidates in this domain.

Supervised GANs require large labeled data and research has also shown that these

models are sensitive to class-imbalance. Subsequently, we explore how these limitations

could be mitigated and the possibility of using adversarial training and GAN generated

samples to improve classification performances. The next chapter delves in details into

the recent trends in GAN models and further investigate the limitations identified.
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Chapter 3

Generative Adversarial Networks

This chapter discusses in details the structure of Generative Adversarial Networks

(GAN). According to Yann Lecun, one of the pioneers of deep learning, “GANs and the

variations that are now being proposed is the most interesting idea in the last 10 years

in ML, in my opinion”1. In the following sections, we discuss in detail the training

procedure of GANs, how to optimize these models, and with a particular interest in su-

pervised GANs. This chapter also looks at the recent progress in GANs concerning the

architecture, objective function and training techniques. We also present limitations of

GANs, some evaluation techniques and examples of successful application areas.

3.1 Introduction

Generative Adversarial Networks (GAN) was proposed by Goodfellow et al. [63]. The

GAN framework was used to estimate generative models through adversarial training.

A generative adversarial network is a deep generative model (also a structured prob-

abilistic model) that has two-component models, a generator G and a discriminator

D. Both D and G are implemented as either neural networks (most of the time) or

other differentiable models. The Generator randomly samples inputs z, from a noise

distribution p(z). The noise input is used to generate image samples that are passed to

the discriminator. The discriminator is also trained using existing training data. The

task of the discriminator is to distinguish between samples that are generated from

noise and the existing data. The discriminator is sometimes referred to as as critic.

Figure 3.1 shows the structure of the GAN model.

The output in Figure 3.1 real/fake, represents the probability of an image being real or

1https://www.analyticsindiamag.com/gans-biggest-breakthrough-in-ai/
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Figure 3.1: Structure of the original GAN Model.

fake, Xreal and Xfake represent the samples from the training set (real data) and the

generated samples (fake data) respectively. The generator tries to maximize the prob-

ability of the discriminator mistaking its samples for real data while the discriminator

tries to minimize that. The two models are adversaries in their game objective, and

the value function is shown in equation 3.1.

min
D

max
G

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] [63] (3.1)

Where pdata(x) is the probability distribution over the real data, x is a sample from the

real training data, pz is the probability distribution over the noise vector z, and G(z) is

the output from the generator function G (or generated images). The value function in

Equation 3.1 converges at a saddle point in between the min-max of the two equilibriums

under non-extreme conditions. In practice, the training is done interchangeably using

gradient descent over the parameters of D and G, as shown in equations 3.2 and 3.3 for

some m mini-batches. Again, G is trained to maximize logD(G(z)) to avoid saturation.

That is to ensure gradient flow under different conditions.

∇θd
1

m

m∑
i=1

[logD(x(i)) + log(1−D(G(z(i)))] (3.2)

∇θg
1

m

m∑
i=1

log(1−D(G(z(i)))) (3.3)

Where θd are the parameters of the discriminator d, θg are the parameters of the
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generator g, z(i), x(i) are a single batch of generated and training data respectively.

The above equations are gradient updates that could be implemented using Stochastic

Gradient Descent algorithm (SGD). The initial experiments showed that the framework

requires some k steps update on the discriminator, followed by a single-step update of

the generator. This is to keep the discriminator close to optimum and better or ahead

of the generator network. This is because the discriminator model is used to guide the

learning process. The aim in a GAN set-up is to end up with a G that can generate

samples that are within the actual data distribution. However, there is no guaranty

that the value function V (D,G) will converge to the saddle point at every run hence,

it is mainly unstable in training.

Global Optimality : The framework reaches optimum when the probability distribu-

tion over the generated samples ( Pgen) are closely indistinguishable from the probability

distribution over the original data (Pdata). At this stage, it is expected that the two

distributions Pdata and Pgen would be equal. This was demonstrated using Jenson

Shannon (JS) divergence [63].

Optimal Discriminator : An optimal discriminator D∗ for some fixed G, is given

by

D∗G(x) =
pdata(x)

pdata(x) + pgen(x)
[63] (3.4)

An optimum D does not allow for the correct G to be learned because there is no

adequate gradient flow for G updates. Again, there is no guaranty that the model will

reach a global optimum or converge during training. Arjovsky et al. [11] studied the

instability problem and vanishing gradients of GAN networks. The authors suggested

that selection and dimensionality of the sample space greatly affect the stability of the

generator. Also, in their experiment using the cost functions (equations 3.2 and 3.3), a

perfect discriminator contributed to unpredictability of models. Hence, the generator

may not learn anything with an optimal discriminator. A vanishing gradient on the

generator was caused by the optimal discriminator as shown in [11] when observing the

gradient change in the discriminator of a Deep Convolution GAN (DCGAN). Similarly,

the gradient in the alternate cost function −logD(G(z)) for the generator has high

variance, which leads to instability in training. They argued that using a divergence

measure such as Jenson Shannon or Kullback Leibler divergence as a metric is not

appropriate.

Nonetheless, remarkable results are obtained even with the original GAN objective.

Using GANLab2 simulation, Figure 3.2 shows a simulated example of a GAN learning

a simple 2D mixture of Gaussian Noise datasets. The GAN generator used has one

2https://poloclub.github.io/ganlab/
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(a) 0 iterations (b) 1k iterations (c) 10k Iterations

Figure 3.2: The green dots are real data points and the purple dots are the generated data points.
After 10k iterations, the generator model has almost perfectly matched the data distribution.

hidden layer with ten neurons and a discriminator with two layers and nine neurons.

The model was trained using the original GAN objective, and it can be seen from the

figure that even with a simple model, the GAN framework was able to capture the

distribution.

Other generative frameworks such as Deep Boltzmann Machine (DBM) [107], Noise

Contrastive Estimation (NCE) [68] and Variational Auto-Encoder (VAE) [93] all share

some similarities with GAN. All these approaches learn some form of density distribu-

tion over a set of data. Generative models have been unsuccessful in some ways because

they rely on maximum likelihood estimation of probability density distributions which

can sometimes be very costly to compute. Training complexities had also limited their

ability to scale up to larger problem sets.

GANs have been successful in areas where other generative models have failed, such

as high-resolution and less blurry image synthesis. Goodfellow et al. [63] used an end

to end differentiable model to estimate loglikelihood without Markov chain approxima-

tions. GAN models receive a significant boost when Radford et al. [146] discovered how

deep convolutional neural network can be used to obtain high-resolution images, and

when Mirza and Osindero [126] proposed labels for plausible image generation. These

formed the basis for many variants of supervised GAN models. GAN since its incep-

tion have been used in image re-construction [156], semi-supervised classification [154],

image correction, text to image generation [150], natural image generation [47] and

others. Several variations of GANs have also proliferated such as Couple GAN, Deep

Convolutional GAN (DCGAN) [146], InfoGAN [34], BIGAN [48], LAPGAN [47] and

others to address different domain needs and to expand its frontiers. Despite all these

breakthroughs, GANs still suffer from challenges such as lack of a clear evaluation cri-

teria [176] and mode collapse/drop [63]. A complete mode collapse occurs when the
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generator produced samples that do not resemble the training data and mode drop-

ping occurs when the generated samples are not diverse (same image or scene in every

sample).

3.2 Supervised GAN

The original GAN framework is unsupervised and can be used to generate visually

plausible images, however, the modeller has no control over the category of the im-

age. Supervised GANs extend the framework by including class information in order to

achieve class driven sampling. Supervised GANs learn to control sample synthesis dur-

ing training through conditioning. GAN models are conditioned in either the generator

or discriminator (or even both) in one of the following ways;

• Directly concatenating labels at the input or later layers of both D and G.

• Through spatial bilinear pooling of class information.

• Applying the inner-product of the features layer and the label embedding, also

known as projection discriminator.

• Learning a classifier alongside the discriminative model.

The most widely used supervised GAN frameworks are the conditional GAN (C-

GAN) [126] and Auxiliary Classifier GAN (AC-GAN) [140].

3.2.1 Conditional GAN

Conditional GAN (C-GAN) [126] extends the original GAN models with conditional

probabilities in the GAN value function. For a sample x drawn from the real data, the

model computes the conditional probability p(x|y) for some label y in the the set of

class labels. Equation 3.5 shows the conditional probabilities in the value function of a

C-GAN model. In practice, the supplied class labels is passed onto both the generator

and the discriminator during training. Research has shown that label conditioning

improves the quality of the generated images and also give control over the samples

generated.

min
D

max
G

V (D,G) = Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] (3.5)
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Figure 3.3: Structure of the conditional GAN nodel.

Where y is the label of the training data x which is the same as the intended generated

image from the noise vector z. In the initial C-GAN experiments, labels were used

as a one hot encoding input to both G and D. The usefulness of this framework was

demonstrated on image tagging task using Flickr dataset [82]. Image features were

extracted from a pre-trained AlexNet and a separate skip-gram model was applied to

learn the language model. These were combined with C-GAN to generate tags for

images. Figure 3.3 shows the structure of a conditional GAN model depicting the

extension from the original GAN. In Figure 3.3, D and G represents the discriminator

and generator, xreal represents the training data, xfake represents the generated images,

C is the set of class labels, Z is the noise vector and real/fake is the probability output

which represents if the image is from the real or generated set.

Subsequently, numerous GAN frameworks have extended the capacity of the C-GAN

model. For instance, Self-Attention Generative Adversarial Networks (SAGAN) [197]

is a conditional GAN that compliment convolution with attention mechanism in image

generation. SAGAN was able to generate highly detailed images at high-resolution on

Imagenet dataset and reported a better Inception Score (IS) and Freschet Inception

Distance (FID) than the existing state-of-the-art GAN model (see section 3.5.2 for

more on IS and FID). In this context, self-attention layers captured global dependency

and improved global image structure in generated images. This is crucial in capturing

features that have geometric constraints.

Similarly, Brock et al. [26] developed BigGAN model that generates higher-resolution

images with high fidelity. Their experiments were also run on Imagenet and result

reported set a new state-of-the-art in Inception Score (IS) and Freschet Inception Dis-

tance (FID) from 52.52 and 18.65 to 166.3 and 9.6 (previously set by SAGAN). BigGAN

is a scaled up SAGAN with a projection discriminator and spectral normalization in the
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generator. The authors found out that a very large batch size is beneficial in the train-

ing of a GAN model and increasing width of the model as against depth only also scaled

the model better. Conditional batch normalization and ResNet skip-connections ensure

that deep models benefit from deeper architectures without losing label information.

3.2.2 Auxiliary Classifier GAN

Auxiliary Classifier GAN (AC-GAN) adds a classifier component to the GAN model.

The classifier can share the layers of the discriminator and add a final softmax layer

at the end or implemented as a separate model in the GAN framework. The idea

was introduced initially in SGAN [138] where the classifier component was trained

along with the discriminator model with an extra class label for generated samples.

The model was tested on image generation and semi-supervised learning using MNIST

dataset. Odena et al. extended this idea in [140] where the AC-GAN model is proposed.

The framework uses generator conditioning and a classifier in the discriminator to push

for control sampling. The AC-GAN model classified samples into existing classes while

generating high-resolution images. AC-GAN uses two set of likelihood functions in

training namely, the samples likelihood (Ls in equation 3.6) and class likelihood (Lc

in equation 3.7). AC-GAN was used to address class perceptual diversity in generated

samples and to generate more realistic images of real-world objects.

Ls = E[logP (S = real|Xreal)] + E[logP (S = fake|Xfake)] (3.6)

Lc = E[logP (C = c|Xreal)] + E[logP (C = c|Xfake)] (3.7)

The discriminator maximizes the sum of the two log likelihoods while the generator is

trained to maximize the difference between Ls − Lc. Figure 3.4 illustrates the struc-

ture of an AC-GAN model with the classifier and class information highlighted in blue.

AC-GAN model was tested on Imagenet and CIFAR-10 datasets and results showed

improved sample quality with better IS score than existing state-of-the-art and good

SSIM when compared to the real images. Although AC-GAN samples look more realis-

tic than other models but the samples still fell short of being realistic. Also, AC-GAN

model is affected by class diversity.

The AC-GAN framework has been extended into different domains and with different

approaches to implementing the auxiliary classification. Such extensions include TAC-

GAN [41], FM-GAN [181], VAC-GAN [17] and others. Bazrafkan et al. [17] suggested a
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Figure 3.4: Structure of the auxiliary classifier GAN model.

Versatile Auxiliary Classifier GAN (VAC-GAN) which trains a separate classifier model

alongside the discriminator model. The model generated better quality images than its

predecessor (AC-GAN) through visual inspection and in terms of reported classifica-

tion accuracy. The authors demonstrated that mixing the discriminator losses affected

model convergence in training and may not apply to other GAN variants. Controllable

Generative Adversarial Network ControlGAN [108] also implements a separate classi-

fier outside the discriminator similar to VAC-GAN [17]. The difference between the

two is that in ControlGAN make use of an equilibrium term in the objective function.

This proved effective in generating images with detailed attributes such as arched eye-

brows, big lips, wearing lipstick and wearing earrings which were evident through visual

inspection.

An alternative conditioning approach that considers secondary labels other than the

original class labels was proposed in Class Splitting Generative Adversarial Net-

works [65]. This is an extension to the AC-GAN framework that considers further

conditioning of the generator in the latent space using learned features from training

data. Secondary labels were obtained using K-means over the feature vectors of the last

layer of the critic. The resulting clusters were then used as additional conditions on the

generator latent space. This approach share some similarities with Info-GAN except

that classes are learned from feature vectors as against a noise vector. The training al-

gorithm supports both supervised and unsupervised training with the secondary labels

as another source of conditioning.

It is clear that making the discriminator perform some extra tasks such are classifi-

cation improves the GAN performance. What is not clear is the relationship between

30



classification and generative performances. The study by Shu et al. [163] brings to light

the connection between auxiliary classification with the learned distribution and why

AC-GAN has a high Inception Score. In this experiment, the authors demonstrated

theoretically that, AC-GAN constraints the model to learn distributions in the right

direction by avoiding sampling near the decision boundary. Such behaviour may imply

that the model could learn incorrect distribution in certain scenarios. To demonstrate

this ability, the authors experimented with MNIST, where they merged class 0 with 1

to form one class and 0 with 2 to form another class. The results showed that AC-GAN

restricted the model to sampling only one from the first class and 2 when the second

class is sampled because 0 is an overlap or fuzzy boundary between the two classes.

The research also shows that AC-GAN trains to maximize the mutual information term

in underlying inception score; hence, AC-GAN outperformed other models in terms of

the Inception metric.

3.3 Improvements on GAN Framework

GANs are still evolving, and the research community is actively discovering better ways

to best model a GAN framework. Nonetheless, we classify these improvements into

three, namely architecture, an improvement on objective functions and improvement

on optimization/training techniques.

3.3.1 Architecture

Architectural improvements are those enhancements that are related to the structure

of the model and model layers used in a GAN framework. These improvements include

using different layers like convolution layers or residual blocks, multi-modelling with

other task such as classification along adversarial learning, using multiple D and G and

other elegant techniques used in model design.

Deep Convolutional GAN

Both the discriminator and the generator were implemented in the original GAN pa-

per as fully connected neural networks. On the other hand, research has shown that

Convolutional Neural Networks (CNN) are known to work better in the image do-

main irrespective of the task at hand. To this end, Radford et al. [146] replaced the

fully connected layers with strided convolutional layers in both the generator and the
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Figure 3.5: Architecture of DCGAN.

discriminator of the GAN framework. This class of GANs are called Deep Convolu-

tional Generative Adversarial Networks (DCGAN). The improvement created stability

for the model, even in higher resolution training and achieved better samples quality

than previous approaches. Essentially, the DCGAN discriminator became a regular

CNN without a fully connected layer while the generator upsamples noise into a struc-

tured image. The success of DCGAN in image generation has made them the standard

structure adopted for subsequent GAN frameworks developed. Figure 3.5 depicts the

structure of DCGAN.

AC-GAN, TAC-GAN and similar frameworks that implement a classifier alongside ad-

versarial learning fall into the category mentioned above. Other architectural changes

use more than one generator/discriminator in the image generation process. For

instance, a double generator approach to GAN framework was used by Wang and

Gupta [184] in generating images from image depth information. The framework is

called Style and Structure GAN or S2GAN, and it generates images by pipe-lining

the process into structure and texture processes. S2GAN has two separate generators

(structure and style generator networks) that produce structure and style (texture)

components of an image. Both of which are trained separately before a joint train-

ing with the discriminator. Structuring procedure makes use of depth information to

generate scene structure from random noise. The output of which is fed into the style

generator with some noise to generate a final photo-realistic image. The authors made

use of pixel-wise constraint and Fully Convolutional Network (FCN) to align appropri-

ately the structure and style components of images generated. S2GAN achieve signifi-

cant image quality improvements with 71% of Amazon Mechanical Turker, suggesting

images were realistic. On the other hand, Nguyen et al. used a double discriminator

architecture to train an adversarial three-player game [136]. The framework was called

double discriminator GAN (D2-GAN). The authors showed that the new improved ob-

jective function is more stable and resistant to mode collapse than other approaches.

The new objective is a combination of a KL and reverse KL-divergence.
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Similar to [136] is Triple-GAN [37] which also uses a three player game. However, Triple-

GAN does not use multiple generator/discriminator but rather a separate classifier

network, a generator network and a discriminator network. They argue that the role

of classification and discrimination are two opposing objectives that should not be

combined in the discriminator functions [37]. This is particularly true considering that

the two models may have different convergence points. Triple-GAN uses a classifier

and generator conditioning to drive class specific sampling. The classifier C, produces

pseudo-labels for each sample drawn from the true distribution and the generator is

also sampled from noise by conditioning on true labels. These two sample sets are

sent to the discriminator for discrimination. The third batch of sample labels and data

from the true distribution (positive samples) are again used to train the discriminator.

The authors used pseudo discriminative losses and reinforcement algorithm to train the

model making sure that G and C improve each other as D approaches optimum.

Encoder-Decoder GAN

An auto-encoder GAN is a hybrid model that combines an auto-encoder model with a

GAN either as an additional model or replacing either the generator/discriminator or

both as the case may be. Existing research has shown that image generation benefits

from this arrangement and also provides better stability in training. The adversarial

objective is used to train this set-up and sometimes appended with an auto-encoder

reconstruction loss or another form of regularization to guarantee convergence. For

instance, Adversarial Learned Inference GAN (ALI-GAN), replaced the generator net-

work with an auto-encoder network [52]. The encoder maps sample data to noise and

the decoder maps noise prior to input space. These are both fed into the discrimina-

tor in an adversarial framework. The discriminator objective is now to detect sample

from both models as well as propagate error into them. This allows the framework to

learn example generation and mutual coherence inference which do not require con-

ditional densities. It is worth mentioning that ALI-GAN does not rely on explicit

re-construction of loss. Samples generated are clearer that previous GAN approaches

and misclassification rate reported was lower than DCGAN and vanilla GAN.

On the other hand, Zhao et al. in [201] proposed a variant of GAN that uses an auto-

encoder as a discriminator. The network uses an energy function to identify regions

near samples and assign them to lower energy and higher elsewhere. Hence the name

Energy Based Generative Adversarial Networks (EBGAN). The energy function is used

as a reconstruction error, and a repelling regularizer is used to prevent the auto-encoder

from generating samples around certain points consistently. Essentially, the regularizer

term is used to prevent mode dropping; hence, EBGAN is stable in training and shows
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Figure 3.6: Structure of Coupled GAN.

better convergence with greater scalability.

Another similar models include the Boundary Equilibrium GAN (BEGAN) [19]. BE-

GAN employed auto-encoders and Wasserstein distance to produce images with high

fidelity at high resolution. A novel approach to training using an equilibrium term that

balancing the convergence of the generator and discriminator during training was also

introduced by BEGAN. The equilibrium term in the objective function also controls

the trade-off between visual quality and diversity of samples generated. Similar to [11],

BEGAN does not match data distribution directly but rather auto-encoder loss using

Wasserstein distance. Hence, the objective of the discriminator is to auto-encode real

images and differentiate them from fake samples. Experiments were ran using Celebrity

faces dataset with 360 thousand sample faces. Results obtained indicated an inception

score of 5.62 which is only second to de-noising feature matching and better than all

other GAN models available.

Hierarchical GAN

Hierarchical GANs split the image generation process into a pipeline with a series of

generators applied to images usually starting from a lower to a higher resolution image.

The target of most models in this category is to enhance the image quality as well as

generate images at a higher resolution. For instance, the GAN framework was enforced

in a Laplacian structure in tackling high-resolution image generation by Denton et

al. in [47]. A cascade of conditional GANs were arranged to sample at each level a

residual that is used to generate images at different resolutions with the labels coming

from images generated at the previous layer in the pyramid. Each model was trained

independently of the model in the preceding layer. This structure enabled natural

image generation at a higher resolution than the original GAN network. These class of

GANs are called Laplacian GAN or LAP-GAN. Results reported by the authors shows

that LAP-GAN has better log-likelihood than the classic GAN and 40% of the human

test mistaken generated images for real samples.
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Similarly, Liu and Tuzel [114] proposed a multi-modal GAN that learns a joint distribu-

tion without the need for tuple inputs. Samples are drawn from two separate marginal

distributions, and a pair of GAN models are used to synthesize images from two differ-

ent domains. This GAN framework is referred to as Coupled Generative Adversarial

Networks (COGAN). COGAN stands out from other approaches because of its weight

sharing feature which was enforced in the first layer of the generator and the last layer

of the discriminator. The intuition behind sharing first generator layers is based on

the fact that the two domains share some high-level concept. Again, weight sharing

reduces the number of parameters used in COGAN. Figure 3.6 shows the structure of

COGAN. The training was carried out with back propagation in a constrained mini-

max game of two teams with two players each. The COGAN value function is shown

in Equation 3.8.

min
f1,f2

max
g1,g2

V (f1, f2, g1, g2) = Ex1∼px1 [−logf(x1)] + Ez∼pz(z)[−log(1− f(g1(z)))]

+Ex2∼px2 [−logf(x2)] + Ez∼pz(z)[−log(1− f(g2(z)))]
(3.8)

where f1, f2 and g1, g2 represents the discriminators and generators of the two GAN

models and x1, x2 representing the two distinct domains. COGAN was tested on unsu-

pervised domain adaptation task from MNIST to USPS [158] dataset and the authors

reported improved classifier performance over the-state-of-the-art (two stream archi-

tecture in [152]).

Karras et al. [89] approached hierarchical image generation through progressively grow-

ing the GAN model during training in order to achieve high-resolution image generation.

The model is expanded by adding new layers starting from a small image size until a

high-resolution (1024 by 1024 by the authors) is reached. In this way, the model learns

to generate a general image structure before fine image details are learned. This created

stability in training as new layers are gently introduced with all layer trainable from

the start to finish. The same condition remains true even with other loss functions like

the least-square objective.

3.3.2 Objective Function

The original GAN objective function has many desirable properties; however, it is

challenging to train with, and there is no certainty that the model will converge in

all cases. These problems have led to the development of many GAN objectives that

are easier to train, flexible with architectural choices and guaranty convergence under
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certain conditions.

Wasserstein Objective

GANs like other neural networks are also affected by vanishing gradients. This could

be as result of the logical loss employed which saturates quickly and may lead to mode

collapse. [11], [154] and [176] suggest ways to improve training through careful selection

of hyper parameters, employing techniques such as batch normalization and discrim-

ination or using a different objective function in the model. Arjovsky et al. in [11]

suggested the use of Wasserstein distance to tackle convergence issues in GAN mod-

els. By optimizing their GAN framework based on Wasserstein distance, the authors

reported stable training which is directly related to distance minimization of the two

distributions. The model then back propagate through to determine the new parameter

set using Equation 3.9.

L(pr, pg) = W (pr, pg) = max
w∈W

Ex∼pr [fw(x)]− Ez∼pg [fw(gθ(z))] (3.9)

where W (pr, pg) represents the Wasserstein distance between the real data distribution

pr and the generated data distribution pg, fw is a true derivative among k -Lipschitz

continuous functions. That is, for f , a real valued function f : R → R is k-Lipschitz

continuous for some k > 0 such that x1, x2 ∈ R, |f(x1) − f(x2)| 6 k|x1 − x2| (see3

for more details). Here, k is known as a Lipschitz constant for the function f(.). The

discriminator model is used to learn w to find the good fw, hence, for some parameter

θ the model train to converge fw through gradient propagation by sampling in z. These

class of GANs that makes use of this algorithm are called WGAN. In practice, k is

kept small in between two carefully chosen bounds (1-Lipschitz constant) and gradient

clamping is used enforce weight limits to a certain range. WGAN achieve stability in

training with smaller distance/loss representing better image quality and the model

generated images that are of higher quality than the original GAN objective. The

objective function also removes some architectural restrictions.

WGAN bounds the discriminator by constants which are independent of the data dis-

tribution (a hyper-parameter setting). However, Mroueh and Sercu [133] argued that

to imposed k constant on the critic (discriminator) is independent of data and distribu-

tion learned as such significantly reduces its capacity. This also limits its usability for

a semi-supervised learning approach. In their research, they proposed a second order

moment Integral Probability Metric (IPM) as a Rayleigh Quotient. This is a form of

3https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
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weights control on the critic that is data dependant which they have demonstrated

to be stable and maintains the capacity of the critic. The objective function uses an

augmented Lagrangian as shown in equation 3.10.

Lf (p, θ, λ) = Ê(fp, gθ) + λ(1− Ω̂(fp, gθ))−
ρ

2
(Ω̂(fp, gθ)− 1)2 (3.10)

where λ is a Lagrange multiplier and ρ > 0 is a quadratic weight penalty, Ω̂ is a

constraint and f is the critic. The authors reported stable training, faster convergence

and a competitive semi-supervised learning results.

WGAN [11] have one of the most stable objective functions, however, the study by [66]

showed that the weight clipping approach to control the gradients leads to some unde-

sirable properties. Although the authors in [11] used some architectural choices (such as

batch-normalisation) that limit the effect of these properties, experiments have shown

that these effects were observed when deeper architectures are used [66]. One of such

properties is underused of capacity by limiting the critic/discriminator to k-Lipschitz

constraint thereby learning much simpler functions. Another feature is the case of

vanishing and exploding gradients that were observed with deeper architectures. To

address these problems, gradient penalty was proposed as an alternative to gradient

clipping to push for the 1-Lipschitz constraint in [66]. The updated critic loss is shown

in equation 3.11.

L = E
x̄∼Pg

[D(x̃)] + E
x̂∼Pr

[D(x)] + λ E
x̂∼Px̂

[(||Ox̂D(x̂)||2 − 1)2] (3.11)

λ is a hyper-parameter known as the penalty coefficient. The proposed objective was

tested on varying architectures(such as DCGAN and ResNet) and settings as compared

to original GAN objective. Experiments were run on LSUN bedrooms and CIFAR-

10 datasets and results reported showed improved training speed and sample quality.

Furthermore, the generated samples had the best Inception scores (with state-of-the-art

IS on CIFAR-10).

Softmax Objective

Lin in [111] proposed a change to the training objective of GAN by applying a soft-max

cross entropy loss during training. This was proven to be equivalent to minimizing the

Jensen Shannon Divergence (JSD) between generated and real data. The two loses LD

and LG for the discriminator and the generator were proposed in Equations 3.12 and
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3.13.

LD =
∑
xεB+

1

|B+|
D(x) + lnZB (3.12)

LG =
∑
xεB+

1

|B|
D(x) +

∑
x′εB

1

|B|
D(x′) + lnZB (3.13)

where B+ is the mini batch set of real samples, B is the set of mini batches from the

generated samples and B is the combine batches from both the generated and real set.

ZB is taken as a softmax partition function over the set B. This class of GANs are called

softmax-GANs. Reduction in loss here also correlates to better samples generation.

Least Squares Objective

Least square GANs (LSGAN) [121] were created as an alternative objective to the

GAN object to tackle the problem of vanishing gradients. LSGAN ensures gradient

flow even for samples that fall within the correct side of the decision boundary but

are not realistic. This pushes the generator to generate samples towards the decision

boundary. Equations 3.14 and 3.15 shows the discriminator and generator objectives

in LSGAN.

min
D

VLSGAN (D) =
1

2
Ex∼pdata(x)[(D(x)− b)2] +

1

2
Ez∼pz(z)[(D(G(z))− a)2] (3.14)

min
D

VLSGAN (G) =
1

2
Ez∼pz(z)[(D(G(z))− c)2] (3.15)

where a and b are the labels for fake and real data, and c is the value that G uses to

fool D with fake data. The authors demonstrated that LSGAN minimizes the Pearson

χ2 divergence between the sum of pdata + pz and 2pz for some b− c = 1 and b− a = 2

(a = −1, b = 1, c = 0). Least Square GANs are more stable than regular GANs and

generates higher quality images than DCGAN [146] and EBGAN [201].
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Multi-class Objective

This class of objective category have a hybrid objective that add an extra classification

loss to the adversarial loss such as the ones in AC-GAN equations 3.6 and 3.7. Multi-

class objectives are developed with labels and supervision in mind to achieve class

driven sampling. For instance, Springenberg trained a multi-labelled discriminator for

GAN in [169] (CatGan). Cat-GAN was used to learn class separation in data from

few learned categories with class labels without explicitly modelling p(x). This was

realized through training a discriminator that learns multi-class classification as well

as separating fake from real samples. The discriminator was trained using images of

different categories and the generator is allowed to sample from uniform conditional

distributed noise categories as well. The discriminator and generator (LD and LG)

losses in CatGAN are given in Equations 3.16 and 3.17.

LD = max
D

HX [p(y|D)]− Ex∼X [H[p(y|x,D)]] + Ez∼p(z)[H[p(y|G(z), D)]] (3.16)

LG = min
G
−HG[p(y|D)] + Ez∼p(z)[H[p(y|G(z), D)]] (3.17)

Information Maximizing GAN (InfoGAN) [34] adds a mutual information cost to the

GAN formulation. The idea is to use a latent code c, to represent the salient semantic

structures in images together with the noise vector as the input to the generator. Latent

code represents features such as thickness of stroke, pose angle and other common image

features. Different from other approaches is the fact that c is learned in an unsupervised

manner. The latent code was enforced on the generator through variation information

maximization by learning an auxiliary distribution over the latent codes (Q(c|x)). The

InfoGAN objective is shown in equation 3.18.

min
G,Q

max
D

VInfoGAN (D,G,Q) = V (D,G)− λLI(G,Q) (3.18)

Where LI is a variational lower bound, λ is a hyper parameter whose value is set

to one for a discrete categorical latent code. InfoGAN was used to learn disentangled

representations like the shape and stroke width of digits in MNIST dataset, background

and number in SVHN dataset and azimuth and face angle in CelebA and 3-D faces.
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Regularized Objective

Similar to WGAN, Qi in [145] developed a framework to train adversarial networks by

using Lipschitz loss called Loss Sensitive Generative Adversarial Networks (LS-GAN).

They demonstrate that the loss is a difference between the two distribution pgen(z) and

pdata(x). This difference is not a fixed constant and could grow smaller as the generator

learns better density distributions. This novel approach to adversarial learning allows

the network to improve on noise samples with high losses only rather than concentrating

on samples with lesser loss. Model outputs show better fidelity of samples and high

classification accuracy in a semi-supervised domain using a conditional variant of the

objective. Equation 3.19 shows the LS-GAN objective.

S(θ, φ∗) = E
x∼Pdata(x)

Lθ(x) + λ E
x∼Pdata(x)
zG∼PG∗ (zG)

(∆(x, zG) + Lθ(x)− Lθ(zG))+ (3.19)

Where λ is a positive balancing parameter,∆(x, zG is the margin between x and zG,

and (a)+ represents max(a, 0) for some fixed generator G∗. Mode regularize GAN [29]

split adversarial training into two parts, namely, a manifold and a diffusion step. In

manifold step, the generated images are matched with real ones using an encoder and

an L2 loss. The second step ensures a “fair distribution of probability mass” on the

generation manifold to make it as close as possible to the real samples. This objective

was used to address missing mode problem in GAN training. The generator G and the

encoder E, are optimized according to the regularized loss function in Equation 3.20

and 3.21.

TG = −E[logD(G(z))] + TE ] (3.20)

TE = Ex∼pd [λ1d(x,GoE(x)) + λ2logD(GoE(x))] (3.21)

where GoE(x) is a composition model of the generator and an encoder, and

lambda is a hyper-parameter. Another regularized objectives is Deep Regret Analytic

GAN (DRAGAN) [95] which used regret minimization algorithm. The authors demon-

strated that GAN experience mode collapse as result of local minima caused by sharp

gradient from real samples in the discriminator. DRAGAN avoided mode collapse by

regularizing the discriminator to constraint its gradient within the data space. In prac-

tice, gradient penalty [66] is applied and small perturbation was used to keep real data

away from the data space.
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3.3.3 Optimization and Training Procedures

Various enhanced approaches to optimize a GAN model have evolved over the years.

The fact that GAN models are notorious to train has led to the proliferation of these

techniques. Some of the techniques like batch normalization were extended from ma-

chine learning field while other techniques such as batch discrimination [154] were de-

veloped specifically for GANs. In general, we group these techniques into normalization

techniques, regularization techniques and training tricks.

Normalization Techniques

Normalization techniques scale features/weights within a limited range. It is common

practice in GAN to use normalized input (between -1 and 1), and a randomly chosen

noise vector with a small standard deviation (say 0.02). Some of these settings are

known to encourage stability in practice. For instance, batch normalization of inputs

was first used in DCGAN [146] between layers to stabilize training and ensures bet-

ter gradient flow within the network. Different from early GAN frameworks, DCGAN

employed Adam optimizers as against directly training with momentum. Other nor-

malization approaches include spectral normalization, weight normalization and layer

normalization.

Xiang and Li showed how performance gain and improved image quality could be

achieved using weight normalization [188]. They argued that batch normalization con-

tributes to mode collapse and poor samples in GAN training. The weight normal-

ized model showed consistent increase in quality of generated samples as the training

progress. Again, experiments compared models using similar GAN architecture with

and without batch normalization. They showed that training may be accelerated with

batch normalization but was at the expense of the generated samples quality.

An optimal discriminator is always a problem for a GAN setup because its gradient

at that point is approaching zero. To control the power of the discriminator Miy-

ato et al. [128] proposed spectral normalization. Spectral normalization is essentially

a stabilization technique that constraints the Lipschitz norm of the weights to one

(bounded from above by one) with little overhead on the overall computational cost.

Performances were compared to existing normalization techniques such as weight nor-

malization, weight clipping and batch normalization using different losses and hyper-

parameter tuning. In almost all combinations, spectral normalized GANs achieved

better results than other approaches considered (in terms of Inception Score, image

quality and diversity) .
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Regularization Techniques

Regularizers are employed to reduce the effect of over-fitting in deep learning. Some

these are implemented on weight parameters while others are on the objective functions

as discussed in section 3.3.2. Jacobian clamping [139], for instance, was implemented on

the weight parameters. It has proved to reduce inter-run variance in GAN performances

and sample quality/metrics. Experiments conducted with Jacobian clamping using

existing models showed improved IS and FID on different datasets.

Roth et al. [151] introduced an analytic regularizer using noise. This technique stabi-

lized GAN training by avoiding mode dropping and artefacts in training using different

architectures and datasets. The authors demonstrated that noise-induced regulariza-

tion is effective in making models immune to “dimensional misspecification”. The

stability of the model was tested on LSUN, CIFAR-10 and CelebA datasets. Results

showed better stability in training with higher image quality than directly training with

noise.

Training Heuristics

Training tricks are discovered from mundane use and have become a standard based on

empirical results. For instances, Salimans et al. in [154] introduced feature matching,

mini-batch discrimination, historical averaging, one-sided label smoothing and virtual

batch normalization to encourage the convergence of GANs during training. These

are heuristically motivated; however, results showed better performance from GAN

models employed during experimentation. With feature matching the discriminator is

trained to distinguish images based on image statistics of samples. This prevented the

generator from overtraining on the discriminator. Mini batch discrimination, on the

other hand, prevents the generator from collapsing by allowing the discriminator to

screen samples in batches. Historical averaging uses the update parameters of players

(D and G) based on previous value averages. Virtual batchnorm normalizes inputs

based on initially chosen batch statistics. One sided label smoothing slightly reduced

the confidence of a classifier on positive labels through reducing the tight bound, for

example from 1.0 to 0.9. The reliability of these techniques is based on experimentation;

hence, there is no certainty that any random combinations could yield good results.

More concretely, Evolutionary GAN (E-GAN) [182] used a fitness function from evo-

lutionary algorithms to determine a healthy gradient update from a variety of GAN

objectives used as mutation functions. The technique makes use of 3-variants GAN

objectives namely, least-squares, mini-max and heuristic forming a set of estimated
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parameters. A single version of the generator (the best) is maintained after each itera-

tion. The fitness function stabilized the model in training and prevented mode collapse.

Experiments were carried out on CIFAR-10, LS-SUN and CelebA datasets and E-GAN

showed better stability to architecture deformation than the approaches considered

while producing visually plausible samples. However, E-GAN takes longer to train.

3.4 Application Domains

GAN models are state-of-the-art in estimating distributions and in image generation.

The flexibility of the GAN framework makes them suitable for many computer vision

tasks. Some of these areas includes semi-supervised classification, image tagging, image

generation, image correction, face ageing and domain adaptation tasks.

3.4.1 Face Ageing

Face ageing has many applications such as security, search for missing persons, infor-

mation management and recognition systems; hence, face ageing is an active research

area in computer vision. With the advent of deep CNN in face verification, perfor-

mances have surpassed human level on popular face benchmarks [175, 157]. Despite

several successes in this domain challenges still, exist such as cross-age verification and

face identification in unconstrained environment [7]. The uniqueness of facial structure

and various ageing process creates disorder and inconsistencies in facial images [116].

Moreover, getting facial images of the same subjects at a specific age can be very

challenging [185].

Therefore, a successful age-specific generation method model the age of the samples

while preserving their identity. Different GAN models have been developed to fulfil

these criteria. For instance, age-specific generation in GAN was achieved by using

a CGAN through embedding age information in the generator and discriminator [8].

Similarly, AC-GAN framework was employed by [7] to induce age information through

classification and generator conditioning. Again, Antipov et al. in [7] used a restricted

latent vector to ensure consistency alongside a perceptual loss in generating age-specific

facial images. Others preserve the identity of the subject by using various techniques

such as style transfer [166], cycle consistency loss and perceptual loss [185] along with

a deep generative model.

Furthermore, Liu et al. [116] personalized the face ageing process according to age fea-

tures learned using Age-DCGAN. Age-DCGAN is based on DCGAN [146] architecture
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and include label conditioning in both generator and discriminator. A personality la-

tent vector z, with age features y’ are extracted from a high dimensional image using

encoders. Both z and y’ are then passed to a generator to create an image which is sent

to the discriminator in a typical GAN set up. Age-DCGAN uses a second discriminator

to distinguish y from y’.

Identity Preserving Conditional GAN (IPCGAN) [185] also uses a perceptual loss be-

tween generated images and the original image to preserve the identity of the subject in

the image. Perceptual loss consists of a style and content loss similar to [116]. IPCGAN

has three components; a CGAN model, identity preserving module and a pre-trained

AlexNet [99] as an age classifier. Experiments were conducted using CACD dataset

and samples were evaluated by employing people to visually inspect the samples and

rate the quality of generation, verify face identity and age classification.

The GAN generator is a versatile model but capturing the exact data distribution

with tiny details is elusive even with an optimal generator and a large dataset [7].

Local Manifold Adaptation (MLA) [7] uses age normalization method to model age

progression/regression in synthetic faces. MLA constrain the generator latent space to

a learned facial encoding jointly with age-specific encoding. This uses an Age-cGAN

model to preserve the identity of the subject as the sample is rejuvenated or aged. The

authors synthesized facial images of varying age categories, then normalize these faces

prior to face verification. Normalizing across age categories provided further invariance

to age thereby, improving the performance of deep learning face verification software

across different benchmarks.

3.4.2 Image Correction

Traditional image enhancement uses many parameters and is often down to the skill of

the user which takes significant amount of time to tweak [35]. Chen et al. [35] proposed

learning an image enhancer using a GAN model. Unlike other approaches, this model

only relied on a set of images with the required characteristics as inputs. Enhancement

was achieved by transferring the desired characteristics on the image from the set of

input images while preserving the identity of the image. This approach shared some

characteristics with image-to-image translation using CycleGAN. The authors proposed

a 2-way GAN model using U-Net as the generator trained with an adaptive Wasserstein

objective. Experiments were carried out on MIT-Adobe 5k dataset and results obtained

showed higher image enhancement quality than DPED, 8RESBLK, CRN, FCN and

UNet in term of PSNR and SSIM.

Shrivastava et al. in [162] describes a framework that refined synthetic images to
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make them more realistic. The authors demonstrate that models trained on refined

images perform better than those trained on synthetic images. Images are refined

using unlabelled real samples. The framework consists of a refiner network that is built

based on ResNet architecture. This refiner network is trained using adversarial loss

in a GAN fashion. Self regularizing loss was also introduced to preserve annotation

information in refined images. Image artefacts were controlled through local losses

and model convergence was enhanced through buffer refinement, and current batch

loss to update the discriminator similar to historical averaging in [154]. The authors

reported results better than the current state-of-the-art in gaze and pose estimation

using MPIIGaze and NYU hand pose datasets by a 21% and 8% margins respectively.

Schawinski et al. [156] applied GAN in reconstructing astrophysical images. Images

used for this experiment were collected from Sloan Digital Sky Survey(4550 images in

total, 4105 for train and 455 for testing). A second image set was generated by applying

random Gaussian noise. The two image sets were used to train a GAN that learns to

regenerate the original images. The results showed better performance compared to

deconvolution techniques with a better PSNR ratio of 37.2DB. However, it was also

reported that the model was only able to recover image parts that have been learned

during training.

A context based semi-supervised learning framework using adversarial loss was pro-

posed by Denton et al. in [46] called Context-Conditional Generative Adversarial Net-

works (CC-GAN). This was tested on in-painting of image patches and semi-supervised

classification task. The model architecture of the generator is inspired by DCGAN in

[146]. The discriminator was a VGG11-A [164] (without the fully connected layers).

The generator takes as input the image with a hole and a pathway to a reduced sized

image as the conditioned context. The in-painted and generated image were fed sep-

arately as input to the discriminator during training. This framework was tested on

STL-10 dataset and PASCALVOC07, results showed visually plausible patches were

generated by different model combination.

3.4.3 Image Tagging

The initial CGAN model was tested on Flickr images to generate more descriptive tags

from annotations and generated meta data [126]. CGAN demonstrated the ability to

accept language embeddings and labels in producing the descriptive text. On the other

hand, Reed et al. trained a variant of GAN (GAN-CLS, GAN-INT) to generate realistic

images from text embeddings [150]. The model translated a textual description into an

image. The framework takes noise drawn from a distribution and concatenates it with
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a sampled text query. The discriminator is trained to learn correct text embeddings

with realistic samples. The procedure was tested using Oxford-102 dataset, CUB-

200 dataset, Caltech-UCSD and MSCOCO dataset. Results obtained showed that the

model was able to take a word embedding and generate plausible images when sampled.

Similarly, Text Conditioned Auxiliary Classifier GAN (TAC-GAN) [41] synthesizes an

image from text descriptors using a variant of AC-GAN.

3.4.4 Network Visualization

GANs were recently applied in understanding the neuron activation in a trained model

by Nguyan et al. [135]. They applied a deep generative network to learn image prior

in an activation maximization problem. This allowed the synthesis of high stimuli for

different neurons and consequently more realistic visualization of activations. The au-

thors used the GAN architecture and objective function in [197]. Different from other

approaches, this prior is capable of estimating neuron activation on other datasets with-

out relearning the model but with some architectural constraints. When the encoder

and the network to visualize have different architectures, the visualisation quality de-

grades with how far apart the two models are. This was tested using a trained model

from the Caffe model zoo (CaffeNet, GoogleNet, ResNet) and visualisations produced

a high level of realism in the images.

3.4.5 Semi-supervised Learning

Semi-supervised learning is applied where labels are not available or difficult to obtain.

One of the early semi-supervised GAN frameworks is [138] where Odena trained a

classifier using a GAN on MNIST which was used to classify withheld samples. Subse-

quently, state-of-the-art results were reported by [154] on MNIST, SVHN and CIFAR-

10 datasets on semi-supervised classification. ALI-GAN was also tested on SVHN and

CIFAR-10 for semi-supervised learning with and without feature matching and in both

instances ALI-GAN out-performed all GAN models [52]. However, the results obtained

were still below the supervised and best semi-supervised approaches. Dai and Yang

in their study [40], demonstrated that a perfect generator prevents the learning of

a good semi-supervised discriminator. Consequently they proposed a complementary

generator for learning a good discriminator for semi-supervised learning. They also

reached similar conclusion as [52]; that feature matching GANs performs better in

semi-supervised learning. There procedure was tested on MNIST, SVHN and CIFAR-

10 datasets, and the method showed consistent performance gain on the benchmarks

when feature matching was used.
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Semi-supervised learning using GAN was re-visited by Perez et al. in [143]. They ap-

plied WGAN in predicting poverty from satellite images. Their dataset was a set of

images over Africa. However, only 5% of the data was labelled. Their critic (discrimi-

nator) was a DC-GAN with a ResNet-50 structure. Losses where added in a multi-task

learning fashion. The model was allowed to predict fake/real classes with other classes

that corresponds to Assets Wealth Index (AWI). EBGAN [201] was also tested on

semi-supervised learning on PI-MNIST with 100,200 and 1000 labels considered. Re-

sults reported shows improvement on former ladder networks’ bottom-layer-cost model

approach.

3.4.6 Domain Adaptation

Domain adaptation tries to transfer representations learned between two different do-

mains e.g painting to real images (source to target). GAN-based domain adaptation

techniques have made significant progress in both supervised and unsupervised settings.

The most successful GAN based domain adaptation frameworks is the CycleGAN [203].

CycleGAN introduced the cycle-consistency loss that learns two separate GANs. Thus,

when the two are connected produces an identity mapping between a source and a

target domain. The significance of this was that the two distributions are completely

disjoint with no need to pair training samples. This was demonstrated in style transfer

examples between zebra and horse, summer and winter images and so on. Numerous

other successful extension of this followed such as DiscoGAN [90], DualGAN [192]

and StarGAN [36]. StarGAN [36] revolutionized the domain adaptation approach by

adapting CycleGAN to multi-domain image-translation using a single model.

Similarly, Sankaranarayanan et al. [155] used a GAN architecture with a parallel fea-

ture extraction and classification networks to learn a joint feature distribution in an

unsupervised domain adaptation problem. Contrary to other approaches, this tech-

nique works even in extreme conditions where image generation is challenging (limited

number of samples in classes).

In medicine where computer aided diagnostics have become very popular, domain adap-

tation is one technique with ability to reduce diagnosis error and patients’ exposure

to risk of testing procedures. For instance, exposure to radiation during CT scans is

known to be a source of cancer at later stages in life [137]. As such there has been a

drives to generate CT images from other sources that are less lethal. Nei et al. esti-

mated CT scan images from MRI images in [137]. The technique trained a GAN model

on a pair of CT and MRI images of the same subject. To work around high image

resolution, the procedure was carried out on patches that were later averaged into a
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target image. Image gradient loss was used to reduce the blurriness of the samples gen-

erated. The model was evaluated using Peak Signal-to-Noise-Ratio (PSNR) and Mean

Absolute Error (MAE) and results obtained showed that the model out-performed the

state-of-the-art SRF+ method.

3.5 Evaluation

Evaluating a generative model is still an open question for research. Some researchers

often use the fidelity of samples while others try to estimate the distribution learned

through log likelihood estimate. GANs are evaluated using quantitative and qualitative

measures and both of these metrics have strengths and weaknesses. For instance,

quantitative metrics may not detect mode collapse or lack of diversity in generated

samples while qualitative measures may not necessarily correspond to human perception

due to variety of probabilities and lack of meaningful image similarity metric [22].

Human judgement has also been used to evaluate the quality of samples in GANs

[154, 47, 146]. The following sections categorize some of the popular metrics used in

evaluating GAN model performances.

3.5.1 Likelihood Estimates

The target of a GAN model is to capture the data distribution and an optimum gen-

erator should produce samples very close to the real data distribution. Thus, an ideal

metric should measure the distance between the two distributions. However, likeli-

hood is not feasible at high dimensions; hence, the alternative log-likelihood is used

in this regard. The initial experiment in [63] used a Gaussian Parzen window to es-

timate distance between the distribution pgen and pdata. Results shows a competitive

value compared to existing generative models. Similarly, [47, 126, 59] also used Parzen

window to estimate log likelihood. However, later researches have shown that these

estimates do not always reflect other factors like sample quality [176].

3.5.2 Inception Metrics

The two widely used metric benchmarking GAN models are Inception Score (IS) and

Fréschet Inception Distance (FID) [22]. Salimans et al. in [154] suggested the use of

Inception model to approximate conditional class metric over data. Inception model is

a trained CNN on Imagenet dataset by Szegedy et al. [173]. This is calculated as the

mean score of correctly classified samples (p(y|x)) and a marginal probability over the

48



classes (p(y)). These two criteria are computed using Kullback-Leibler divergence as

shown in Equation 3.22 . The inception score metric was found to correlate well with

human judgement. Subsequently, this metric was employed by a number of researchers

as a way to evaluate the performance of models and compare them to others such as [19]

and [201]. However, Inception Score does not capture model diversity or account for

when the generator collapsed to producing similar samples [140].

IS(G) = Ex∼pgDKL(p(y|x)||p(y)) (3.22)

Fréchet Inception Distance (FID) [75] addresses some limitations of Inception Score

by modelling the distribution learned using the mean µ, and covariance matrix Σ, of

the features extracted from the inception model. Equation 3.23 shows how FID is

evaluated where Tr is the sum of all diagonal elements. The statistics of both the real

and fake images are compared and a small FID indicates closeness and better quality

images. FID is more resistant to distortions and correlates better to human perception.

Moreover, FID metric is more meaningful to other datasets containing non Imagenet

classes.

FID((µ,Σ), (µg,Σg)) = ||µ− µg||22 + Tr(Σ + Σg − 2(Σ.Σg)
1
2 ) (3.23)

3.5.3 Classification as a Metric

The problem with Inception metrics (IS and FID) is the reliance on pre-trained Ima-

genet model. These metrics may be inadequate when considering a dataset that has

different classes other than Imagenet [14] such as faces. Moreover, when classification

is the target, perhaps a metric that captures class property may be more appropri-

ate [161]. GANtrain and GANtest [161] evaluate the diversity and quality of generated

images using a classifier. With GANtrain, the classifier is trained on generated samples

and real samples are used as test images. For GANtest, the classifier is trained on real

images and tested on generated image. The idea is that if the generator has captured

the true data distribution, the difference between the two accuracies should be very

small. These two metrics were found to correlate well with precision and recall of gen-

erated samples. GANtrain and GANtest was used to evaluate condition WGAN-GP,

SNGAN, DCGAN and PixelCNN++ models on MNIST, CIFAR-10, CIFAR-100 and

Imagenet datasets. Compared to FID and other metrics where model performances are

within a certain range (especially for best models), wide margins were recorded from

GANtrain and GANtest accuracies for the same models. These two metrics were able
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to capture subtle performance differences amongst the best models.

Away from log likelihood estimates, researchers also try to evaluate their models by

using other supervised models. For instance, DCGAN was evaluated as a features ex-

tractor on a supervised learning task by fitting an SVM on the unsupervised learned rep-

resentations [146]. The results of classification on CIFAR-10 shows that DCGAN+SVM

is only second to exemplar CNN. The results demonstrated good generalization ability

because the model was pre-trained on Imagenet-1k. This suggest transferable features

are indeed learned by the model. A similar experiment was ran using SVHN and state-

of-the-art results were reported. Similarly, classification accuracy on generated data

was used by Wang and Gupta [184] to test the quality of samples generated.

3.5.4 Other Quantitative and Qualitative Metrics

Popular quantitative metrics employed include mode score [29], Maximum Mean Dis-

crepancy (MMD) [64], Wasserstein critic [11], Classifier Two-sample Test (C2ST) [109],

classification performance [85], Generative Adversarial Metric (GAM) [83], reconstruc-

tion error [188], SSIM [140] and others. Other qualitative measures are nearest neigh-

bours, rapid scene categorization [63], preference judgement [198], mode drop and col-

lapse [171] and network internals [34]. Borji [22] argued that any evaluation criteria

employed should have low sample and computational complexity, favour the model

with high sample fidelity, diversity and disentangled latent spaces. The model should

also have well defined bounds and be sensitive to image distortion and above all agree

with human perceptual judgements. Thus, the evaluation criterion chosen should have

both qualitative and quantitative properties. To check for mode collapse and ensure

variability of samples generated by AC-GAN, Odena et al. used multi-scale structural

similarity measure (MS-SSIM) as a metric [140]. Mean MS-SSIM of training set was

calculated and was used to ensure that the generator never collapse to generating sim-

ilar samples. Similarly, Bousmalis et al. employed a content similarity loss to control

variance in both generated and training samples [25]. Re-construction error was also

used by Xiang and Li in [188] to assess the quality of generated samples. This is an

alternative to negative log likelihood estimates which require generating many samples

to compute close to accurate results. They try to estimate the latent representation of

an image using gradient descent starting from a zero vector. Although the method is

slow, the authors used it as a post training step.

In general, choosing a metric to measure performance is a bit tricky. According to

Theis et al. [176] the choice of an evaluation metric for a generative model depends on

the objective for which the framework was designed. The study focused on the popular
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methods of evaluating probabilistic generative models such as direct log likelihoods,

Parzen window estimates, nearest neighbours and fidelity of samples. According to

their findings, good results in one metric does not translate to good results in another

or the overall model. For instance, log-likelihood and visual fidelity of models were

found to be mostly independent, and in high dimensions, Parzen windows estimates

are far from true likelihood. The authors concluded that there is a trade-off in choosing

a metric for evaluation and is subject to the purpose on which the model was designed.

In order words, if the purpose of a model is to generate samples only, the visual fidelity

of samples will be a good enough metric.

To summarize, GANs have proved to be the best available estimates for data distri-

butions, and it is evident that they can generate images that are plausible enough to

be a true representative of the dataset. The advancements in the value functions and

architecture of the GAN framework addressed similar challenges such as stability on

different datasets and metrics. The question then becomes which one of these is a bet-

ter representation. According to Lucic et al. in the article “Are GANs Created Equal?”

showed how the performance of some major GAN algorithms is dependent on design

choices such as datasets, hyper-parameters and computing budgets. Hence, comparing

them on reported minimal FID and inception score may not be enough. Both incep-

tion score and Frechet Inception Distance are flawed [120]. They argued that while

both correlate to image quality they fail to identify a “memory GAN” and struggle

with mode collapse in GANs. They propose that F1 score be used to complement the

robustness of Inception based metrics namely, FID and IS. Therefore, not only are the

metrics dependent on the target of the experiment but also a good enough evaluation

uses more than one metric to arrive at a more concrete conclusion.

3.6 Chapter Summary

This chapter discussed the concept of GANs with their limitations and the progress

made so far in different areas. We discuss in details the architecture of a typical

GAN model and the improvements made in terms of the structure, the training proce-

dure/optimisation and the objective function. We also discussed in detail supervised

GAN models and some methods used in evaluating the performances of a GAN. No-

tably, we discussed supervised GANs like AC-GAN [140], optimisation techniques such

as spectral normalization [129] and DC-GAN [146] which have become the standards

in training a supervised GAN. The next chapter, investigates further the performance

of state-of-the-art deep models in a poorly annotated data.
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Chapter 4

Deep Learning and Labeling

Dilemma

In this chapter, we analyze the performance of deep convolutional models on poorly

annotated data. We demonstrate empirically the challenges of fish recognition in the

wild. In particular, we examine the performance of transfer learning and traditional

augmentation approach in the absence of well-annotated training data. The findings

in this chapter appeared in the proceedings of the 18th International Conference on

Engineering Applications of Neural Networks (EANN 2017).

4.1 Need for Labeled Data

One of the factors that has influenced the recent advances in applying supervised deep

learning to image detection and classification is the availability of massive and cleanly

annotated datasets with numerous categories (like Imagenet). However, such datasets

are not always available, and the process of building one is mostly manual, labour

intensive and time-consuming [12]. This is because real data such as images and videos

can be very noisy, complex and redundant with extreme values. These challenges

increase the workload and cost of preparing a massive dataset from scratch. Imagenet,

for instance, follows the ontology of WordNet1 and even with the manual process and

crowdsourcing, Imagenet are yet to cover all the noun categories of WordNet which was

the initial goal. The 1.2 million images that were annotated initially required nineteen

man-years [127] and WordNet ontology is still growing even after the inception of

1https://wordnet.princeton.edu/
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Imagenet. Another example is Youtube videos2, which receives about 100 hours of

uploads every minute (ten million frames). To use humans for labeling every frame is

almost close to impossible, given the size of data. This leaves a very high percentage

of the available data unlabeled.

Established deep models such as YOLO [149], SSD [115] and R-CNN [61] used in

detecting and classifying objects are examples of AI’s attempt to automate the an-

notation process. However, training these frameworks still rely on massively labeled

data to achieve best results. Moreover, the number of objects covered by these mod-

els is limited. Thus, extending to more objects means re-annotating and re-training.

In specific domains, that are distinct from the original domain, transfer learning may

not necessarily work. Hence, a data collection to train a model from scratch may be

necessary.

4.2 Acquiring Labeled Data

Data acquired is mostly unlabeled and may require many preprocessing steps before

they can be used. One of such process is annotation and it can be achieved with the

help of annotation software or tool. This process is largely manual and a massive

dataset will require a lot of resources. Annotators use manual annotation tools such as

Sloth3, LEAR4, VGG Image Annotator5 and FastAnnoation6 as standalone tools for

annotating images. Annotation tools such as LabelMe7 are available online. For online

tools, there may be privacy issues with data sources and confidentiality. This leaves us

with the question of whether it is possible to always rely on crowdsourcing whenever

a new dataset is to be built. Moreover, crowdsourcing is an expensive and prolonged

process. Figure 4.1 shows an example of annotation process by drawing bounding box

around fish instances using Sloth.

Some of the challenges of existing image annotation systems were outlined by Russell et

al. in [153] as what to label, complexity, validation and the label text itself. The

downside of these tools is that users will have to annotate the images manually. Hence,

accuracy is strongly reliant on human annotators. Also, controlling the quality of

annotations is a source of concern. Some researchers addressed some of these issues by

proposing validation techniques. Automatic and selective validations are employed [21,

2https://research.google.com/youtube8m/
3https://sloth.readthedocs.io/en/latest/
4https://lear.inrialpes.fr/people/klaeser/software image annotation
5http://www.robots.ox.ac.uk/vgg/software/via/
6https://github.com/christopher5106/FastAnnotationTool
7http://labelme.csail.mit.edu/Release3.0/
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Figure 4.1: Image annotation and labelling by manually drawing bounding boxes around fish
species using Sloth.

44] to reduce the effort or cost of annotation. Others leave this open to the annotator

to decide what to label and how to segment it [153]. An approach to the complexity

of labels could be to limit the label class by providing a pop-up from which users may

select. However, this is only applicable when defined classes are established.

4.3 A Case of Fish Classification

In this section, we consider the Fish Classification problem as a case study. We aim to

assess the performances of established deep learning models under different scenarios.

The experiments are designed to show how deep models are affected by the number

of labeled examples. We start from raw data to annotation, to training and testing.

We also examine common techniques used to address some of the challenges along the

pipeline.

Fish detection and recognition are important for conservation agencies, marine life

scientist, fishing industry and governments to maintain fish supply and balance in

the ecosystem. Increase in continental reef monitoring, and deep-sea surveillance has

created the need for more imagery analysis. In this domain, images are obtained from

mounted cameras that capture continuous data for marine biologists. The rate at which

data are generated from underwater cameras, fishing boat cameras, Automatic Under-

water Vehicles (AUV) and conveyor belt cameras challenges human manual approach

to count and sort fish species. Therefore, image-based techniques are now popular in
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this domain [168, 24, 18].

Because of its economic importance, many approaches have been proposed in the detec-

tion and classification of fishes. Researchers employ specialised software and hardware

to monitor the marine eco-system. This has helped them in studying fish species

behaviour [168], classifying fishes into different species [124, 43], counting individual

species and also tracking their movements[103]. To support the growing needs of the

research community, competitions such as Kaggle8 and Seaclef/LifeClef9 provide richly

annotated datasets for researchers to push the research frontiers.

However, challenges still exist in identifying fish species from images and videos. In

this domain, images obtained here are largely noisy and are affected by illumination.

Furthermore, camouflage and presence of multiple objects in a frame affect segmenta-

tion and subsequent localization of the object of interest. Hence, successful techniques

rely heavily on preprocessing to achieve good results [110, 24, 103, 18].

In this regard, we investigate the performance of deep convolutional neural network in

the context of noisy images. We hypothesize that deep learning-based methods perfor-

mance will deteriorate when lacking clean well-labeled set of images. To demonstrate

this, we build an experimental framework to evaluate the performance of deep models

using a challenging and complex set of images provided by Kaggle10.

4.3.1 Experimental Framework

This section describes the techniques used in the study. Details of CNN architecture

and model initialization are also discussed.

VGG Model

VGG networks were proposed by the Oxford Visual Geometry Group (VGG) [164].

These networks are 11, 13, 16 and 19 layers deep, also known as VGG-11, VGG-13,

VGG-16 and VGG-19. These models ranked first and second place in the Imagenet

classification challenge in 2014. The models are one of the most widely used CNN

models in image classification today. For this experiment, we considered an untrained

VGG-16 network. The model contains five blocks of 13 convolution layers and three

fully connected layers. It makes use of a filter size of three for all convolution layers.

It also employs a max-pooling layer between successive convolution blocks with a unit

8https://www.kaggle.com
9http://www.imageclef.org/lifeclef/2016/sea

10https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring
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stride for downsampling. The three fully connected layers contains 4096, 4096 and

1000 ReLu activated units respectively(see [164] for details). The VGG-16 network

architecture is shown in Figure 4.2.

Figure 4.2: VGG-16 architecture

Given that the dataset used has only eight categories, the final layer was replaced with

an 8 way soft-max classifier to suit experiment.

Transfer Learning

The second approach used was proposed by applying transfer learning to the VGG-

16 model from a pre-trained network on Imagenet. Transfer learning attempts to

reproduce similar results from experience on a previous task. Transfer learning enables

a new model to inherit learned parameters from a model trained on another task. This

has proved to be effective where training images are scarce [54, 193]. The intuition

behind this is to have a model that has already converged for comparison purposes.

Model architecture is the same as the one in 4.3.1 but its weights and biases were

initialized from learned parameter after training on Imagenet dataset. The motivation

behind using transfer learning is that given the size of the dataset, we try to fine-tune
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the network as against learning new features from scratch with the hope that better

results could be achieved.

The Fish Datasets

In this experiment, we used a dataset of images provided by Kaggle11. It contains 3777

images of fishes. The fish categories include Albacore tuna, Bigeye tuna, Yellowfin tuna,

Dolphin, Lampris guttatus, Sharks, other categories and images with no Fish, labeled

as ALB, BET, YFT, LAG, DOL, SHARK, OTHER and NoF. It is worth pointing out

that these images were extracted from video footage of fishing boats. Fish detection

in these images is challenging even to humans. Light variation in images, presence

of multiple objects, pulse variation and partial occlusion, makes fish recognition very

challenging. A sample image from this dataset is shown in Figure 4.3a. Again, there

is a significant class imbalance among fish classes with almost 70% of the samples in

ALB and YTF classes.

(a) Original Image. (b) Annotated Image.

(c) Original + Noise Image. (d) Annotated + Noise Image.

Figure 4.3: Sample fish images used in training.

A second dataset was generated from the original images by annotating all the images

using Sloth12. The new dataset contains 3777 fish images. Annotation was done by

11https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring
12http://sloth.readthedocs.io/en/latest/
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Figure 4.4: Distribution of fish images in the different datasets.

isolating individual fish instances from an image using a bounding box. The bounding

box was made big enough to accommodate the fishes and incorporate other surround-

ing objects to maintain variability in the training set. Annotated instances contain a

complete fish with head and tail visible or partially occluded head or tail but not both.

It was observed that images are very similar in terms of the environment but differ

with object view angles, light variation and times with shadows. These differences

were considered visible enough to distinguish adjacent image frames as such no further

cleaning was required. Figure 4.3b shows the result of this process.

A third dataset was created from the previous datasets. Images were generated from

both the original and annotated images. The motive behind this is to address the

biased nature of image distribution among classes. We also intend to achieve optimum

model performance with more data. The new dataset contains 12,275 images across 8

categories. These images were synthesized by applying random noise and affine trans-

form. Images were distorted using varying degree of rotation angles (between 15 and

105 degrees) and noise intensities. This is similar to the work done by Dostovistkiy in

[50] to generate training samples. This is to create enough distortion to generate dis-

tinct images from the originals. The result is shown in figure 4.3c and 4.3d. Figure 4.4

shows the distribution of samples in every class in all the datasets and a summary of

the datasets is presented in Table 4.1.
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Table 4.1: Summary of the fish datasets used.

Dataset Number of Images Noise Affine

Original 3777 7 7

Annotated 3777 7 7

Original+Noise 12275 3 3

Annotated+Noise 12275 3 3

Model Initializations and Settings

Experiments were ran on NVIDIA DGX-1 machine13. Full advantage of the multiple

GPU system was taken and this significantly reduced training and test time. The

models were implemented using Keras14 with tensorflow15 back end. Before training

was initiated, all images were resized to 224 by 224. This is to accommodate them in

the VGG-16 model. Each model was trained using all datasets described above. At the

beginning of training, images were shuffled, then split into test and train with 75% of

data used for training and the remaining 25% of data for testing. Experiment on VGG-

16 was carried out using a learning rate of 10-2 over 16 epochs and training was done

using stochastic gradient descent with a batch size of 32. A weight decay was chosen as

a ratio of learning rate to number of epochs and a momentum of 0.9 was maintained.

The settings were to ensure faster convergence of models. Dataset normalization was

applied by simply dividing each pixel by 255 for both training and test set whereas

the original VGG-16 experiment normalized by subtracting the mean pixel value from

each pixel. This does not affect model accuracy but training time. We also differ in the

choice of weight decay because subsequent experiments revealed that a dynamic weight

decay works better than a statically chosen one. Training batch size was significantly

lower than the one proposed in VGG-16 because the problem has significantly smaller

dataset. Moreover, with smaller batch size shorter gradient updates can be realized.

Apart from resizing, no further preprocessing was applied. During testing, we did not

employ random crop or other methods as in [164], images were resized and the network

was allowed to freely process the images.

Initial training settings for VGG-16 model were maintained for transfer learning as

well. However, all the layers of the pre-trained model were fine tuned. No layer was

fixed, hence the model was allowed the freedom to update parameter values for better

performance similar to the methodology in [160]. In terms of training complexity, the

model can be trained in under an hour with on 8 16GB GPUs. The dataset is small

13http://www.nvidia.com/object/deep-learning-system.html
14https://keras.io/
15https://www.tensorflow.org/
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and fits into memory with out any loss in performance and training was stopped as the

loss approaches zero in the final epoch.

Performance Evaluation

Log loss and accuracy metrics were used to evaluate the models. Multi-class logarithmic

loss is shown in equation (4.1) below;

logloss = − 1

N

N∑
i=1

M∑
j=1

yijlog(pij) (4.1)

Where N and M represents the size of the sample and categories respectively, yij is the

correct prediction of sample i being in category j, and pij is the estimated probability

that the sample i belongs to the class j. Logarithm loss penalizes the accuracy of

the classifiers on false positives. Probabilities were obtained as predictions from the

soft-max layer in the networks. Table 4.2 below shows the log loss summary of the

experiments conducted.

Table 4.2: Log loss of models.

Model Original Annotated Original+Noise Annotated+Noise

VGG-16 0.54 1.20 0.12 0.38
VGG-16(transfer) 18.45 27.88 0.10 30.61

The accuracy of a classifier is the ratio of number of correct prediction from sample to

the total number of samples to be predicted. Accuracy is represented as follows.

accuracy =
number of correct predictions

total number of all cases to be predicted
∗ 100 (4.2)

Table 4.3 shows test accuracy of models.

Table 4.3: Test accuracy of models on different fish datasets.

Model Original Annotated Original+Noise Annotated+Noise

VGG-16 97.20% 90.17% 99.38% 98.00%
VGG-16(transfer) 86.60% 79.81% 99.54% 77.80%

High accuracy of models was observed during testing on original dataset. This could

be attributed partly to the fact that images were obtained from fishing boat cameras.

In a still camera with 24 frames per second set up, not much difference exists between

adjacent frames. Although the object view angles and illumination may vary. Again,
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closely looking at the feature maps from the network layers revealed that prominent

background objects also contributed to this. Learning was tuned towards these objects

as against the fish instances. This can be seen clearly in the cross section of feature

maps from the first and fourth convolutional layers in the Figure 4.5.

(a) Convolution Layer 1. (b) Convolution Layer 4.

Figure 4.5: Feature maps from original images.

This effect became more obvious as we go deeper into the network. When training is

done on these noisy images, it over-fits on stationary objects that re-appear in images.

This adds to the high accuracies recorded. However, these effects were minimal in the

experiment with annotated dataset. Fish instances dominate images and this suggests

that learning is based on object of interest. Fish parts are visible through the feature

maps even as we go deeper into the network. A cross section of feature maps from the

first and fourth convolutional layers is shown in Figure 4.6.

(a) Convolution Layer 1. (b) Convolution Layer 4.

Figure 4.6: Feature Maps from annotated fish images.

The imbalanced classes in the dataset also contributed to unexpected model results. We

attempt to address this challenge through simple augmentation when generating more
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data for the experiment. Hence, large margin between classes was checked to reduce the

variance. Test results shows higher recall when more training data is available. Initial

experiments with annotated data performed poorly than the original dataset but we

observed increase in performance when more training examples become available. A

summary of sensitivity analysis of VGG-16 model (untrained) on the datasets is shown

in Table 4.4. Experiments on the new dataset showed significant increase in accuracy

by both models but did not reduce the effects observed. However, transfer learning

model log loss was far worse than expected. This could be associated with its strong

confidence in false classifications. Another reason could be the variation between images

used and the Imagenet images. Transfer learning works best when the two datasets are

closely similar.

Table 4.4: Summary of VGG-16 model performance.

Dataset Precision Recall F1-score

Original 0.82 0.82 0.81
Annotated 0.43 0.54 0.47
Original+Noise 0.92 0.91 0.91
Annotated+Noise 0.96 0.96 0.96

Furthermore, the results show that in noisy images, the network learns general features

that are common to all objects in the images. We observed that features from these

noisy-prominent objects become more dominant as we go deeper into the network. As

such, they prevent the network from learning specific fish features required for cate-

gory classification. With well-annotated images, the network learns deep features that

are category specific and for correct classification; however, the size of the dataset and

class-imbalance problem created more challenges. Transfer learning is an emerging area

in deep learning that has established its presence in recent literature and has shown

stringent results. But in this study, transfer learning from a pre-trained model on Ima-

genet was not effective. Learned features are transferable, but a closely related dataset

could have produced better results. These results further solidifies that optimum per-

formances are obtained when careful annotation of images is carried out. Manually

annotating a massive dataset is challenging and automatic annotation requires labels

agnostic techniques or other techniques such as segmentation and objectness approaches

to achieve good results.
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4.4 Conclusion

In this chapter, an experimental framework was developed to analyze the performance

of deep learning models on a poorly annotated dataset. We investigated the perfor-

mance of VGG-16 model on a fish classification challenge. Results obtained showed that

the model performed below expectations on a poorly annotated data. Again, trans-

fer learning and simple augmentation techniques were not effective in this particular

domain. Two challenges in this scenario were identified. Firstly, the problem of the

class-imbalance among the different fish categories. Training deep models on a biased

dataset also contributed to the undesired performances. Secondly, the problem of lack

of enough labeled examples. Deep models are not data efficient; hence, a huge amount

of annotated instances are required to achieve good performance. This demonstrates

the reliance of deep models on a carefully annotated dataset for the optimal solution

to be obtained. The subsequent chapters propose alternative ways of handling the

challenges highlighted.
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Chapter 5

Few Shot Classifier GAN

In this chapter, we propose a new method to train a classification model using minimal

number of labels. The chapter describes a novel GAN model called Few Shot Clas-

sifier GAN (FSC-GAN). FSC-GAN is capable of generating images while training a

classifier alongside an adversarial objective. FSC-GAN extends label conditioning in

GAN by training on multiple fake classes using both labeled and unlabeled data. The

results appeared as part of the proceeding of International Joint Conference on Neural

Networks (IJCNN 2018).

5.1 Overview

Image classification [190] is a challenging task requiring a large amount of labeled

dataset to train accurate models at optimal performance. With the advent of deep

learning technologies, there is a huge demand in obtaining massive labeled dataset [99,

76]. One major limitation is that massively annotating labels is a labour-intensive

task [21]. Augmenting with synthetic data is an alternative strategy to bypass the

unavailability of labeled training data. Unfortunately, such models trained only on

synthesized data largely underperform.

In this chapter, we are interested in performing classification with limited labeled data

because when only a small labeled samples can be acquired, unlabeled data could also

be considered. Also, we are motivated to achieve co-generation and co-classification, in

the sense that the generation will improve the classification and the classification will

improve the generation cooperatively.
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(a) GAN (b) C-GAN (c) S-GAN (d) AC-GAN (e) FSC-GAN

Figure 5.1: Comparing existing GAN architectures with FSC-GAN model.

Our work falls into the general problem domain of data labeling [153]. In particu-

lar, fine-grained classification [74] is an important problem with practical applications.

Despite much recent progress, it remains a challenge to generalize classification and

generation with lack of labeled data. Our key observation is that incorporating more

fake classes plays an important role in training the GAN model at a finer-grained level,

which may improve overall performance. In this chapter, we present a step towards

fine-grained few-shot classification with the Generative Adversarial Networks. In con-

trast to the state-of-the-art, our GAN is more versatile and less restrictive in terms of

input and output.

The core idea is to carefully fuse supervised and unsupervised learning via switchers

within the connections of the GAN. Therefore, the GAN can be fed with labeled or

unlabeled input data. Our proposed method classifies real samples into real classes

and then isolate fake samples into their respective unknown fake classes. We solve

this problem by leveraging fine-grained classification thanks to two mechanisms, fake

class embedding and multiple fake classes. Drawing inspiration from AC-GAN [140]

and semi-supervised GAN (SGAN) [138], our key idea is to associate classes with new

samples by conditioning generation on class embedding. In contrast to previous work,

our method seeks to classify real samples into predefined classes and further isolate fake

samples into their respective fake classes, taking benefit of semi-supervised learning to

improve the classifier accuracy.

In this work, the technical contribution is a novel GAN architecture taking as input

labeled and unlabeled training data and performing fine-grained classification thanks

to a multiple fake classes strategy. Our method is designed to handle image generation
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losses and unconditional generation when unlabeled data are used during training. To

the best of our knowledge, our model is the only one able to achieve fine-grained classi-

fication along image generation compared to other GANs in Table 5.1. We demonstrate

the effectiveness of our system by evaluating our solution on publicly available datasets.

5.2 Why Few Shot Classifier GAN?

Automatic data labelling techniques have been proposed in [12] and [30]. The con-

struction of a fully labeled dataset is supported by learning methods such as semi-

supervised [92], one-shot [178] and active learning [39]. In particular, semi-supervised

learning combines labeled with unlabeled data. Data augmentation [50] is an alterna-

tive strategy to bypass the absence of sufficient labeled training data by transforming

original samples. Finally, data synthesis generates artificial data by training models ex-

clusively on synthesized data [25, 162]. Naturally, the intuitive zero-sum game principle

of GANs is an appealing strategy for data labeling.

Table 5.1 outlines the properties of various GANs related to this work. The first Vanilla

GAN [63] introduces the Kullback-Leibler divergence as a distance-based distribution

similarity to produce highly-detailed images.

Model Supervised Unsupervised Few labels Multi fake classes

Vanilla GAN [63] 7 X 7 7

S-GAN [138] X X 7 7

AC-GAN [140] X X 7 7

C-GAN [126] X 7 7 7

CatGAN [169] X X X 7

CC-GAN [46] X X X 7

SS-GAN [170] X X X 7

TAC-GAN [41] X X 7 7

Few-shot GAN X X X X

Table 5.1: Comparing the properties of few-shot GAN with existing GAN models.

GAN has a lot of applications targeted for images processing, such as image data

augmentation [137], high-resolution image generation [89], image reconstruction [156],

text-2-image generation [150], natural image generation [47]. Moreover, various GAN

architectures have been proposed for classification [140], semi-supervised labeling [138]

and other domains [48, 47].

Nevertheless, tailoring GANs for classification is a tedious task [40]. Vanilla GAN [63]

is an unsupervised adversarial model that allows only a scalar output representing if a
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sample is real/fake. Therefore, no classification can be performed by the discriminator

of Vanilla GAN since this model only accepts unlabeled data as input. Our method

differs by performing generation in conjunction with classification. However, Condi-

tional GAN [126] generates data conditioned on class labels via label embeddings in

both discriminator and generator. Similar to Categorical GAN [169] (CatGAN), our

method integrates a classification loss function to learn a classifier from unlabeled or

partially labeled data.

Conditioning on labels brings to light the possibility of semi-supervised classification

using GANs by forcing the discriminator network to output class labels. In semi-

supervised GANs [138] (SGAN), the training is realized by combining a single fake class

with known classes. This additional fake class is required to categorize samples from

the generator. In our approach, we combine conditioning and embedding to cope with

the well-known limitation of semi-supervised GANs, namely being unable to handle

unlabeled data. Auxiliary Classifier GAN (AC-GAN) [140] is also conditioned on the

class labels to generate visually plausible images. Our work is close to the AC-GAN in

the sense that we exploit label conditioning. However, our few-shot classifier GAN is

not restricted to outputting a single class label for every sample.

Contrary to AC-GAN and CGAN that only rely on full labeled datasets, our model

can perform conditional generation for labeled data and unconditional generation of

unlabeled data. The model is adapted to output class labels even for fake images.

Our model is also auxiliary because we output a numeric value deciding if the image

is real or fake and further classify them into multiple fake/real classes. Compared

to all GANs in Table 5.1, our model is the only model able to perform fine-grained

classification along image generation so far, even if the expected class is not provided

for training. We leverage this fine-grained property by injecting multiple fake classes

with embedding. Moreover, the key difference of our approach against AC-GAN and

SGAN is that our classification is not limited to real classes. Our approach combines

supervised and unsupervised learning to handle both unlabeled and labeled data.

5.3 Formulating FSC-GAN

5.3.1 Fake Class Encoding

“Real” refers to label or images provided as part of the training set, while “fake” refers

to generated label or images. The set of real labels C = {0, · · · , N − 1} for the N

classes are extracted from the training data (indexed from 0 to 9 for digits). For each
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class c in the training data, a corresponding fake class label c+ is added automati-

cally as described in the following procedure. The index of each digit is converted

into a one-hot encoding vector. Then, we generate a set of fake class labels C+ by ac-

commodating a longer vector representation. The one-hot encoding of the real classes

is padded with |C| zeros shifted to the right. From this one-hot representation, the

corresponding fake class is generated by padding zeros at the left of the real label.

For example, if the real label 0 is encoded over |C| bits as 1000000000, we now rep-

resent this class by 10000000000000000000. Then, the corresponding fake label is

00000000001000000000. The resulting set of all labels is denoted C∗ = C ∪ C+.

5.3.2 FSC-GAN Objective

Our Few-shot Classifier GAN consists of two convolutional neural networks competing

against each other: a generator model G and a discriminator model D, where the

discriminator tries to classify real objects and objects synthesized by the generator,

and the generator attempts to confuse the discriminator. This model is designed to

classify real and fake samples. This optimization problem requires a min-max solution

obtained by solving the overall functional:

min
D

max
G

Vfshot (D,G) (5.1)

where D and G mimic a two-players min-max game with value function Vfshot (D,G).

Then, the optimal solution is reached when both models can not make a significant

gain over its opponent.

Similar to classical AC-GAN, the generator G takes as input a random noise vector

z ∈ Rd where d is the vector size and c is a label when the corresponding class is

available. In the absence of class labels in the training set, G takes only z as input. G

is trained to be an image producer aiming to generate sampled images expected to lie

within the distribution of the training data. The classifier is incorporated within the

discriminator model D to produce better samples. Then, D is trained to discriminate

between image generated by G against real training images.

The value function Vfshot (D,G) is defined as a piecewise function acting as a network

switcher, as follows:

Vfshot(D,G) =

C̃∗ = {∅} : Vgan (D,G)

C̃∗ 6= {∅} : Vacgan (D,G)
(5.2)
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(a) Discriminator (b) Generator

Figure 5.2: The Few-shot Classifier GAN generated images by transpose convolution to avoid
up-sample resizing. Both diagrams show the arrangement of layers for the architecture of the
Discriminator and the Generator. The discriminator produces two outputs: a classifier output
determining the class, and an output determining the type of image (real or fake).

where C̃∗ is the class labels set involved in the current batch and Vgan (D,G) is

the expected value of the unconditioned probabilities over D and G. Alternatively,

Vacgan (D,G) is the expected value of the conditioned probabilities over D and G de-

pending on labels for classification. The network switcher Vfshot enforces the GAN

model to perform unconditional discrimination (Vgan) in the absence of labels and to

perform conditional discrimination (Vacgan) when labels are available.

Vgan (D,G) = Ex∼pdata(x)[logD (x)] + Ez∼pz(z)[log (1−D (G (z)))] (5.3)

where the prior distribution is denoted by pz and z is the set of prior noise drawn from

a uniform distribution. The generator samples the latent representation variable z only

to generate images. Subsequently, Vacgan is activated when G and D are conditioned

with the class labels set C∗ during training.

Vacgan (D,G) = Ls + Lc (5.4)

where Ls and Lc respectively denotes the log-likelihood of the expected sampling and

classification. Formally, the sampling loss Ls and the classification loss Lc write as:

Ls = E[logP (S = real|Xreal)] + E[logP (S = fake|Xfake)] (5.5)

Lc = E[logP (C = c|Xreal)] + E[logP (C = c|Xfake)] (5.6)
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The discriminator D(X) = (P (S|X) , P (C|X)) isolates fake versus real samples and

then performs the classification of all samples whether real or fake. P (S|X) is a prob-

ability distribution over samples and P (C|X) is probability distribution over labels.

Xfake = G(c, z) is a batch of generated images and Xreal is a batch of real images used

to train the discriminator D. In the presence of labels, sampling is conditioned on class

labels C and the model considers both sampling and classification losses. Our GAN

has two sets of outputs: a scalar determining if the image is real or fake and a set of

discrete values representing the labels corresponding to real or fake samples.

5.3.3 Network Switcher

We inject the network switcher inside our deep neural architecture to manage multiple

learning strategies by forcing the learning to switch to the desired mode for the training.

This solution is better than trivially switching between two different models (namely,

AC-GAN and GAN) by avoiding duplication of generators and discriminators. In par-

ticular, this binary switcher creates an algorithm branch within the computational

graph to switch to supervised or unsupervised training. This network switcher is ex-

pressed as an exclusive OR operator (XOR) ensuring that the learning strategy fits the

nature of the given batch. As shown in the Figure 5.1, the switcher is depicted using

the ⊗ operator.

5.3.4 G and D Black Boxes

Our few-shot classifier GAN is a deep convolutional GANs to produce better visual

quality samples. The Generator and Discriminator are both expressed as deep convo-

lutional neural networks with a fixed number of layers, leaky Relu1 activation functions

and hyper-parameters. We tune the hyper-parameters and the number of layers to fit

the desired image resolution. Figure 5.2 depicts the inner architecture of the generator

and the discriminator.

In the generator G, we use a series of transpose convolutions with varying strides to

upsample images at the desired resolution. The first two layers of the generator are

fully connected with no in-between batch normalization. The outputs of the second

layer are reshaped into an 7×7 image with 128 channels. The third layer is a transpose

convolution using a single stride and outputs a 7 × 7 image with 256 channels. The

forth layer is a transpose convolution with a stride of 2 outputting a 14 × 14 image

1https://keras.io/layers/advanced-activations/
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with 128 channels. Finally, the final layer uses a transpose convolution outputting an

28× 28 image with a single channel.

The discriminator D is a conventional CNN down-sampling image batches into a fea-

ture vector representation suitable for classification. The discriminator is composed of

four convolution layers with strides of 2 in each layer. We use batch normalization be-

tween layers to accelerate the convergence, excepting in the final layer. The subsequent

layers are two parallel linear layers: a classification output and a GAN output. The

classification layer returns logits while the GAN layer returns the sigmoid activated

output (fake or real).

5.3.5 Dual Training

The training procedure is summarized in the provided pseudo-code (Algorithm 1).

The procedure described in Algorithm 1 takes as input data and label batches. Each

batch is tailored with a given ratio of labeled to unlabeled data. The training process

is performed by alternating between supervised and unsupervised training since the

number of labeled samples may differ in training.

In Algorithm 1 the number of epochs is e = 500. The inner loops among labeled and

unlabeled samples are balanced to guarantee the stability of the loss function. The

first loop (k steps) iterates over labeled data only by performing stochastic gradient

descent over the discriminator and generator via the discriminator. This loop evaluates

the sampling and classification losses functions (line 6). The overall loss is updated at

the end of each iteration within the inner loop. Similarly, the second loop (j steps)

iterates over unlabeled data, but only sampling loss is evaluated before updating the

overall loss. The number of iterations k and j depends proportionally on the ratio of

labeled and unlabeled data to produce an importance-based sampling. However, if the

training dataset is balanced then k equals j.

When training with labeled data, the discriminator D is trained to maximize Ls + Lc

while the generator G is trained to maximize the entropy between Ls and Lc. Our

discriminator is trained with image batches from G and the original training data.

When labels are not available both D and G are trained using Vgan.

5.4 Learning from Fewer Examples

An extensive experimental analysis is conducted to evaluate the accuracy of the pro-

posed model with multiple fake classes. The proposed GAN architecture is used to
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Algorithm 1 Training Algorithm

1: procedure train(data batches, label batches)
2: for e epochs do
3: for k steps do
4: Fetch next labeled mini batches
5: Perform Stochastic Gradient Descent on D
6: Perform Stochastic Gradient Descent on G
7: Evaluate(Ls,Lc)
8: Update D and G losses
9: end for

10: for j steps do
11: Fetch next unlabeled data mini batches
12: Perform Stochastic Gradient Descent on D
13: Perform Stochastic Gradient Descent on G
14: Evaluate(Vgan)
15: Update D and G losses
16: end for
17: end for
18: end procedure

perform all experiments in which the ratio of unlabeled and labeled samples is varied

during the training process. Experiments were ran in a NVIDIA DGX-1 supercomputer

with multiple GPUs using the TensorFlow framework. Finally, performances of the

proposed model are reported in terms of accuracy for a variety of training configura-

tions.

5.4.1 Dataset Tuning

We run our experiments over two state-of-the art datasets of images, namely the MNIST

dataset [105] and the SVHN dataset [134]. These datasets were selected because no

pre-processing is required. Unlabeled data are derived from the datasets by neglecting

provided labels.

The MNIST dataset is large database composed of a train set (60000 images) and a

test set (10000 images) with size-normalized, centered, fixed-size and single-channel

images representing handwritten digits. Each digit has its corresponding label. In our

experiments, the train and the validation sets are fused to create a new training set to

evaluate our GAN. Using this dataset, our experiments based on varying the number

of unlabeled samples start by considering all labels from the training set. Then, the

number of labeled samples is decreased by 10k at each run until the lower bound of 50k

unlabeled and 10k labeled samples is reached.
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The Street View House Numbers (SVHN) dataset is significantly harder and more

challenging. The SVHN is a real-world dataset (73k train set and a 26k test set)

composed of three-channels noisy images of house numbers obtained from Google Street

View. The class distribution in the training set varies between 5k to 13k instance per

class. Using this dataset, our experiments start with 73k fully-labeled samples and the

testing is performed only on 10k randomly-selected samples from the test set. The

unlabeled set is enriched with 10k samples selected from the train set at each pass until

the lower bound of 60k unlabeled samples is reached.

5.4.2 Setup and Parameters

We have implemented our approach using TensorFlow [1]. We use 10 million trainable

parameters for MNIST and 30 million trainable parameters for SVHN. We bypass the

imbalanced data problem by collecting an equal number of labeled samples from each

class when designing our training dataset for our labeled-to-unlabeled experiments.

Even if the size of labeled samples set decreases, it is worth noting that the size of the

training set remains unmodified along the experiments. However, the training set is

extended with fake classes for multiple fake class experiments. During the testing phase,

the learned classifier is evaluated over 10k samples from hold out real test samples.

A batch size of 32 is used for all datasets and all experiments. We normalize all input

before the training. We use the classical Adam Optimizer [91] with a learning rate of

10-3 for the gradient descent optimization of the generator and the discriminator. Also,

we consider a prior vector of 100 dimensions from the uniform distribution. Since grid

search is computationally expensive with these hyper-parameters, random search was

used to determine the appropriate values.

5.4.3 Performance Evaluation

We evaluated the accuracy of the output obtained by our learned classifier with multiple

fake classes in comparison with the output produced by our learned classifier with only

a single fake. The evaluation metric we employ to measure the accuracy of the trained

classifier is defined as the total number of correctly classified test samples divided by

the overall number of test samples.

We reported the quantitative results for this accuracy in Table 5.2 and 5.3 for exper-

iments conducted over 10k test samples by varying number of class labels during the

training. Sample images are collected at the end of the overall training. We depict gen-

erated images from training on MNIST and SVHN with 50k and 60k unlabeled data
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Figure 5.3: For the digit 0, we display the output of our proposed GAN without fake classes
(first row). The second row represents the output obtained while considering a single fake. Then,
we increase the number of fake classes for all other following rows (top to bottom). Visual results
show that the pixel corruptions grow proportionally when multiple fake classes are considered
during the training.
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Accuracy for MNIST Accuracy for SVHN

Figure 5.4: We plot the accuracy of our Few-shot Classifier GAN as a function of the number
of unlabeled samples. For this test, we trained our GAN with semi-supervised learning over the
MNIST and SVHN datasets. The multiple fake classes mode outperforms the single fake class
mode in presence of 70% of the data are unlabeled.

respectively in Figure 5.5. The performance of our Few-shot CGAN is summarized in

Figure 5.4.

Table 5.2: We report the precision accuracy of semi-supervised learning applied on the MNIST
dataset with different configurations of fake classes on 10k hold out samples.

Unlabeled Samples Single Fake Class Multiple Fake classes

0 98.84 98.35
10k 98.63 98.36
20k 98.56 98.46
30k 98.51 98.34
40k 98.08 98.20
50k 96.33 96.84

Further experiments were conducted by varying the number of fake classes from 0 to

N (where N is the total number of real classes) to examine how fake classes affect

the generation of images. For this experiment, the GAN is re-trained from scratch

using biased sampling. Figure 5.3 shows the effect on the quality of image generation

when the number of fake classes increases. Samples are collected when the training is

completed.
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5.5 Discussion

We observe that the accuracy drops when the number of labeled samples decreases in

training for both SVHN and MNIST. A wider margin is observed during experiments

with the SVHN dataset because of the challenging characteristics of this specific dataset.

For both datasets, our Few-shot GAN outperforms the classification process in multiple

fake classes mode with the presence of fully labeled data. Also, our Few-shot GAN

performs better in multiple fake classes mode than in single fake class mode, when

70% of the data are unlabeled. Our Few-shot GAN performs significantly better on

SVHN dataset (by a factor 10) when 60k unlabeled samples are used.

Table 5.3: We report the precision accuracy of semi-supervised learning applied on the SVHN
dataset with different configurations of fake classes on 10k hold out samples.

Unlabeled Samples Single Fake Class Multiple Fake classes P-values

0 82.55 80.76 0.989
10k 84.90 79.07 0.9596
20k 83.67 79.49 0.9661
30k 83.68 78.11 0.9455
40k 83.34 76.38 0.9137
50K 83.30 74.25 0.8482
60k 63.11 73.10 0.3936

Unfortunately, generated samples exhibit visual artifacts when our GAN is used in

the multiple fake class mode. Visual qualitative results show that the quantity of vi-

sual artifacts grows proportionally when multiple fake classes are considered during the

training. Moreover, we notice the apparition of artifacts when unlabeled samples be-

come dominant over labeled samples and when the GAN relies less on the classification

loss. Better performances are also observed when the classifier is trained on not too

good and not too poor samples as demonstrated by the model performances. That is,

despite the fact that the model did not generate exceptionally good data, the classifier

was able to learn from the poor fake samples. This finding is similar to the conclusions

in [40]. Finally, we observe that bias sampling does not significantly improve the qual-

ity of generated samples. We suggest to devise a deeper architecture or training with

more epochs to solve this problem.

Again, the p-values presented does not suggest any statistical significance between single

and multiple fake classes. Since the p−values presented are larger than 0.05 therefore,

we fail to reject the null hypothesis. This implies that the two versions of FSC-GAN

are not significantly different based on the p-values. That said, the p-values only gives
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Original sample Generated sample (single fake
class)

Generated sample (multiple
fake classes)

Figure 5.5: The first row contains MNIST samples and the second row contains SVHN sam-
ples. On the left-hand side, we display real image samples from the training data, samples from
training with a single fake class are displayed in the middle. Finally, we display generated sam-
ple images when trained with multiple fake classes on the right-hand side. Generated samples
are obtained from 50k and 60k unlabeled training data on MNIST and SVHN respectively.

information about the learned classifier and does not reflect the performance of the

generator or the discriminator model in this context. Thus, p-values do not inform the

discussion around whether the correct distribution was learned or whether the model

generated good quality samples which are the key aspects of generative modelling.

Moreover, the target of the experiment is to show that FSC-GAN set-up is stable and

can be used to learn a good classifier model in the absence of enough labels.

Acquiring labels at scale is currently done manually. In few-shot context where we lack

labeled training data, classifying images and labelling data is still a tough problem. In

this work, we focused on the design of a novel adversarial architecture incorporating

latent label embedding, network switchers and multiple fake classes to to train a clas-

sifier. One of the greatest appeals of our approach is its label-agnostic property. Also,

FSC-GAN supports a wide range of strategies from fully supervised, semi-supervised
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to weakly supervised learning that was not possible with other alternative GAN previ-

ously.

In contrast to other fine-grained classification techniques, our method takes advantage

of the generator to trick the discriminator into classifying generated data along with

their labels whatever the input is. We leverage this property by exploiting the contin-

uum of the known labelling space. One of the central differences is that we do not learn

how to represent real labeled data only but also how to learn powerful representations

from unlabeled data. The most important aspect of our FSC-GAN is its capability to

output unknown sub-categories (namely the fake classes).

As a result, our proposed GAN is a useful tool to learn a stable classification in the pres-

ence of few labeled examples mixed with a significant amount of unlabeled examples.

An important advantage of our method is that it can switch between full supervised

learning and semi-supervised learning thanks to the network switchers. Moreover, our

evaluation confirms that discriminated samples improve the overall accuracy when the

dataset lacks labeled samples. In most cases, our work suggests that the proposed

approach performs similarly to traditional GAN in the presence of a sufficient amount

labels and provides better results in the absence of labeled samples during the training

phase. The main limitation of our technique is that the generated sample quality could

be affected when multiple fake classes are used.

5.6 Conclusions

In conclusion, this chapter proposed a new GAN model (FSC-GAN) and a new method

to train supervised GANs with small labeled training data. FSC-GAN is able to gen-

erate images and train a deep classification model alongside. The model uses multiple

fake classes, network switchers and fine-grain classification idea to achieve the task.

This model provides valuable insights into the fine-grained classification problem, and

opens a new horizon to perform deep learning with less amount of data. That said,

FSC-GAN suffers from three major limitations.

The first challenge is the quality of the generated images. The images produced with

FSC-GAN have artifact and may not be usable as an alternatives source of labeled

training data for other processes such as data augmentation. For these to be achieved,

there is neeed for FSC-GAN to generate better quality samples that will match the real

samples in the training data. An important advancement toward this direction would

be a new family of fake loss functions optimized for human visual perception. That

is the genrated samples should be visually indistinguishable from the real data by the
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naked eye.

Secondly, the model takes prolonged epochs to converge. The model proposed needed

to be trained for a long periods before it starts producing good samples even on small

datasets like MNIST. Long training time creates complexity in traing and a scaling

problem when the dataset becomes large. This may require widening the hyper-

parameters search and tuning the model further using other optimization techniques

not explored in this chapter.

Thirdly, the model requires a carefully curated training data with fairly balanced classes

to obtain the required results. Experiments that combine labeled and unlabeled data

used ony balanced labeled classes. However, real-world problems data are not always

balanced. Such scenarios could be potential pitfalls for this model. These challenges

identified are addressed in the succeeding chapter.
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Chapter 6

Image Generation and

Classification in

Class-Imbalanced Datasets

In this Chapter, the problem of class-imbalanced data in classification is addressed

using a new GAN model called Multiple Fake Classes GAN (MFC-GAN). We consider a

multi-classification problem where MFC-GAN is applied as an augmentation technique

to synthesize more samples from minority class instances. MFC-GAN is an extension

of FSC-GAN introduced in Chapter 5. MFC-GAN provides a better quality image,

faster convergence time while inheriting all the desirable features of FSC-GAN. The

findings appeared in NeuroComputing Journal (2019).

6.1 Class-Imbalance Problem

The class-imbalance problem arises when the samples in a dataset are dominated by

one class usually the negative class. It is common across different domains such as

security, banking and medicine. This could occur in a binary classification or a multi-

classification task [51]. Models trained on a class-imbalanced data tend to be biased

towards the majority class. Existing approaches address this problem either at the data

level or the algorithm level [97]. Data re-sampling techniques such as undersampling

and oversampling are applied at data level to ensure equal representation of instances

amongst classes. Algorithmic solutions include modifying the learning objective to

ensure equal participation of all classes during training.
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Data augmentation is a common technique employed to synthesize more training data.

Artificial variations are useful in minimizing any bias in data collection and class-

imbalance problem. For instance, in image domain, augmentation techniques used

could range from simple image flips [6], random crops [99], noise [6] distortions to more

advanced techniques like PCA colour augmentation [99] and image-pairing [84]. A

data augmentation technique can be a source of more training data [57] or a regular-

izer [84] thereby improving generalization. These techniques have proved to be effective

in learning from class-imbalanced datasets. However, in extreme class-imbalance cases,

applying augmentation to few samples may not provide the required variations to pro-

duce distinct samples to re-balance the dataset. Furthermore, the problem becomes

compounded in a multi-class problem as the performance of a class may be affected

while trying to improve another [56]. Besides, existing techniques may not necessarily

be useful in deep learning [49].

More recently, Generative Adversarial Networks (GAN) have been used to generate

images with high visual fidelity [89]. Researchers have shown that these images can be

used as extra training data to support other processes such as classification [57, 204]. A

GAN model produces quality samples with the required variations similar to the train-

ing data. Different GAN models have been proposed for data augmentation in previous

works [51, 9, 122, 57, 15]. Also, GAN was used to tackle imbalanced data in a binary

classification problem using non-image data in [51] and used by Antoniou et al. [9] as an

augmentation approach to improve image recognition accuracy. Our approach shares

some similarities with these researches but differs in the sense that we use a different

GAN model in image classification domain. Moreover, we are interested in performing

multiple classification with an imbalanced training data. With scarce minority classes,

image generation can be challenging because a useful augmentation sample needs to be

plausible, diverse and from the required minority class [122, 9].

In summary, resampling methods do not perform well in hugely imbalanced datasets.

Traditional data augmentation methods are still widely used. However, these are lim-

ited and often don not generate enough data variance, especially in extreme cases.

GAN-based methods provide a more realistic solution to generate data samples and

handle class-imbalance (i.e. a multi-modal [9, 122], image-translation [204]). Unlike

these methods, our model is simpler to train and generates specific-class samples even

in extreme cases.
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6.2 Multiple Fake Classes GAN

In this section, we propose Multiple Fake Classes Generative Adversarial Network

(MFC-GAN). MFC-GAN preserves the structure of the minority classes by learning

the correct data distribution and produce unique images whenever it is sampled. We

demonstrate the usefulness of MFC-GAN by addressing class-imbalance problem in a

multi-classification task. MFC-GAN differs from other GAN models that implement a

classifier alongside the discriminator such as S-GAN [138], AC-GAN [140] and similar

frameworks in the sense that we use a multi-fake class GAN model. Multiple fake

class feature was implemented in Few-Shot Classifier GAN (FSC-GAN) in Chapter 5

to generate samples and perform classification. Incorporating more fake classes in the

FSC-GAN resulted in artifacts appearing in generated samples which may hinder using

such samples as candidates for augmentation. MFC-GAN model extends FSC-GAN

idea and demonstrates that artifacts can be reduced significantly by conditioning image

generation on real class labels only and modifying the classification objective. Thus,

fake class labels are only employed when classifying generated images.

Incorporating more fake classes in this context stabilizes training early and generates

plausible samples with fewer epochs. Our argument is that since both minority and

majority classes come from the same distribution, these classes share some common fea-

tures. Hence, features learned from majority classes should aid in learning the minority

classes. Consequently, class conditioned generation will focus the model into sampling

minority classes. Our approach trains MFC-GAN on the imbalanced dataset then gen-

erate and augment synthetic minority class instances to the original training data. A

Convolutional Neural Network (CNN) is then trained on the augmented dataset. We

evaluated our approach using four imbalanced datasets namely; E-MNIST [38] and

created artificial imbalance in MNIST [104], SVHN [134] and CIFAR-10 [98] by re-

ducing the number of samples in specific classes. Significant performance gain was

obtained when MFC-GAN was used as an augmentation model when compared to the

baseline (CNN classification without augmentation) and other common and state-of-

the-art methods (SMOTE [28] and AC-GAN [140]).

Labels are encoded in MFC-GAN in a similar way to FSC-GAN; hence, labels are

prepared using the label encoding described in Chapter 5. To generate class specific

samples, we conditioned MFC-GAN generator using real labels only. Label conditioning

encourages the generator to work towards producing realistic samples and controls the

generation of class-specific samples [138]. When training MFC-GAN, we classify real

images into real classes and generated images into different fake classes. MFC-GAN is

trained with a modified AC-GAN objective. The objective maximises the log-likelihood
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of classifying real samples into real classes C and fake samples into fake classes C ′ as

shown in Equations 6.1, 6.2 and 6.3.

Ls = E[logP (S = real|Xreal)] + E[logP (S = fake|Xfake)] (6.1)

Lcd = E[logP (C = c|Xreal)] + E[logP
(
C ′ = c′|Xfake

)
] (6.2)

Lcg = E[logP (C = c|Xreal)] + E[logP (C = c|Xfake)] (6.3)

Where Ls is used to estimate the sampling loss, which represents the probability of the

sample being real or fake. Lcd and Lcg are used to estimate the classification losses

over the generator and the discriminator. Xreal represents the training data and Xfake

is the set of generated images.

As can be seen in Equation 6.2 and 6.3, MFC-GAN classification objective differs

from what was implemented in AC-GAN and FSC-GAN. Both FSC-GAN and MFC-

GAN discriminators classify generated samples into different fake classes. This prevents

classifying unrealistic samples into real classes by providing fine-grained training to the

model. However, MFC-GAN differs from FSC-GAN in the way the loss function of

the generator is defined as can be seen in Equation 6.3. In other words, in our model,

the generator is penalized according to how far the generated sample is from the real

class label. Notice, that in the FSC-GAN model, the generator model is penalised

according to how far the generated sample is from fake class label. By having this key

difference in our model, we ensure that poor generated samples guarantee higher loss,

which is not necessarily the case in the FSC-GAN settings. This has also promoted

early convergence of the model where MFC-GAN model proved to be able to generate

plausible samples with far fewer epochs than both AC-GAN and FSC-GAN.

Furthermore, for every iteration, Equation 6.2 means that the discriminator classifies

samples as real or fake with the associated class (i.e., real class 1 or fake class 1) while

Equation 6.3 means that with every generator iteration, it tries to classify fake samples

as real classes. As the generator performance improves, only subtle differences exist

between the two sets of images (fake, real) and this acts as a regularizer that penalizes

the discriminator as the model approaches optimal performance. Similar to FSC-GAN,

MFC-GAN is also capable of handling labeled and unlabeled data in training. Depend-

ing on the availability of labels, the network switcher feature [3] enables both models

to alternate between two training modes. This switcher is a piece-wise function that
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AC-GAN FSC-GAN MFC-GAN

Figure 6.1: Comparing MFC-GAN architecture with AC-GAN and FSC-GAN models. C is
a set of labels, z is a random noise vector, G is the generator, D is the discriminator, real
and fake are GAN outputs representing the probability of an image being real or fake, c1, ..cn
are the set of real classes, f1, ..fn and c′1, ..c

′
n are sets of fake classes, Xreal is the original

training images, Xfake is the set of generated images and ⊗ is the network switcher feature that
alternates between labeled and unlabeled training.

oscillates between supervised and unsupervised training. Although, there is a slight

difference in the way classification loss is evaluated (as shown in Equation 6.2). Fig-

ure 6.1 compares the structure of MFC-GAN to FSC-GAN and AC-GAN. With labeled

data, the MFC-GAN discriminator is trained to maximise the sum of Ls and Lcd while

the generator is trained to maximise the difference between Ls and Lcg. In this setup,

the MFC-GAN generator is sampled using a noise vector conditioned on real class la-

bels. In the absence of labels, MFC-GAN is trained using Ls only and behaves like

a vanilla GAN model as shown in Equation 6.4. In the latter case, the generator is

sampled using a noise vector only. Although, in these experiments, this feature was not

exploited. Further comparisons and discussions around there differences can be found

in Section 6.4 and Figure 6.2.

V (D,G) =

C = {∅} : Ls

C 6= {∅} : Ls ± Lc

(6.4)
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6.3 Learning from Imbalanced Data

The architecture of both the discriminator and generator used on MNIST and E-MNIST

were adopted from FSC-GAN, as detailed in Chapter 5. Regarding SVHN and CIFAR-

10 experiments, we used the same architecture as in the original AC-GAN model [140],

and added spectral weight normalization [128] in both generator and discriminator for

both AC-GAN, FSC-GAN and MFC-GAN. This was to ensure a fair comparison.

In order to evaluate the performance of our method, we compared it with AC-GAN [140]

which is one of the best supervised generative models. We also compared our method

with Synthetic Minority Oversampling Technique (SMOTE) [28] which is one of the

most common methods for generating data to handle class-imbalanced datasets. This

was achieved by first training a classifier on the original dataset. This forms a baseline

for comparing performances of the models. Then MFC-GAN, AC-GAN, and SMOTE

were used to generate more samples from the minority classes. The resulting samples

were then augmented into the original dataset and classification was performed again

using CNN. The performance of the CNN on the three different augmented datasets

are then compared and discussed. Algorithm 2 provides a schematic overview of this

experiment.

Algorithm 2 Experimental procedure

procedure Data Augmentation
d← original imbalanced dataset
train:

MFC-GAN(d)
AC-GAN(d)
FSC-GAN(d)

augment:
dmfc ← d+MFC-GANsamples

dsmote ← d+ SMOTEsamples
dacgan ← d+AC-GANsamples

dfscgan ← d+ FSC-GANsamples

classify:
r1 ← CNN(d)
r2 ← CNN(dmfc)
r3 ← CNN(dsmote)
r4 ← CNN(dacgan)
r5 ← CNN(dfscgan)

compare(r1, r2, r3, r4, r5)
end procedure

Furthermore, the fidelity of generated minority samples from MFC-GAN was compared

to state-of-the-art AC-GAN.
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All models were implemented using tensorflow 1.01 and Keras 2.02. SMOTE was

implemented using3. Models were evaluated subjectively based on the plausibility of

samples (i.e. visual inspection) and objectively by assessing the classification perfor-

mance after augmentation.

6.3.1 Datasets

The models were tested using four publicly available datasets. These are, MNIST [104],

E-MNIST [38], SVHN [134] and CIFAR-10 [98] datasets.

MNIST is a dataset of hand-written digits with ten classes (0− 9) consisting of 28× 28

grey-scale images. MNIST has a total of 50k images training set, 10k images for

validation and 10k test images. Both the training and validation sets were merged to

form a more significant training set, and the test set was used as a holdout sample

in classification. MNIST is a balanced dataset, and so we induced imbalance among

its classes by undersampling. Two classes were chosen arbitrarily and their instances

were reduced significantly to mimic a multi-classification imbalance problem. We could

have chosen more but given the size of the dataset, we do not want to inhibit learning

due to the number of training examples. Different experiments were run with adjacent

classes chosen as minority classes in each run. The first run considers 0 and class 1 as

minority, then classes 2 and 3 and so on. In each run only 50 samples in these classes

were used (about 1% of the original). The rest of the classes remained unchanged and

experiments were carried out on the new imbalanced MNIST dataset.

E-MNIST is an extended version of MNIST. The dataset also consists of 28× 28 grey-

scale images with 62 classes (0 − 9, A − Z and a − z). For our experiments, the

byclass grouping was used with 814, 255 samples in total. The dataset consists of

697, 932 training samples and 116, 323 samples for testing. The distribution of samples

across classes in the training data is not balanced; thus, experiments on this dataset

did not require inducing artificial imbalance. E-MNIST contains many classes with a

considerably small number of samples than others with 21 out of 62 classes having less

than 3000 samples. These classes include class G, K, Q, X, Z, c, f, i, j, k, m, o, p, q, s,

u, v, w, x, y & z, where the ten least populated were used in our experiment.

SVHN dataset contains google street view of house numbers across ten categories

(1, 2, 3, 4, 5, 6, 7, 8, 9, 0). This dataset consists of 32 × 32 pixels images with 73k and

26k train and test images set. These images appear noisy with other numbers in the

1https://www.tensorflow.org/
2https://keras.io/
3https://github.com/tgsmith61591/smrt
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background and the dataset is not balanced. Similar to MNIST, we induced artificial

imbalance by considering 50 samples in classes 1 and 2 to form a multi-class imbalance

scenario with the rest of the classes unaltered.

CIFAR-10 dataset is made up of 32 × 32 images of real objects. It has fifty thousand

training images grouped into ten classes namely, Aeroplane, Automobile, Bird, Cat,

Deer, Dogs, Frog, Horse, Ship and Truck. Sample distribution across these classes is

balanced with five thousand samples in each class. We induced artificial imbalance

by considering 50 samples in Aeroplane and Automobile classes. The dataset has ten

thousand test set with one thousand samples from each category. In all the datasets,

the test sets were used as a hold out in evaluating the classification model.

6.3.2 Samples Generation

We perform augmentation by synthesizing more samples.AC-GAN, FSC-GAN and

MFC-GAN were first trained using the imbalanced datasets described in Section 6.3.1.

The three models were then used to generate minority samples, these samples were

then used to augment the original datasets. Samples generated using SMOTE were

produced by repeatedly applying SMOTE to oversample the class of interest as the

minority sample and the rest of classes as the majority sample.

Regarding SVHN and CIFAR-10, the four models MFC-GAN, FSC-GAN, AC-GAN,

and SMOTE were used to generate the class of interest (the minority class). These are

classes 1 and 2 in SVHN and Aeroplane and Automobile classes in CIFAR-10. As for

E-MNIST, we chose classes G,K,Q, f, j, k,m, p, s, y as the class of interest (minority

classes). These were chosen because they have the least number of instance. Every

class in the MNIST dataset was considered a minority class (by undersampling each of

them at different runs).

6.3.3 Image Classification

Our classification model is Convolutional Neural Network (CNN). The CNN used for

MNIST and E-MNIST has three layers with a soft-max activation layer on top. The

first two layers are convolution layers with 3× 3 kernels which are followed by a 2× 2

max-pooling layer. The two layers have a filter map of size 32 and 64 respectively. This

is followed by a fully connected layer with 128 neurons that feeds into the final soft-max

layer (with 10 and 62 output neurons for MNIST and E-MNIST respectively). All layers

are ReLu activated, and a dropout ratio of 0.5 was used in the fully connected layer.

Adadelta optimiser [195] (an extension of Adagrad) was used with default settings and
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weights were initialised using random uniform distribution. The same model was used

in SVHN experiment but with a different input channel and input size to accommodate

the images.

For CIFAR-10 experiment, we increase the number of convolution layers to three (with

channel sizes 32,32 and 64) and reduced the dropout ratio to 0.2. The number of

neurons in the fully connected layer was also increased to 512 and the CNN was trained

with SGD optimizer using learning rate (lr) of 1 × 10−3 and decay of lr/epoch. The

initial experiment trains the CNN on the original imbalanced dataset. Then the model

is trained by augmenting the dataset using one of the approaches considered. Both

CNNs were trained using a batch size of 64 for CIFAR-10 and 100 for the others over

25 epochs and we evaluated on the holdout test sets from each of the datasets described.

The choice of the CNN models above was made to evaluate the proposed method

(MFC-GAN) on generating images of minority classes. This was achieved by first,

classifying the original datasets using CNNs, then classifying the augmented datasets

and comparing the results. In this way, we have an objective measure for the quality

of samples generated by our model and how it compares to other methods. This is in

addition to the subjective evaluation based on the visual inspection of the generated

images.

Original MNIST data FSC-GAN (10k labels) MFC-GAN (10k labels)

Original MNIST data FSC-GAN (all labels) MFC-GAN (all labels)

Figure 6.2: FSC-GAN versus MFC-GAN on MNIST dataset

88



6.4 Quantitative and Qualitative Evaluation

A preliminary experiment comparing MFC-GAN against FSC-GAN [3] was carried out

using the MNIST dataset. This was achieved by reducing the number of labeled in-

stances in the dataset across all classes. Figure 6.2 shows that MFC-GAN generated

better quality samples and considerably reduced the amount of artifacts. The results

also show that MFC-GAN can effectively handle both labeled and unlabeled instances.

It is worth noting that MFC-GAN generates good quality images even in the presence

of a large number of unlabeled instances (50K unlabeled instances, Figure 3.2c). The

training time was also reduced considerably (by a factor of 10) with MFC-GAN pro-

ducing plausible samples at about 50 epochs while FSC-GAN reaches optimum at 500

epochs. The results suggest that MFC-GAN would be a suitable model for augmenta-

tion.

MFC-GAN was also applied to imbalanced datasets to evaluate the quality of generated

samples. The models were initially evaluated subjectively using visual inspection. Fig-

ures 6.4, 6.3, 6.5, 6.6 and 6.7 compare the original images and the generated samples.

The minority classes in MNIST, SVHN, and CIFAR-10 dataset are highlighted using a

red line for the different experiments conducted. For E-MNIST, we report the perfor-

mance from the ten minority classes. Using MFC-GAN model, we were able to generate

the minority classes without artifacts. Thus, the samples are good candidates for aug-

mentation. As can be seen, poor minority class samples were generated by AC-GAN

model and in some cases, it was biased toward the majority class. The classification

performances are reported in tables 6.2, 6.1 and 6.3. Several common evaluation met-

rics were used in the experiments including balanced accuracy, sensitivity, specificity

and Geometric Mean (G-Mean). These metrics were computed as follows:

Sensitivity =
tp

tp+ fn
(6.5)

Specificity =
tn

tn+ fp
(6.6)

G-Mean =
√
Sensitivity × Specificity (6.7)

F1 -score =
2tp

(2tp+ fp+ fn)
(6.8)

BalancedAccuracy =
tp+ tn

2
(6.9)

Prescision =
tp

tp+ fp
(6.10)
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Original E-MNIST sam-
ples

AC-GAN samples MFC-GAN samples

Figure 6.3: Original images (left) with AC-GAN and MFC-GAN generated samples (middle,
right) from E-MNIST dataset with minority class instances highlighted in red.

Original MNIST samples AC-GAN samples MFC-GAN samples

Figure 6.4: Original images (left) with AC-GAN and MFC-GAN generated samples (middle,
right) from MNIST dataset with minority class instances highlighted in red.

where tp stands for true positive, tn denotes true negative, fp and fn denotes false

positive and false negative respectively.

6.5 Discussion

Tables 6.1, 6.2 and 6.3 show that the CNN achieved better performances when it was

trained on the MFC-GAN generated samples. Higher sensitivity, balanced accuracy

and G-Mean demonstrate that the MFC-GAN model was able to generate samples

from minority classes in a multi-classification problem. It has to be pointed out that all

the figures in all tables have been rounded to the nearest two decimal points. Results

also show that MFC-GAN out-performed SMOTE and AC-GAN on all SVHN and

CIFAR-10 minority classes, and in 7 out of 10 E-MNIST and MNIST, minority classes.

The fidelity and diversity of MFC-GAN minority samples made classification easier

for the CNN. The diversity of generated samples indicates no sign of mode collapse in
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Original MNIST samples AC-GAN samples MFC-GAN samples

Original MNIST samples AC-GAN samples MFC-GAN samples

Original MNIST samples AC-GAN samples MFC-GAN samples

Original MNIST samples AC-GAN samples MFC-GAN samples

Figure 6.5: Minority class instances (highlighted in red) in different runs.
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Original SVHN samples AC-GAN samples MFC-GAN samples

Figure 6.6: Original images (left) and generated images from AC-GAN and MFC-GAN,
minority classes are highlighted in red rectangle

Table 6.1: Results of SMOTE, AC-GAN, FSC-GAN and MFC-GAN classification performance
on MNIST when each class is used as a minority.

Metric Model 0 1 2 3 4 5 6 7 8 9

Sensitivity

Baseline 0.83 0.93 0.64 0.73 0.68 0.70 0.73 0.65 0.62 0.58
SMOTE 0.92 0.94 0.76 0.89 0.81 0.87 0.87 0.79 0.79 0.76
AC-GAN 0.77 0.89 0.55 0.71 0.58 0.88 0.85 0.66 0.68 0.70
FSC-GAN 0.78 0.87 0.60 0.58 0.49 0.51 0.61 0.48 0.38 0.41
MFC-GAN 0.98 0.98 0.83 0.85 0.76 0.71 0.88 0.90 0.89 0.83

Specificity

Baseline 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SMOTE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AC-GAN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FSC-GAN 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00
MFC-GAN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Accuracy

Baseline 0.91 0.97 0.82 0.87 0.84 0.85 0.86 0.83 0.81 0.79
SMOTE 0.96 0.97 0.88 0.95 0.90 0.93 0.91 0.89 0.90 0.88
AC-GAN 0.89 0.95 0.78 0.85 0.79 0.94 0.92 0.83 0.84 0.85
FSC-GAN 0.89 0.94 0.80 0.79 0.74 0.75 0.80 0.74 0.69 0.63
MFC-GAN 0.99 0.99 0.92 0.92 0.88 0.85 0.94 0.95 0.94 0.92

Precision

Baseline 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
SMOTE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
AC-GAN 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 0.99 0.95
FSC-GAN 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.97
MFC-GAN 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.99

F1-score

Baseline 0.91 0.96 0.78 0.84 0.81 0.82 0.84 0.79 0.77 0.73
SMOTE 0.96 0.97 0.87 0.94 0.89 0.93 0.93 0.88 0.89 0.86
AC-GAN 0.87 0.94 0.71 0.83 0.73 0.94 0.92 0.80 0.81 0.80
FSC-GAN 0.88 0.93 0.75 0.73 0.65 0.67 0.76 0.65 0.55 0.44
MFC-GAN 0.99 0.99 0.91 0.91 0.87 0.83 0.93 0.94 0.94 0.90

G-Mean

Baseline 0.91 0.97 0.80 0.85 0.83 0.84 0.85 0.81 0.79 0.76
SMOTE 0.96 0.97 0.87 0.94 0.90 0.93 0.94 0.89 0.89 0.87
AC-GAN 0.88 0.95 0.74 0.84 0.76 0.94 0.92 0.82 0.83 0.83
FSC-GAN 0.88 0.93 0.77 0.76 0.70 0.71 0.78 0.69 0.62 0.64
MFC-GAN 0.99 0.99 0.91 0.92 0.87 0.84 0.94 0.95 0.94 0.91
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Table 6.2: Results obtained from SMOTE, AC-GAN,FSC-GAN and MFC-GAN on ten E-
MNIST minority classes.

Metric Model G K Q f j k m p s y

Sensitivity

Baseline 0.84 0.81 0.82 0.02 0.62 0.56 0.00 0.10 0.00 0.29
SMOTE 0.82 0.73 0.80 0.25 0.84 0.58 0.23 0.38 0.01 0.48
AC-GAN 0.77 0.76 0.87 0.14 0.57 0.57 0.00 0.21 0.00 0.18
FSC-GAN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MFC-GAN 0.89 0.69 0.94 0.48 0.80 0.68 0.22 0.77 0.14 0.65

Specificity

Baseline 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SMOTE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AC-GAN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FSC-GAN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MFC-GAN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Accuracy

Baseline 0.92 0.90 0.91 0.51 0.81 0.78 0.50 0.55 0.50 0.65
SMOTE 0.91 0.86 0.90 0.62 0.92 0.79 0.61 0.69 0.50 0.74
AC-GAN 0.89 0.88 0.94 0.57 0.78 0.79 0.50 0.61 0.50 0.59
FSC-GAN 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
MFC-GAN 0.94 0.84 0.97 0.74 0.90 0.84 0.61 0.89 0.57 0.82

Precision

Baseline 0.91 0.64 0.91 0.43 0.72 0.79 0.00 0.55 0.00 0.53
SMOTE 0.93 0.64 0.93 0.36 0.48 0.70 0.41 0.54 0.25 0.42
AC-GAN 0.96 0.63 0.88 0.43 0.81 0.74 0.33 0.61 0.17 0.62
FSC-GAN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MFC-GAN 0.80 0 .63 0.61 0.36 0.50 0.61 0.40 0.36 0.13 0.33

F1-score

Baseline 0.88 0.71 0.86 0.03 0.66 0.65 0.00 0.17 0.00 0.38
SMOTE 0.87 0.68 0.86 0.29 0.62 0.64 0.29 0.45 0.01 0.45
AC-GAN 0.86 0.69 0.88 0.21 0.67 0.65 0.00 0.32 0.00 0.28
FSC-GAN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MFC-GAN 0.85 0.66 0.74 0.41 0.62 0.64 0.29 0.49 0.13 0.44

G-Mean

Baseline 0.92 0.90 0.90 0.12 0.78 0.75 0.00 0.32 0.00 0.54
SMOTE 0.91 0.76 0.89 0.49 0.92 0.76 0.48 0.62 0.08 0.69
AC-GAN 0.88 0.76 0.93 0.37 0.75 0.76 0.05 0.46 0.05 0.42
FSC-GAN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MFC-GAN 0.94 0.83 0.97 0.69 0.90 0.83 0.47 0.88 0.37 0.80
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Table 6.3: SMOTE, AC-GAN, FSC-GAN and MFC-GAN performance on SVHN (Class 1
and Class 2) and CIFAR-10 (Aeroplane and Automobile) minority classes.

Metric Model Class 1 Class 2 Aeroplane Automobile

Sensitivity Baseline 0.01 0.00 0.07 0.04
SMOTE 0.18 0.31 0.06 0.07
ACGAN 0.00 0.02 0.07 0.05
FSC-GAN 0.02 0.09 0.00 0.00
MFC-GAN 0.51 0.68 0.07 0.08

specificity Baseline 1.00 1.00 1.00 1.00
SMOTE 1.00 1.00 1.00 1.00
ACGAN 1.00 1.00 1.00 1.00
FSC-GAN 1.00 1.00 1.00 1.00
MFC-GAN 1.00 0.99 1.00 1.00

Accuracy Baseline 0.50 0.52 0.53 0.52
SMOTE 0.59 0.65 0.53 0.53
ACGAN 0.50 0.51 0.53 0.52
FSC-GAN 0.51 0.54 0.50 0.50
MFC-GAN 0.75 0.83 0.54 0.54

Precision Baseline 1.00 0.99 0.93 1.00
SMOTE 0.99 1.00 0.97 0.98
ACGAN 1.00 1.00 0.93 0.89
FSC-GAN 0.99 0.99 1.00 1.00
MFC-GAN 0.98 0.96 0.80 0.81

F1-score Baseline 0.02 0.09 0.12 0.08
SMOTE 0.30 0.47 0.11 0.12
ACGAN 0.00 0.03 0.12 0.09
FSC-GAN 0.04 0.16 0.00 0.00
MFC-GAN 0.67 0.79 0.14 0.14

G-Mean Baseline 0.09 0.21 0.25 0.21
SMOTE 0.42 0.56 0.24 0.25
ACGAN 0.00 0.13 0.26 0.22
FSC-GAN 0.14 0.30 0.00 0.00
MFC-GAN 0.71 0.82 0.27 0.28

94



the model. Thus, with multiple fake classes, the GAN model was able to distinguish

among classes better. A similar performance was recorded across all methods using the

specificity, and this is reasonable as most classification models will accurately predict

the majority class instances (tn).

Original CIFAR-10 AC-GAN samples MFC-GAN samples

Figure 6.7: Original sample images (left) with AC-GAN and MFC-GAN generated samples
(middle, right). Minority classes are highlighted in red

FSC-GAN samples did not improve the classification in all experiments conducted as

can be seen in Tables 6.1, 6.2 and 6.3. The results obtained showed that the classi-

fier performed below the baseline when FSC-GAN samples were added to the training

data. This is because FSC-GAN generated poor samples even when the number of

classes is fairly balanced as shown in Figure 6.2. The other datasets are more chal-

lenging than MNIST and FSC-GAN goes into mode collapses when trained on the

imbalanced datasets. The results indicate how negatively FSC-GAN is affected by the

class-imbalanced problem.

AC-GAN model performed poorly on all the datasets in minority class image gener-

ation. This was evident by the below-average performance of the CNN when it was

trained on AC-GAN samples. As can be seen in Figures 6.4, 6.5, 6.6 and 6.7, AC-GAN

generated plausible majority class instances, however, the quality of generated minor-

ity class instances dropped significantly. In some cases, the model completely failed

and became biased towards the majority class instances. This is consistent with the

findings observed by [122]. For some specific classes a mode dropping in AC-GAN was

observed, and the model generated the same image in all samples as can be seen in

Figure 6.7b.

It was also observed that classification improvement was achieved when oversam-

pling using SMOTE rather than augmenting with AC-GAN generated samples (Ta-

bles 6.1, 6.2 and 6.3). SMOTE achieved slightly better recall than MFC-GAN on two

E-MNIST minority classes as seen in table 6.2. This is because E-MNIST has more
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samples in the minority class (with the smallest class having 1896 samples). However,

on the other datasets, SMOTE did not perform well when the number of minority

class instances drops significantly. This also proves that MFC-GAN maintains good

performance even with minimum number of samples in comparison with SMOTE and

AC-GAN.

While good results have been obtained on MNIST, E-MNIST and SVHN, poor perfor-

mances were recorded on CIFAR-10 by all models on minority class instances. AC-GAN

model collapsed completely on CIFAR-10 while salient features required to distinguish

samples effectively where not synthesized by MFC-GAN. These results might be at-

tributed to the relatively small size of these images (i.e, 32 × 32 CIFAR-10 image

patches) and the level of details within such tiny size. Although the samples generated

by these models may look realistic, the characteristic features that will be vivid enough

to train a classification model were missing. Increasing the number of minority samples

from 50 to 100, 150, 200, 250 and 300 showed better but not significant improvement

in performance. That said, as can be seen in Table 6.3, MFC-GAN produced slightly

better performance amongst all these models.

Interestingly, poor results were obtained by all models for some specific minority classes.

In particular, in the E-MNIST’s minority classes m and s (Table 6.2). These minor-

ity classes were entirely missed by the baseline classifier, and very poor performance

was reported using SMOTE, FSC-GAN and AC-GAN. MFC-GAN has also performed

poorly in these classes. These results might be due to the similarity between some of

these minority class instances and other majority class instance (i.e., class s is similar

to classes 5, S, 2, z).

6.6 Conclusion

In this Chapter, a new data augmentation method using Multiple Fake Class Gen-

erative Adversarial Networks (MFC-GAN) was presented and evaluated on different

public datasets. The classifier performance improved across standard metrics used for

evaluating class-imbalanced datasets when compared with other popular augmentation

and oversampling techniques. This implies that, MFC-GAN is a more reliable source

of labeled data to rebalance classes in extreme imbalance scenarios. In the subsequent

Chapter, we apply MFC-GAN to a real-world application domain.
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Chapter 7

Application Domains

In this Chapter, we apply the model developed in Chapter 6 to real-world application

domains. Two challenging domains are chosen where the classes of interest are under-

represented. First, we consider the problem of face generation from minority attributes.

Second, the problem of symbol generation from a Process and Instrumentation Dia-

grams (P&ID) with extreme imbalance ratio among symbol classes is addressed. The

findings in this Chapter is part of the proceeding of the International Joint Conference

on Neural Networks (IJCNN 2019).

7.1 Generating and Classifying Facial Attributes

Facial attribute classification is challenging because face features vary significantly from

one person to another [53]. Face pose angles, different lighting conditions and variety

of clothing such as eyeglasses, caps, and jewellery can create significant occlusion. Fur-

thermore, imbalance in facial attribute classes creates a new dimension to the problem.

Attribute classification approaches can be grouped into two categories. The first cate-

gory considers the local image patches by feeding in outputs from attribute detectors.

The problem with this group is the sole reliance on the efficiency of the detection

model [53]. The second approaches process the global image to extract the required

features and classify attributes. The latter methods are more robust and have provided

state-of-the-art performances recently. Furthermore, global approaches have been im-

plemented as multi-tasking approaches [53] and in some cases employing specific models

to classify each attribute [117, 200]. More recently, multi-task models have explored the

correlation between attributes to improve classification performances as shown in [71].

One of the common ways of improving classification performances in deep models is
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through augmentation. Data augmentation neutralizes class imbalance and improves

generalization by creating more diverse synthetic samples. However, in extreme im-

balance cases, data augmentation may fail to produce enough variations in samples.

In a facial dataset like CelebA, images are multi-labeled and a global augmentation

approach on the images will not change the imbalance ratio. Moreover, augmenting

specific facial attributes like hair colour, gender, eyeglasses or smile; presents a more

challenging task for simple augmentation techniques [142]. A realistic approach will be

to train a generative model that can capture these facial attributes while generating

plausible samples that are suitable for augmentation.

Generating specific facial feature in images has many desirable applications such as

security, fashion and in supporting other processes such as classification. Supervised

GANs (like C-GAN) provides the required functionality to generate faces with spe-

cific attributes. AC-GAN, on the other hand, possesses some characteristics of C-GAN

specifically conditional image generation. An extra classification task in AC-GAN re-

enforces class-specific generation and improves sample quality and diversity. Research

into this area revealed that face generation with auxiliary classification frameworks

mostly relies on a hybrid approach using an auto-encoder model to learn or extract

features before the GAN model is trained. For instance, Fine-grained Multi-attribute

GAN (FM-GAN) [181] was used to generate plausible faces with precise age using fa-

cial attributes. The model is a modified AC-GAN that incorporates attributes into

the generator. The authors used the conditional reconstruction of the embeddings and

considered three sets of attributes: age, gender, and ethnicity. FM-GAN was trained

on CelebA and the synthesized images that were used to augment MORPH II dataset1.

The new dataset was evaluated using a Convolutional Neural Network (CNN) and

results obtained showed that the classifier performed better when the synthetic sam-

ples were added. Other Similar approaches includes Balancing GAN (BAGAN) [122],

MelanoGAN [15] and Data Augmentation GAN (DAGAN) [9].

All these models share some similarity with our approach, that is synthesizing more

samples for augmentation. However, we use a different GAN model with multiple fake

classes, and we investigate face generation from attributes that are under-represented.

CelebA dataset is one of the most widely used benchmarks for facial attributes clas-

sification and face generation. While significant achievements have been recorded on

this dataset, some interesting potentials still remain untapped. Hand et al. [70] pointed

out that the dataset is biased towards posed celebrity images that are not indicative

of the real world. Looking at the attribute distribution across images, we can see that

the dataset is biased toward frontal faces, smiling and mostly young celebrity pictures.

1https://ebill.uncw.edu/C20231 ustores/web/classic/store main.jsp?STOREID=4
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Again, models trained on this dataset without putting into account such biases might

perform poorly on a different domain. And balancing by re-sampling a class directly af-

fects other class distribution as well [70]. Generative Adversarial Networks (GANs) are

state-of-the-art in image generation and supervised GANs offers a class-specific sample

generation from labels. However, GANs like other neural networks when trained on

imbalanced classes are affected by this problem. For instance, both Auxiliary Classi-

fier GAN (AC-GAN) [140], C-GAN and GAN [63] avoid generating minority classes in

extreme class imbalance cases [122].

In this Chapter, MFC-GAN is trained on a facial image dataset, and we demonstrate

that class imbalance problem could be addressed through re-sampling of the minor-

ity class. The model is evaluated on face image generation problem from face image

attributes that are under-represented in the CelebA dataset [117].CelebA attributes

are represented as binary labels describing the presence or absence of a face feature

such as a beard or no beard. The images distribution across these attributes varies

significantly thereby creating a class imbalance problem. We explored this problem

and created more scenarios by reducing the number of samples in the minority classes.

Our experiments considered the eyeglasses attribute, and the generation facial images

with eyeglasses from reduced number of instances in the class. Furthermore, the gen-

erated samples were used as additional samples to rebalance the classes and improve

classification performance in a convolutional neural network.

7.2 Symbols Generation and Classification

Engineering drawings like Process and Instrumentation Diagrams (P&ID), circuit

schematic diagrams and architectural drawings are needed in the design, construction

and maintenance of facilities in many industries such as the oil and gas industry. Some

of these diagrams are legacy hand-drawn diagrams. These documents contain vital

information that is frequently referenced and interpreted for efficient decision-making

processes. However, reading such drawings is challenging, time-consuming and requires

expert knowledge in a domain where standards are dynamic. Given that there is a sub-

stantial volume of such documents in the industry, there is a growing need to digitize

these diagrams for synergy and easy maintenance of many crucial facilities[131].

Automating symbol recognition and classification is challenging in complex engineering

drawings like P&ID because diagrams are generally large and noisy. Again, diagrams

contain connected components and lots of text that comes with context information

such as flow dependent instructions. Coupled with the poor image quality, symbols in

diagrams can be composed of many symbols, and in a specific context, the whole or
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Figure 7.1: A section of Process and Instrumentation Diagram (P&ID).

section of the diagram is a single symbol. The composition relationships complicate

the symbol recognition process. The problem of extreme class-imbalance among symbol

classes further complicates the automation process. Figure 7.1 shows an example of

P&ID diagram from an oil facility.

Traditional symbol recognition approaches, such as [194] produced a symbol recognition

system that can match symbols from different domains. The procedure makes use of

three simple steps, a loop identification step, a partial symbol identification stage then

a symbol matcher. The system makes use of an existing symbols database as input

and applies components matching on new symbols read. The system was successful

in recognizing symbols from photocopies of different domain drawings such as electri-

cal circuits, flowchart, chemical plant, logic. Similarly, scanned logic diagrams were

used in [42]’s experiment to test for the presence of logic symbols, and the experiment

recorded a 98.3% accuracy over 53 images with seven classes of gates. The procedure

starts with the removal of text labels and connecting wires using morphological opening

operation with a selected structuring element. Symbols are extracted and identified us-

ing three criteria; the Euler number of the symbol (the difference between the connected

components and holes), the spike ratio and the circularity of the symbol. Other tech-

niques developed include junction detection [144], heuristics digitization [130], SIFT
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features [13] and multi-sliding window [58].

A common feature of the techniques mentioned in the preceding paragraph is the use

of heuristics and a feature engineering method before a classifier is trained. The tight

choices of tools limit the generalization and re-usability of these approaches across differ-

ent domains. Again, symbols are not orientation dependent and have many contextual

information in a P&ID. Also, essential problems in this domain such as class-imbalance

problem and the need for domain knowledge were not addressed. In the following sec-

tions, we apply MFC-GAN in improving symbols classification in a P&ID. To the best

of our knowledge, this is the first time a GAN model is being used to generate symbols

from P&ID. The closest research to this is LoGAN [125] and BAGAN [122] which were

used to generate trademark logos and traffic signs respectively. Moreover, we consider

the problem of image generation in a class-imbalanced dataset with multi-classification

scenario. We train MFC-GAN on a set of symbols obtained from a P&ID, and we

demonstrate that MFC-GAN is capable of generating symbols even in extreme imbal-

ance cases. Our experiments consider the nine least populated symbol classes and we

show that the performances of a convolutional neural network could be improved by

augmenting synthetic images from MFC-GAN.

7.3 Data Augmentation Approach

MFC-GAN model is trained on the two datasets described in section 7.4.1 and 7.4.2.

The trained model was used to generate plausible samples from the minority classes.

The generated minority samples are then added to the original training set to rebalance

the dataset. Finally, we validate the approach on classification task using a Convolu-

tional Neural Network (CNN).

Multiple fake classes were prepared from the binary facial attributes in the CelebA and

symbols datasets similar to the procedure described in Chapter 5. The model was also

trained using the objective function described in Chapter 6; however, the training pro-

cedure employs oversampling to emphasize equal participation of the minority classes.

Algorithm 3 summarizes the training procedure used.

Both steps and mini steps are hyper-parameters which are tunable, and they control

the behaviour of the oversampling routine. For these experiments, the steps variable

was kept at a value of 1000 and a mini steps of 50 was used. But the sampling in the

symbols generation was weighted according to the number of samples in the class to

encourage learning on extreme cases.

A similar GAN model was used for both experiments. The generator model has one
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Algorithm 3 MFC GAN Training procedure

for i in iterations do
mini batch← next training batch
evaluate LD using mini batch
evaluate LG using mini batch
if i in steps then

for j < kministeps do
mini batch← next minority batch
evaluate LD using mini batch
evaluate LG using mini batch

end for
end if

end for

linear layer and five transpose convolution layers with strides of two in each layer.

Batch normalization was used between adjacent layers and all layers were activated

using Leaky ReLu apart from the final layer which is sigmoid activated. The generator

takes as input a random noise vector and the facial attributes as embeddings. The

output is a 64×64 coloured image for faces and a grey scale image in the case of

symbols which were sent to the discriminator for training. The discriminator is trained

on two set of images, the real training samples, and the generated samples. The first

four layers are convolution layers with strides of two which are activated using Leaky

ReLU and batch normalization is used between layers. The final layer is parallel linear

layer sigmoid output and a classification layer. We used a batch size of 100 and a

learning rate of 1e − 4. Spectral normalisation [128] was used in both the generator

and the discriminator, and we also experimented with gradient penalty [66] in our face

generation experiments.

7.4 Experimental Design

Our experiments analyze class-specific image generation and classification in a class

imbalanced dataset. Experiments were conducted on celebrity faces with attributes

dataset (CelebA dataset) and engineering symbols generation using class labels. For

the faces experiment, we considered eyeglasses attribute as minority class with 13193

instances. Different experiments were carried out on a reduced number of instances

using this minority class. We considered 200, 500, 1000, 2000, 3000, 4000, 5000, 6000,

7000, 8000, 9000 and 10000 minority instances in different runs. Setting the number

of minority class instances to range between 200 to 10000 allowed us to assess our

model in generating data in extreme imbalanced scenarios where the majority class
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instances represent almost 95% to 99% of the data, while the minority class instances

presence ranges roughly between 0.1% to 5% of the data. For the symbols experiment,

we consider the nine least populated symbols namely, Angle choke valve, Angle Valve,

Injection Sample Point, Back Pressure Regulating Valve, PS Gate Valve, control valve,

Through Conduit Gate Valve, control valve globe and a Pressure Regulating Valve.

These symbols have between two and forty two instances in each class.

For our image generation experiment, we report the quality and diversity of the gen-

erated minority samples after each run. For classification experiments, we extend the

training data with generated minority samples from trained models (AC-GAN and

MFC-GAN). Then, a CNN classifier is trained on the extended dataset, and the clas-

sification performances on the minority classes are reported.

7.4.1 Face Dataset

CelebA was created by annotating images from CelebFaces dataset with a face bound-

ing box, facial landmarks and attributes annotations. It consists of 202k images with

forty binary facial attributes. CelebA is used as a benchmark in face detection and

facial landmarks detection such as eyes, nose and mouth and facial attribute classifi-

cation. CelebA attributes include curly hair, goatee, bald, male, eyeglasses, and other

fine-grained attributes like wearing lipstick, heavy make-up, 5 O’clock shadow, arched

eyebrows, and others. The multi-label attributes of an image open some interesting

scenarios when investigating the dataset. These include the relationship between some

attributes such as young and attractive, the biased distribution of attributes across

samples and an unconstrained environment in facial images which creates variation

among similar attributes. For our experiments, the dataset was used to perform face

generation and classification of facial attributes using a low number of instances of a

particular class. The dataset was preprocessed by cropping the head region using the

face annotation bounding box and some heuristics. The crop was made just enough to

accommodate the chin to the hair with ears visible on both sides (where applicable).

The cropped image was then resized to 64×64 image patch. Before training, the images

were normalized and labels preprocessed as described in Section 7.3. The dataset was

split into a train and a test set. The test set is made up of six thousand samples with

an equal number of majority and minority samples.
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Figure 7.2: Class distribution in the symbols dataset.

7.4.2 Symbol Dataset

Symbols were obtained from the P&ID by annotating the diagrams using Sloth 2. This

generates a JSON file containing the bounding box coordinate for each symbol. These

symbols were cropped out automatically via a python script and resized to 64 × 64

grey-scaled images. This dataset is quite small, with 13478 symbols across 29 classes.

Moreover, the class distribution of symbols is extremely imbalanced with more than half

of the samples in the three largest classes (sensor, ball valve and labelfrom and labelto

adding up to 7789 instances or ∼ 58%) and the least populated symbol class having

just two instances (angle choke valve ∼ 0.01%). Figure 7.2 shows the distribution of

symbols in the dataset.

7.4.3 Face Generation from Attributes

Control generation was achieved by conditioning the generator on attribute labels.

Several experiments were carried out with a different number of samples in the minor-

ity classes specifically eyeglasses attribute. For each run, the MFC-GAN model was

2https://sloth.readthedocs.io/en/latest/
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trained from the scratch and samples were generated after the training is completed. A

similar experiment was performed with AC-GAN using eyeglasses attribute. For a fair

comparison, a similar generator and discriminator structure was used in AC-GAN. We

then examined the quality of the generated samples and how suitable these samples

are for augmentation. Samples are good enough if they are of high quality and the

required minority attribute appears in the image. The quality of the generated images

from the two models is compared using established qualitative measures. We employ

visual inspection and Frechet Inception Distance (FID) [75] to evaluate the quality and

diversity of MFC-GAN and AC-GAN samples. A lower FID indicates a better sam-

ple quality and diversity. Visual inspection reaffirms the presence or absence of the

attribute in a generated sample.

7.4.4 Facial Attributes Classification

Our classification model is a CNN with the same structure as the attribute CNN [117].

The attribute CNN has four convolution layers with max pooling layers between them.

A fully connected layer follows the last convolution layer with a classifier as the final

layer. We used a soft-max classifier, a filter size of 3 × 3 in all layers and trained the

CNN from scratch as against starting from pre-trained weight different from [117]. We

performed an initial classification of samples using reduced number of samples in the

minority class i.e eyeglasses. We refer to this experiment as baseline. The number of

samples in the minority classes is then extended with MFC-GAN generated samples

after training on the same number of minority samples, and the classifier is retrained

again. In a similar manner, AC-GAN samples were also used to extend the training

data, and the CNN is trained from scratch each time. Finally, we report the F1-score

and true positive rate of the classifier on each run. We compare the performances of

the CNN when MFC-GAN samples are added to when AC-GAN samples are added.

7.4.5 Symbols Generation from Minority Classes

Similar to what was done with faces, the generator was conditioned on the symbol

class labels to promote class-specific samples generation. We experimented on the

generation of multiple minority class instances i.e the nine least populated classes from

the symbols datasets. These classes have 2, 13, 15, 17, 17, 27, 31, 36 and 42 samples.

The choice of these classes was because they are the most affected by extreme imbalance

ratio. The model was trained only once on this dataset and the samples were generated

after training was completed. During training, the minority classes were resampled as

described in Algorithm 3. The images were not preprocessed or augmented during
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GAN training. We compared the quality of samples generated and the effectiveness of

our approach to AC-GAN. Visual inspection was used to determine if the generated

symbols are from the required category or not. This also gives information about the

quality of the generated symbol.

7.4.6 Improving Symbols Classification

The CNN used has three convolution layers with 32, 64 and 128 filters that are followed

by a fully connected and a softmax classification layer. The convolution layers use a

kernel size of 3× 3 and a 2× 2 max-pooling layer after the first and second convolution

layers. The fully connected layer has 256 neurons, and no drop-out or batch norm was

used. The softmax layer is a 29-way classification layer, and all other layers are Relu

activated. Before the CNN training, the dataset was split into a training and a testing

set. The test set was used as a hold out set for evaluation and it is worth noting that

the same imbalance ratio (as in the original distribution) was maintained in the test

set. A baseline performance on the test set was reported after training the CNN on

the original training set. Then the minority class instances from MFC-GAN samples

were added to the training set and the classification model is retrained from scratch.

This procedure is repeated using AC-GAN generated samples and the classification

performances were reported. The performances of the CNN are compared using true

positive rates, balanced classification accuracy, G-mean and F1-score obtained from

each experiment. These metrics were defined in Chapter 6.

7.5 Analyzing Sample Quality and Performance

For the experiment on face datasets, Figure 7.3 shows the sample data generated from

each model by conditioning on the minority attribute. More of these samples with vary-

ing number of minority instances can be found in section B.2 of Appendix B. Tables 7.2

analyze further the quality of generated images obtained during the experiments using

FID metric. The FID was measured by comparing 10k samples with eyeglasses from

the training data and generated 10k samples from the models after training using the

approach provided in [75].

The classification results on the test set are shown in Figure 7.4 which compares the

performance of the baseline classifier and the two models using varying number of

minority class instances. Tables 7.1 show the true positive rates (TPR) obtained when

the models are used to augment the original dataset with more samples (generated)

in a classification task. These results show clearly that when augmenting the dataset
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Original sample AC-GAN sample MFC-GAN sample

Figure 7.3: Comparing original images and AC-GAN and MFC-GAN generated samples.
Samples were generated from training on 10k glasses instances.

Figure 7.4: The F1-score of the CNN classifier over varying number of instances with eye-
glasses attribute.

with MFC-GAN generated samples, the TPR was significantly improved in comparison

with the baseline, particularly in extreme imbalanced cases (i.e. with 200 to 2000

samples). The results also show that MFC-GAN significantly outperformed AC-GAN

in all scenarios.

With regards to the second experiment on P&ID, Figure 7.5 compares the generated

samples from AC-GAN and MFC-GAN models with the original symbols from the

diagram. We also report the symbols classification results in Table 7.3. Similar to

the experiment on faces, our approach demonstrate superior performance in terms of

image quality and better overall classification performances on different class imbalance

metrics.
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P&ID AC-GAN sample MFC-GAN sample

Figure 7.5: Comparing original P&ID samples with AC-GAN and MFC-GAN generated sam-
ples.

7.6 Significance of Synthetic Samples

As can be seen from the results obtained, the CNN classifier fails to detect minority class

instances in extreme scenarios. This is evident from the results shown in tables 7.1, 7.3

and F1-scores from Figure 7.4. However, as the number of minority class instances

increases, the CNN performance tends to improve slightly. For instance, in the faces

experiment, a reasonable performance was obtained by the CNN when the number of

minority class instances reached 3k for eyeglasses attribute. This clearly shows that

in extreme cases where the number of minority class instances is minimal, a data

augmentation is much needed and MFC-GAN samples becomes useful.

Closely looking at the face generation task, both AC-GAN and MFC-GAN generated

realistic samples. However, AC-GAN samples did not fall within the required category

as can be seen in Figure 7.3. This rendered the AC-GAN samples inadequate for

augmentation. Thereby negatively affecting classification whereas MFC-GAN model

performs significantly better when the dataset was extremely imbalanced. Moreover,

the samples from MFC-GAN proved to be useful in augmenting the training set to

boost classification performance. For instance, with 200 eyeglasses samples, the true

positive and F1-score improved from 0 to 53 and ∼70% respectively.

Augmenting AC-GAN samples into the training set did not improve the accuracy of

the CNN in identifying eyeglasses attributes. Visual observation of the generated im-

ages revealed that the model generated quality samples but was not of the required
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Table 7.1: True positive rate of eyeglass attribute classification and highlighted in bold are the
instances where MFC-GAN performed better than the baseline and AC-GAN.

Number of samples Baseline AC-GAN MFC-GAN

200 0.0 0.0 0.53
500 0.0 0.0 0.64
1000 0.0 0.0 0.79
2000 0.0 0.0 0.90
3000 0.92 0.0 0.84
4000 0.86 0.0 0.91
5000 0.95 0.0 0.89
6000 0.91 0.71 0.91
7000 0.96 0.75 0.92
8000 0.94 0.86 0.95
9000 0.95 0.78 0.94
10000 0.95 0.89 0.93

minority classes. Adding these samples to the training data confuses the classifica-

tion model particularly when the number of original samples is small. These samples

over-shadowed the real data and prevented the model from understanding the true dis-

criminative feature/attribute in the samples. However, with significant real samples in

the training data, the effect of the spurious samples is minimized. This is in line with

the observations by [122] and shows that AC-GAN is inadequate in capturing the true

data distribution in an extreme class imbalance scenario.

On the other hand, augmenting MFC-GAN in the training set resulted in better classifi-

cation results. This improvement was significant in extreme cases where the number of

minority class instances is kept to minimal. MFC-GAN model trained on two hundred

eyeglasses samples was able to capture the real data distribution and was capable of

producing the required minority samples necessary to improve classification results. Vi-

sually observing the samples in Figure 7.3 shows the presence of the minority attributes

which further explain the improvement in performance. These samples also had better

mean FID than the samples generated by AC-GAN as shown in table 7.2. An interest-

ing behaviour of the MFC-GAN model is that it was able to associate eyeglasses with

both male and female generated samples.

The symbol dataset is much smaller and less complicated than the face dataset, but

similar performances were observed. In this case, the AC-GAN model was unable to

generate instances of the minority class at all as can be seen in Figure 7.5. The model

collapsed to producing frozen noise samples on all the minority classes. The samples are

unrealistic and do not contain any visible symbol features. Consequently, augmenting
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Table 7.2: Mean Freschet Inception Distance (FID) of generated images from experiments on
different number of samples with eyeglasses.

Number of samples AC-GAN MFC-GAN

200 72.97 81.26
500 73.51 72.54
1000 72.24 69.65
2000 75.34 83.36
3000 75.58 81.83
4000 73.18 65.31
5000 74.66 68.02
6000 75.38 60.19
7000 71.90 59.64
8000 70.67 70.57
9000 74.69 57.17
10000 73.96 59.34

these samples did not improve the baseline performances in most cases. Whereas MFC-

GAN generated far superior and more realistic samples. Visual inspection revealed

distinct symbols features and the required categories were generated in each instance.

This shows that our model was able to capture salient attributes of each symbol class

even in extreme cases. Moreover, MFC-GAN high-quality samples had a positive effect

on the performance of the classifier. For example, the G-Mean and sensitivity improved

from 0 to 100% on angle choke valve as can be seen in Table 7.3 with just two instances

of the classes. This result is consistent in seven of the nine minority classes. However,

we observed that the model did not improve the baseline in the other two classes viz

control valve and PRV classes. A closer look at Figure 7.5 revealed a high similarity

between symbols. There is extreme similarity between angle valve (fifth symbol from

the top) with control valve globe (eighth symbols from the top) and PRV(seventh

symbol from the top) and BPRV (second symbol from the top). Although symbols

were distinctly generated, the similarity of symbols dwindled the classification results

in these classes. The low precision in BPRV and control valve globe classes from

Table 7.3 further solidifies this observation.

Despite improving classification performance on a reduced number of samples (minor-

ity classes), we observed that augmenting more samples could not achieve 100% true

positive rate even with 10k real samples. We tried to push the results further by

under-sampling the majority class but this did not influence the results much. We

infer that this could be related to the classification model chosen because no hyper-

parameter search or model tuning was done. In addition, the target of our experiments

was to show the usefulness of our GAN generated samples in extreme class imbalanced
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Table 7.3: CNN performance on symbols classification.
Metric Model angle choke valve Angle Valve BPRV control valve control valve globe injectionsample point PRV PS Gate Valve TCGvalve

Sensitivity

Baseline 0.00 0.50 0.60 0.88 1.00 0.80 1.00 1.00 0.89
AC-GAN 0.00 0.75 0.80 1.00 0.91 0.80 0.92 0.80 0.89
MFC-GAN 1.00 1.00 0.80 0.88 1.00 0.88 0.77 1.00 0.91

Specificity

Baseline 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AC-GAN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MFC-GAN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Precision

Baseline 0.00 1.00 1.00 1.00 0.85 1.00 0.72 1.00 1.00
AC-GAN 0.00 1.00 0.80 0.73 1.00 1.00 0.86 0.80 1.00
MFC-GAN 1.00 1.00 0.67 1.00 0.92 1.00 0.91 0.83 1.00

F1-score

Baseline 0.00 0.67 0.75 0.93 0.92 0.89 0.84 1.00 0.94
AC-GAN 0.00 0.86 0.80 0.84 0.95 0.89 0.89 0.80 0.94
MFC-GAN 1.00 1.00 0.73 0.93 0.96 0.93 0.83 0.91 0.95

Accuracy

Baseline 0.50 0.75 0.80 0.94 1.00 0.90 1.00 1.00 0.95
AC-GAN 0.50 0.88 0.90 1.00 0.96 0.90 0.96 0.90 0.95
MFC-GAN 1.00 1.00 0.90 0.94 1.00 0.94 0.89 1.00 0.96

G-Mean

Baseline 0.00 0.71 0.77 0.94 1.00 0.89 1.00 1.00 0.94
AC-GAN 0.00 0.87 0.89 1.00 0.95 0.89 0.96 0.89 0.94
MFC-GAN 1.00 1.00 0.89 0.94 1.00 0.93 0.88 1.00 0.95

scenarios and classification was only used as an evaluation criterion.

7.7 Conclusion

In this Chapter, we applied Multiple Fake Class Generative Adversarial Networks

(MFC-GAN) to generate face images from under-represented attributes. Generating

faces with flexible attributes reduces the challenges hindering the use of traditional

augmentation approaches. Augmenting facial attributes is crucial in different com-

puter vision domains such as identity management system, cross-age face validation

and missing person identification. Furthermore, MFC-GAN was applied to generate

symbols from P&ID diagrams. We show that even in extreme cases, MFC-GAN can

synthesize quality symbols that improve classification performances. Producing more

samples from a few available ones is in demand where labeled data is scarce or difficult

to obtain, such as the oil and gas industry.
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Chapter 8

Conclusion

In this chapter, we conclude and summarize the main findings resulting from this body

of work.

The thesis addressed the problem of learning in the absence of enough labeled data

and learning from class-imbalanced data. In particular, we developed novel generative

adversarial networks that utilized both the generative and classification capabilities of

GANs. These models were used to address two key learning challenges with limited

labeled data; namely, image classification with large unlabeled data and data augmenta-

tion in class-imbalanced datasets. In addition, the chapter also presents the limitations

of the approaches proposed and some potential future works in this regard.

8.1 Summary

In this section, we revisit the objectives from Chapter 1, and summarize the contribu-

tions and the major findings from these objectives.

• A literature review of existing methods that addresses the lack of la-

beled data in deep learning. In this thesis, we reviewed existing approaches

in image classification where sufficient labeled examples could not be obtained (in

Chapter 2). We highlighted the strengths and weaknesses of some of the popular

techniques developed such as transfer learning, semi-supervised learning and un-

supervised learning. The thesis also looked at the recent advances in GAN models

in Chapter 3. In this respect, we explored what GANs can generate, the differ-

ent flavours of objective functions and architectures, limitations and successful

application areas.
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• Evaluate the performances of deep learning models on datasets that

are poorly annotated and labeled. In Chapter 4, we demonstrated how the

performances of a deep convolutional model deteriorate in the absence of well

annotated data. The experiments carried out showed the need for enough labeled

examples before a model could be trained properly. Our findings also highlighted

the limitation of simple data augmentation approaches in class-imbalanced data.

The experiments also demonstrates that transfer learning in specific domains does

not always work and such domains will always require dedicated data collection

and annotation process or other label agnostic approaches to achieve the desired

performances.

• To create a novel method to train deep models using minimal number

of labeled examples. This will mitigate the problem of insufficient

labeled data in image classification. A novel adversarial learning architecture

incorporating latent label embedding, network switchers and multiple fake classes

to train a classifier by utilizing large unlabeled data (in Chapter 5). A new

method to train the model was created to leverage the changing scenarios of

labeled and unlabeled data. One of the greatest appeals of our approach is its

label-agnostic property. Also, our model supports a wide range of strategies from

fully supervised, semi-supervised to weakly supervised learning.

• To develop a framework that generates realistic class-specific samples

in the absence of enough labeled instances. The methods proposed uti-

lized the generative property of the proposed model to synthesize more labeled

training examples in a multi-classification task. To this end, we developed a new

augmentation method using Multiple Fake Class Generative Adversarial Networks

(MFC-GAN) in Chapter 6. MFC-GAN demonstrated improvement on the base-

line classifier model and when compared to the state-of-the-art AC-GAN model

in terms of sample quality and classification performances. The results indicated

that by augmenting the training set with MFC-GAN generated samples, perfor-

mance improved across common metrics used in evaluating imbalance classifica-

tion. Our approach showed superior performance when compared to common

augmentation and oversampling technique (i.e SMOTE).

• To address class-imbalance in real-world problems with under-

represented class instances using the methods and techniques devel-

oped. Finally, we applied MFC-GAN to two challenging real-world domains,

namely, legacy engineering drawings and face images with attributes in Chap-

ter 7. Several experiments were carried out on a reduced number of instances

in the classes of interest. Results obtained showed that MFC-GAN captured the
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underlying data distribution from the class imbalanced datasets and generated

realistic samples from the minority class instances. Our approach demonstrated

improved performances than the baseline classification in extreme imbalance sce-

nario while out-performing AC-GAN in all cases.

8.2 Limitations and Future Work

The models and techniques developed in this thesis have shown to be useful in areas

where there are no enough labeled examples and where the number of instances in the

class of interest is low. They have been successful in weakly supervised scenarios and

class-imbalance problems. However, the thesis leaves a lot to be desired. The following

are some potential future works that could be explored.

• An interesting extension to the methods proposed is automatic image correction.

This can be achieved by synthesizing samples with desired properties while pre-

serving the identity of the subject. Automatic generation and augmentation in

domains such as face verification, cross-age verification and fashion require the

subjects in the images to remain the same. For instance, in face generation from

attributes, instead of generating a new face, the new method will add attributes

like eyeglass, beard and side-burns to existing faces. Samples identity-preserving

could be achieved in future by adding an identity constraining [123] component

to the model.

• One of the limitations of MFC-GAN is that the classifier in MFC-GAN was used

as a regularizer which ensures efficient gradient flow. The classifier objective pro-

moted early convergence and better samples quality; hence, samples were useful

in augmentation. On the other hand, the built-in classifier was kept below opti-

mum and may not be an effectively learned classifier from the adversarial process.

Future research could consider other techniques such as noise regularization [151]

or gradient clamping [139] in the context of multiple-fake classes to keep the

discriminator within touching distance of the generator. A classifier that can

identify different categories of synthetic and real samples is crucial in predicting

fake images/videos which are a great concern today.

• MFC-GAN was able to capture noticeable image characteristics such as object

patterns with sufficient diversity in generated samples but struggles with sub-

tle features. For instance, when the model was trained on facial attributes like

goatee, little diversity was observed in the generated images. This is similar to
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the problems observed by [7]. Although the model generated the required minor-

ity class, the quality and attribute diversity among generated samples was poor.

Other interesting aspects were obvious such as the consistent link between male

samples and the goatee attribute despite the model being trained on both male

and female images. More results and analysis on the goatee experiments are in

section B.3 of Appendices B. An exciting future direction in this regard is to use

a more descriptive condition such as a scene graph [86]. The description could be

used to capture many details such as structure, direction, and labels in order to

promote the generation of subtle features.

• An interesting future work will be to consider the inter-relationship between the

different label classes in class-imbalanced data. For instance, in CelebA data

dataset, some facial attributes occur consistently alongside each other such as

male and goatee, attractive and young. While others like beard and sideburns or

beard and moustache frequently occur together in the dataset but are independent

of one another. Trying to improve the number of samples in such classes using

sample generation may indirectly affect the other. The recent work on attention

mechanisms [197] in GANs have shown to produce better global coherence in

objects. However, the inter-relation among labels was not exploited. Studying

the inter-relationship among labels opens up a new discussion on better ways to

condition generative models. This could be in form of other parametrized models

that statistically describe the right prior (such as an Autoregressive model).

• The proposed methods were successfully used to generate symbols from extreme

minority classes in a P&ID, and the samples were used to improve classification

performances in the minority classes. An advancement toward this solution will

be to produce a complete engineering drawing or a segment of it. Generating

a whole diagram is challenging, given the uniqueness of each diagram coupled

with noisy text. Moreover, the diagrams are very big and are context-dependent.

The recent published ideas on Redrawing of Objects (ReDo) [32] and copy-paste

GAN (CP-GAN) [10] opens a new dimension to the problem. Although both

pieces of research are in object segmentation, the fascinating thing about these

two research is the ability to insert new objects in an image and also extract mask

from existing images. P&IDs are unique, given that the target image is a white

canvas and the objects to be placed are connected symbols. Again, diagrams can

be contextualized with conditions such as connectivity and position in order to

generate a meaningful diagram. There are many challenges with using GANs,

but it would be interesting to discover how a diagram generation can leverage

GAN segmentation techniques and repeated in-painting.
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Multiple fake class GANs are a brilliant idea with many applications; they produce

high-quality samples and help the class imbalance problem, much more than SMOTE.

They also cover data privacy nicely (because they are “fake” people/samples), and

produce convincing samples that are not malicious but intended to mitigate problems

with a lack of labeled data.
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Appendix B

Supplementary Results

B.1 Goatee Attribute Classification Results

Figure B.1: Goatee classification performances
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B.2 MFC-GAN Results on Facial Glasses Attribute

Original samples AC-GAN 2h MFC-GAN 2h

Original samples AC-GAN 5h MFC-GAN 5h

Original samples AC-GAN 1k MFC-GAN 1k

Original samples AC-GAN 2k MFC-GAN 2k
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Original samples AC-GAN 3k MFC-GAN 3k

Original samples AC-GAN 4k MFC-GAN 4k

Original samples AC-GAN 5k MFC-GAN 5k

Original samples AC-GAN 6k MFC-GAN 6k
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Original samples AC-GAN 7k MFC-GAN 7k

Original samples AC-GAN 8k MFC-GAN 8k

Original samples AC-GAN 9k MFC-GAN 9k

Figure B.2: Comparing samples AC-GAN and MFC-GAN samples from experiments with
varying number of glasses instances in the.

134



B.3 MFC-GAN Results on Face Goatee Attributes

Original samples AC-GAN 2h MFC-GAN 2h

Original samples AC-GAN 5h MFC-GAN 5h

Original samples AC-GAN 1k MFC-GAN 1k

Original samples AC-GAN 2k MFC-GAN 2k
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Original samples AC-GAN 3k MFC-GAN 3k

Original samples AC-GAN 4k MFC-GAN 4k

Original samples AC-GAN 5k MFC-GAN 5k

Original samples AC-GAN 6k MFC-GAN 6k
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Original samples AC-GAN 7k MFC-GAN 7k

Original samples AC-GAN 8k MFC-GAN 8k

Original samples AC-GAN 9k MFC-GAN 9k

Figure B.3: Comparing samples AC-GAN and MFC-GAN samples from experiments with
varying number of goatee instances in the.
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Table B.1: Mean Freschet Inception Distance (FID) of generated image from experiments on
different number of samples with goatee.

Number of samples AC-GAN MFC-GAN

200 71.45 65.64
500 68.15 65.80
1000 69.14 69.67
2000 66.62 66.79
3000 58.72 62.56
4000 69.48 62.16
5000 57.06 61.25
6000 70.55 71.35
7000 92.97 61.37
8000 73.29 68.51
9000 60.02 59.69
10000 70.44 61.69

Table B.2: True positive rate report on goatee attribute classification and highlighted in bold
are the instances where MFC-GAN performed better than both the baseline and AC-GAN.

Number of samples Baseline AC-GAN MFC-GAN

200 0.0 0.0 0.0
500 0.0 0.0 0.03
1000 0.0 0.0 0.16
2000 0.17 0.0 0.25
3000 0.35 0.0 0.34
4000 0.44 0.0 0.38
5000 0.47 0.0 0.39
6000 0.53 0.0 0.49
7000 0.62 0.0 0.49
8000 0.62 0.38 0.51
9000 0.63 0.0 0.60
10000 0.72 0.38 0.58
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Appendix C

List of Algorithms
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