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Abstract 

Developing a complete characterization of reservoir properties involved in subsurface 

multiphase flow is a very challenging task. In most cases, these properties such as porosity, water 

saturation, permeability (and their variants), pressure, wettability, bulk modulus, Young 

Modulus, shear modulus, fracture gradient cannot be directly measured and if measured are only 

available at small number of well locations. The limited data are then combined with geological 

interpretation to generate a model. Also increasing the degree of this uncertainty is that the 

reservoir properties from different data sources like well logs, cores and well test most times 

produce different results thus making predictions less accurate. 

The present study focussed on three reservoir parameters which are porosity, fluid saturation 

and permeability selected based on literature and sensitivity analysis using Monte Carlo 

simulations on net present value, reserve estimates and pressure transients. Sandstone assets 

from the North Sea were used to establish the technique for uncertainty reduction using machine 

learning as well as empirical models after data digitization and cleaning. These models were built 

(trained) with observed data using other variables as inputs after which they were tested by then 

using the input variables (not used for the training) to predict their corresponding observed data. 

Root Mean Squared Error (RMSE) of the predicted and the actual observed data was calculated. 

Model tuning was done in order to optimize its key parameters to reduce RMSE. Appropriate log, 

core and test depth matching was also ensured including upscaling combined with Lorenz plot to 

identify the dominant flow interval. Nomographic approach involving a numerial simulation run 

iteratively on multiple non-linear regression model obtained from the dataset was also run. 

Sandstone reservoirs from the North Sea not used for developing the models were then used to 

validate the different techniques earlier developed. 

Based on the aforementioned, the degree of uncertainty associated with porosity, permeability 

and fluid saturation usage was demonstrated and reduced.  For example, improved accuracies of 

1-74%, 4-77% and 40% were achieved for Raymer, Wyllie and Modified Schlumberger

respectively. Raymer and Wyllie were also not suitable for unconsolidated sandstones while 

machine learning models were the most accurate. Evaluation of logs, core and test from several 

wells showed permeability across board to be different which also highlights the uncertainty in 

their interpretation. The gap between log, core and test was also closed using machine learning 

and nomographic methods. The machine learning model was then coded into a dashboard 

containing the inputs for its training. Their relationship provides the bench mark to calibrate one 

against the other and also create the platform for real time reservoir properties prediction. The 

technology was applied to an independent dataset from the Central North Sea deep offshore 
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sandstone reservoir for the validation of these models with minimum tuning and thus effective 

for real time reservoir and production management. While uncertainties in measurements are 

crucial, the focus of this work was on the intermediate models to get better final geological models 

since the measured data used were from the industry.  
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Chapter One 

1.1 Introduction 

Despite the huge returns on investment in the oil and gas industry, several researchers have 

asserted that the level of performance is usually below expectation in terms of production 

efficiency (McVay and Dossary, 2014). Aminzadeh (2005) also pointed out challenging areas in 

the oil and gas industry influencing the required expenditure on facilities and field development 

(Table 1.1). Exploration and Production companies delivered only about half of its predicted 

reserves in the last twenty years of the twentieth century (Rose, 2004). In fact, Merrow (2011) 

stated that success rate of petroleum projects worth more than 1 billion USD i.e. megaprojects, 

declined from 50 to 22%. Although Leach (2006) asserted that the crucial source of value in 

business is uncertainty, the underperformance of projects was ascribed to uncertainty and 

geotechnical parameters estimate (Rose, 2004; Begg et al., 2003) together with calculation of 

hydrocarbon reserves, which represents the main asset of exploration and production companies. 

Huge amount of world oil and gas have been bypassed on both microscopic and macroscopic scale 

in already discovered and developed reservoirs (Bassiouni and Velic, 1996). These bypassed 

hydrocarbon on a microscopic scale are immobile oil and gas trapped in the pores of reservoirs 

by capillary and viscous forces and cannot be displaced by water hence recovery is enhanced 

using chemical flooding techniques and miscible gas. On a macroscopic scale, mobile oil remains 

in the reservoir due to inaccurate delineation of reservoir boundaries, reservoir heterogeneity 

leaving considerable volumes of oil bypassed in isolated pockets, water flooding with oil left 

behind the water front in these water-swept zones, attic oil trapped updip from the highest well 

in a reservoir, water coning causing the oil cut to prematurely get to its economic limit leaving a 

significant amount of mobile oil unrecovered, misinterpretation of well logs due to complex rock-

fluid system, relatively more focus on structural traps than stratigraphic and combination traps 

especially in sandstone reservoirs. The magnitude of the bypassed oil is substantial in that for 

example in offshore Gulf of Mexico nearly two-thirds of the known resources will remain 

unrecovered after using conventional techniques with about 5.53 billion barrels i.e. 878 million 

cubic metre (19% of the original oil in place) in the class of bypassed oil. Bear in mind that this 

huge amount is just for the Gulf of Mexico and also known reserve cases let alone considering a 

global scale and unknown cases even in matured fields. In all of these reasons for the bypass and 

abandonment summarised into reservoir development and management, permeability plays a 

key role in determining whether a well should be completed and brought online, choosing optimal 
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drainage point and production rate, designing EOR configurations and injection settings as well 

as optimizing perforation and completion design.  

Although cores are direct measurements in some way, they are not sufficient to show reservoir 

heterogeneity since it is only possible to drill limited number of wells due to time and cost. Again 

they are taken on samples that have been moved to surface and also cleaned thus are different 

from insitu conditions such as clay alteration, relief cracks, saturation although others like 

reservoir pressure, effective stress (overburden minus pore pressure) and temperature might be 

created in the laboratory. Well logs just like core give a layer by layer estimate of permeability at 

a scale greater than cores. As pointed out by Haldorsen (1986), the volume of rock investigated 

by a sonic log is 162 times the volume of a one-inch diameter core plug and their porosity 

relationship is shown in Equation 4.2. Permeability is obtained indirectly using models like Timur, 

Tixier, Coates and Dumanoir which have all also been modelled on North Sea data with Timur as 

shown in Chapter Four. 

Even with their objectives, it is incredibly important to admit the limit to the level of detail that 

well testing provides whether in terms of reservoir evaluation or description since pressure 

transmission is diffusive hence it is controlled mainly by average conditions rather than local 

heterogeneities. This underscores the point that well test is insensitive to most local scale 

heterogeneities but gives average or bulk reservoir properties. Coupled with the fact that tests 

can be compromised by say a leaking packer or a leak at the wellhead due to wellbore or 

interference effects from other injectors or producers although surface recorders could be used 

to nip this in the bud. Also mini-frac conducted in very low permeability reservoirs make it 

difficult to guess when reservoir dominated radial flow has been attained. Tests need to be 

designed to be long enough so as to get reliable and useful data which also means more money 

and productive time. Kuchuk (2015) stated that the near well bore region dominates the 

drawdown and buildup pressure transient behaviour and it’s true for all types of reservoirs. 

There have been attempts to determine average reservoir pressure without shutting in wells as 

is the case with buildup tests which could cause companies money. In 1991, it was estimated that 

just BP Exploration in Alaska alone lost $1.3 million in lost-production due to shutting in wells for 

test purposes (Ahmed et al., 1994). Thus the conventional methods for estimating average 

reservoir pressure do not only require a prior knowledge of shape factor but also result in lost 

production. 
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Table 1. 1 Showing key challenges in the E&P industry with challenges 2, 7, 11, & 12 part 

of the motivating factors for this work (modified after Aminzadeh, 2005). 

S/N Important Exploration & Production Challenges 
1 Accurate positioning of complex structures (salt and overthrust) 
2 Characterization of thinly laminated sand/shale sequences 
3 Deep exploration and accurate depth imaging 
4 Distinguishing commercial gas from non-commercial gas 
5 Fault detection and their types (e.g sealing vs non-sealing) 
6 Environmental issues (gas clouds, mud volcano, basalt) 
7 Fluid/permeability prediction, quantifying uncertainty and changes 
8 Exploration in difficult areas 
9 Frequency, orientation, connectivity and type of Fractures 
10 Evaluation and prediction of over-pressured reservoir 
11 Carbon sequestration and storage 
12 Accurate calculation of hydrocarbon reserves 

There are several reservoir rock properties such as total porosity, effective porosity, absolute 

permeability, effective permeability, relative permeability, reservoir pressure, grainsize, sorting, 

grain shape, fluid saturation, irreducible water saturation, critical gas saturation, critical oil 

saturation, movable oil saturation, capillary pressure, surface and interfacial tension, wettability, 

temperature, net pay thickness, reservoir heterogeneity, anisotropy, compressive strength, 

poisson ratio, shear modulus, young modulus, depletion profile, FZI while the fluid properties 

include viscosity, compressibility, solubility, molecular weight, formation volume factor, API 

specific gravity, liquid specific gravity, bubble point pressure, solution gas-oil ratio, solution oil-

gas ratio, retrograde dew point pressure, saturation pressure, critical point, interfacial tension, 

diffusion coefficient. Most of these properties have several models which give different results as 

well (Table 1.1). Assumptions made in the necessary simplication of these models are quite 

different from reality. Box (1979) stated that all models are wrong but some are useful which is 

no less true considering the fact that the earth’s subsurface is too complex than we can ever 

accurately model and thus requires an interdisciplinary approach for better results (Catuneanu, 

2006). 

Reservoir characterization which involves describing the various reservoir properties to provide 

a reservoir model for accurate prediction is an essential aspect of reservoir engineering (Jong-Se, 

2005) although developing a complete characterization of multiphase flow parameters is a very 

challenging task. Reservoir properties like porosity, reservoir pressure, fluid saturation, 

permeability amongst others are indirectly measured and even if directly measured are only 

available at relative small number of well locations compared to the size of the field. These limited 

data are then combined with geological and geophysical interpretations to generate a geostatical 

models. The degree of uncertainty is further increased since the different data sources like well 

logs, cores and well testing all give different results. 



4 
 

Based on the aforementioned, there is need to close the gap between especially well logs, core 

and well test (Figure 1.1) by updating through machine learning to: 

a) provide the bench mark to calibrate one against the other especially when any is absent 

and also create a platform for real time reservoir properties prediction.  

b) provide continuous quality improvement in such large and complex process environment 

c) allow time cycle reduction and efficient utilization of resources. 

Table 1.2 summarises the different variables predicted alongside the algorithm and input data 

used. North Sea siliciclastic reservoirs were first used to build the different models for uncertainty 

reduction while a part of the dataset not used for the development of the models was used for 

validation (due to unavailability of Gulf of Guinea Deepwater sandstone reservoir data which was 

supposed to be the focus of this research). The technology should be applicable to global 

provinces with minimum tuning and effective for reservoir and production management. 
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Table 1.2: Indicating which variables have been predicted, algorithms and input variables used for the prediction 
 

 

S/N 

 

Variable Predicted 

Data Summary Statistics  

Algorithm Used 

 

Input Data Amount of 

Data 

Mean 

1 Porosity  446 16.4 Support Vector 

Regression 

∅𝑛, ∅𝑠 

2 Water Saturation 471 32.03 Stacked Ensemble 𝑔𝑟, 𝑖𝑙𝑑, ∅𝑛, 𝑟ℎ𝑜𝑏 

3 Irreducible Water 

Saturation 

290 42.21 Stacked Ensemble 𝑔𝑟, 𝑖𝑙𝑑, ∅𝑛, 𝑟ℎ𝑜𝑏 

4 Residual Oil Saturation 243 22.37 Stacked Ensemble 𝑔𝑟, 𝑖𝑙𝑑, ∅𝑛, 𝑟ℎ𝑜𝑏 

5 Relative Permeability 

(water and oil) 

132 27.13; 17.35 Deep Learning 𝑆𝑤 , 𝑆𝑜, 𝑆𝑤𝑖, 𝑆𝑜𝑟 , 𝑘, 𝑝ℎ𝑖, 𝜇𝑜, 𝜇𝑤,  

(𝑆𝑤 − 𝑆𝑤𝑐), (𝑆𝑜 − 𝑆𝑜𝑟), (1 − 𝑆𝑤𝑐), (𝜇𝑜 𝜇𝑤⁄ ) 

6 Well Test Permeability 114 48.34 Support Vector 

Regression 
𝑘𝑙𝑜𝑔, 𝑘𝑐𝑜𝑟𝑒, (𝑘𝑙𝑜𝑔)1 2⁄ , (𝑘𝑐𝑜𝑟𝑒)1 2⁄ , 

(𝑘𝑙𝑜𝑔)2, (𝑘𝑐𝑜𝑟𝑒)2 
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1.2 Evaluation Methods 

The datasets used in this work were described in Table 1.2 comprising those used for porosity, 

water saturation, irreducible water saturation, residual oil saturation, relative permeability and 

well test permeability. As supervised learning methods (Section 3.6.5.3) were used for the work, 

the datasets were divided into training, validation and test sets. The dataset split ratio depends 

on the total number of samples in the data and the actual model been trained. Apart from the 

relative permeability dataset, all others were randomly split. Training datasets are those used to 

fit the model, validation dataset provide the unbiased evaluation of the model fit of the training 

dataset while tuning model hyper parameters while thee test dataset provides an unbiased 

evaluation of the final model fit on the training dataset. 

1.3 Literature Review 

Modeling of petrophysical properties from cores, well logs and well test has an important role in 

oil and gas exploration and production. These datasets pose two main challenges (a) diverse and 

nonlinear nature of reservoir variables and (b) from a theoretical perspective, absence of a direct 

relationship between the datasets. Permeability, fluid saturation, porosity which are some of the 

important reservoir variables, have a non-uniform distribution spatially. Nonlinear machine 

learning models like artificial neural networks, support vector regression, ensemble models, 

fuzzy logic have gotten recognition as the potential tool for solving nonlinear and complex 

problems (Nikravesh and Aminzadeh, 2001; Hamada and Elshafei, 2010; Borsh et al., 2010; Majdi 

et al., 2010). Nikravesh and Aminzadeh (2001), used an ensemble of neural and fuzzy logic to 

optimally develop a set of rules for nonlinear mapping between grainsize, porosity, permeability. 

Good prediction oerformance and clear variable relationship was discovered. 

Helle and Bhatt (2002) developed a committee machine (CM) networks for the prediction of 

porosity and permeability is input data from logs like density, sonic, neutron, gamma ray fom 

NorthSea wells. Two separate networks using different inputs were built and then combines to 

form a committed machine. They opined that the accuracy of their model is restricted only by the 

accuracy of the real data used for its development claiming that their approach is more accurate 

that multiple linear regression. Al-Anazi and Gates, (2012) evaluated the capability of support 

vector regression (SVR) to make predictions of porosity and permeability with small sample size 

heterogenous sandstone reservoir data. Compared results with multilayer perceptron neural 

network showed that the SVR model consistently yielded better predictions of the porosity and 



7 
 

permeability even with the small sample size than the MLP method using less computional time 

as well.  

Ahmadi et al., (2018) predicted reservoir permeability using Neural Networks, Genetic 

Algorithms and Particle Swarm Optimization, fuzzy decision tree as well as their combination. 

Their results showed that the deviation the different model was found to be less than 1% for the 

hybridized models thereby indicating the hybridized techniques for permeability and porosity 

can result in more reliable models. Huang et al., (1998a&b) also used genetic algorithms (GA) to 

optimize the connection weights of a neural network for the prediction of permeability from well 

logs. They found that the GA-trained networks gave consistently smaller errors compared to the 

conventional backpropagated networks although comparatively, the convergence of the former 

were slower.  

Guler et al. (1999) developed several neural network models for relative permeability 

considering different parameters influencing the parameter and selected the best model to make 

predictions for the test set. Important to state that ordinary neural neural networks require far 

more neurons to perform like deep learning models.  Arigbe et al., (2018), used deep learning to 

predict 2- and 3-phase relative permeability. The common factors influencing relative 

permeability as well as parameter combinations from Wyllie and Baker, were used as input for 

the model. The deep neural network performed better than the existing empirical models 

especially for test data due to their ability to generalize and regularize.  

Zhang et al., (2019) used Long Short-Term Memory (LSTM) to predict reservoir water saturation 

using data derived from monitoring and simulating an actual reservoir. They got prediction with 

overall AARD of less than 14.82% outperforming other models such as Gated Recurrent Unit 

(GRU) and Recurrent Neural Network (RNN) presenting another way for fast and robust water 

saturation prediction. Al bulushi et al., 2009 used neural network models to make prediction of 

water saturation from well logs. They developed two case studies and presented that they 

performed better than multiple linear regression. The neural network model proved its 

robustness from water saturation prediction. 

Training multiple linear regression and multilayer perceptron neural networks with core and 

well logs often suffer from poor generalization to test data especially when the training sample is 

small probably due to the empirical risk minimization (ERM) principle which converges 

asymptotically when sample size increases. On the contrary, the structural risk minimization 

(SRM) principle which is used by support vector regression and other models allows the training 

samples to cover the complexity of the parameter space so that the model is not only able to match 

the training sample but also able to generalize to new data. For this work SVR models were 
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developed for porosity and well test permeability, deep learning model was used for relative 

permeability and stacked ensemble models were used for fluid saturation. 

1.4 Project Driver 

Reservoir properties from different sources such as core, log and well test as well as models (for 

porosity, saturation and permeability) give different results hence the work is driven by 

uncertainty reduction in order to close the gap between the sources, determine the most accurate 

and establish a relationship between them. If well test is the most accurate for permeability 

prediction for example, it should be deduced from log and core data if not available. Recent 

technological advances and the increasing drive on maximizing the recovery from especially 

marginal fields consequent on the energy demand currently experienced in the world, has led to 

the upsurge of interest and quantitative modelling of rock properties (Bryant and Flint., 1993).  

Characterization of heterogenous geological systems need not just a multi-disciplinary approach 

involving data from all relevant measurements but also understanding the scale and limits of 

these measurements. These geological, petrophysical and engineering characterization combines 

both their static and dynamic behaviour to ensure great improvements in their description and 

predictions. Fethi et al., 2010 asserted that permeability is probably the most challenging issue 

for both geologists, petrophysists and reservoir engineers especially in reservoirs where facies, 

petrophysical properties and petroleum systems are completely different which in turn leads to 

more disparity between the different sources for its determination. Figure 1.1 shows the 

increasing disparity between core permeability and well test permeability as the reservoir 

becomes more and more complex from layered to channel-levee complexes. This discrepancy is 

as a result of the collective effect of: 

a) scale of measurement of the static porosity component of core and log permeability model

which is smaller than the radius of investigation of well test

b) tensorial nature of permeability not being reflected in the log permeability owing to the

fact that its models are from parameters that are non-directional,

c) averaging technique used for log permeability which gives different values for the

different types of averaging as 𝑘̅ℎ𝑎𝑟𝑚 ≤ 𝑘̅𝑔𝑒𝑜𝑚 ≤ 𝑘̅𝑎𝑟𝑖𝑡ℎ as well as

d) the heterogeneity of the flow system whether pores and/or fractures.

As all these factors are magnified with increasing volume of investigation, the discrepancy in 

permeability of the different sources is also increased. The uncertainty lies in both the measured 
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data and derived variables which are then propagated to the static models. Getting it right (related 

to accurate knowledge of porosity and saturation for log models) will enhance reservoir 

description and thus reduce the vast amount of oil and gas bypassed and left behind pipe in many 

reservoirs around the world. A true estimate of permeability and its distribution in a large 

number of wells is one of the main objectives of reservoir characterization (Cozzi et al., 2006).  

 

 

Figure 1. 1 Discrepancy between the different sources widened with increasing 

complexity or heterogeneity of the reservoir. 
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1.5 Aim of Project 

To reduce the uncertainty associated with reservoir rock properties 

1.6 Objectives 

The objectives of this work are: 

1. Demonstrate why the parameters focussed on in this work were chosen

2. Demonstrate the level of uncertainty inherent in the determination of these reservoir

properties.

3. Develop porosity, permeability and water saturation models from well logs to save time

and cost associated with the acquisition of cores and well test.

4. Reduce uncertainty in well test analysis.

5. Ascertain which permeability source is more accurate and develop a methodology to

reduce the uncertainty in the integration of well logs, cores and well test establishing a

relationship between them KWT, KCORE and KLOG to determine the most accurate source

when not available due to time and/or cost from the other two.

6. Validation with other North Sea reservoirs not used for the development to test the

repeatability and reproducibility of the models.
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1.7 Research Questions 

Table 1. 3 Research questions, key concepts and contents 

RESEARCH 
QUESTIONS 

OBJECTIVES CONCEPT RESEARCH 
CONTENT 

How do we use porosity 
values from neutron, 
density and sonic to get 
best results 

Sources of porosity and 
the implications for using 
porosity data from 
different sources 

Guidelines for porosity 
usage from different to 
obtain best results 

GAP 
No systematic guideline 
for usage of porosity 
considering its sensitivity 
in several models 

RESEARCH 
Map porosity sources with 
their usage 
 

Are there lapses in the 
models currently used for 
porosity, fluid saturation 
and permeability  

Demonstrating the extent 
of the uncertainty 
between the different 
models for porosity, 
permeability, relative 
permeability, water and 
oil saturation, irreducible 
water and residual oil 
saturation 

More generic models that 
are theoretically correct 

GAP 
Uncertainty in choosing 
the right model from the 
huge numbers available 
each with several 
assumptions and hence 
not generic.  

RESEARCH 
The need for generic 
models that honour the 
physical model for these 
properties. 

Which of the permeability 
data from core, log and 
well test is more accurate 

To achieve better 
modelling from more 
accurate data 
 
Reduce uncertainty in 
well test analysis 

Demonstrate the impact 
on model when 
discrepancy in results 
from the various sources 
is large 

GAP 
Technique for 
determining which data 
source is more accurate 

RESEARCH 
Systematic approach to 
determine what data 
sources to use for a 
particular case study 

How to close the gap 
between well log, core 
and well test and to 
establish a relationship 
between them 

Reduce the uncertainty in 
the integration of core, log 
and well test 

Establish a relationship 
𝑘𝑐𝑜𝑟𝑒 , 𝑘𝑙𝑜𝑔 and 𝑘𝑡𝑒𝑠𝑡  to 

enable the prediction of 
any when not available 
due to time constraint 
and/or expense 

GAP 
Expense and time for 
cores and buildup test. 
Real time parameter 
prediction 

RESEARCH 
Model the relationship 
between the different 
sources for permeability. 
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1.8 Conceptual Plan 

The plan involves getting models of the listed parameters from the most readily available 

source(s) using North Sea data. The uncertainty associated with these parameters is thereby 

reduced and confidence in their interpretation increased. These analysis results in these 

parameters being available across board (where such data is present). For this work permeability 

from the different sources was then modelled using machine learning and nomographic approach 

thus making scale wise precise prediction possible from relatively smaller scale. Same could have 

been done for water saturation if Reservoir Saturation Tool (RST) well test data were available. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 2 Conceptual plan for the work 
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1.9 Contributions to Knowledge 

 
This sections entails the contributions this work has made to existing knowledge as listed below: 

• The Developed Support Vector Machine Regression porosity model consistently gave 

errors of about 1% in all sandstones which could be less if more tuning was done. The 

commonly used default Schlumberger, Raymer and Wyllie Time Average could lead to 

errors of up to 17% in unconsolidated sandstone formation, about 5% in semi-

consolidated sandstones and about 3% in consolidated sandstone reservoirs for reserve 

estimation separate from those caused by other parameters. This can be found in Chapter 

Four. 

• Data driven fluid saturation models to reduce uncertainty associated with its prediction 

both in terms of which one to choose from the myriads of empirical models available and 

the cost associated with their determination from cores. Generally the machine learning 

models performed better than the empirical models. Chapter Four contains details of this 

work. 

• Deep Learning for real-time relative permeability prediction from common well log 

parameters especially in an industry where big data is now available providing the 

platform to systematically forecast reservoir fluid and rock properties in order to 

drastically optimize the cost and time needed for laboratory experiments. Details can also 

be found in Chapter Four. 

• A 50% decrease in the pay thickness appears to cause more destabilization on constant 

flowrate pressure drawdown, buildup and its derivative than a 100% increase in pay 

thickness. Overall a high decrease in porosity, permeability and pay thickness was more 

detrimental than a high increase. With this been said, it is very important to accurately 

define Effective Flow Interval. This was discussed in Chapter Five but its calibration with 

other data sets such as core and logs is discussed in Chapter Six.  

• It has been shown from using the techniques presented in this work that making good use 

of cores and well logs (macro and meso-scale respectively) can evaluate well and 

reservoir performance (well test) with accuracy which is particularly important in deep 

water offshore environment where the cost of DST’s in every well in an entire field as well 

as in the different pay zones which the well penetrates, will not be justified. A relationship 

between the different dataset was learnt using appropriate machine learning algorithms. 

Chapter Six contains this. 

• Developed a relationship between core, log and well test permeability using nomographic 

technique as well to provide a quick look for permeability determination. This can be 

found in Chapter Six.  
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1.10 Thesis Layout/Arrangement 

A general overview of the thesis layout with the underlying theories and concepts with the aim of 

giving a first hand grasp of the concepts shown in each chapter. 

Chapter One is general introduction of the issues the research is to address, what drives this work, 

the project’s aim and objectives, research questions and the contributions made to existing body 

of knowledge. Chapter Two details the different properties together with the different data 

sources such as log, core and well test. It also describes why porosity, fluid saturation and 

permeability (and their variants) were selected amongst the different rock and fluid properties 

using Monte Carlo simulations to generate frequency and tornado plots with both reserve and 

pressure transient data. Chapter Three entails the methodology of the research highlighting data 

digitization and wrangling, describing the different machine learning algorithms used for the 

research in detail. 

Chapter Four introduces porosity concept in siliciclastic reservoirs discussing the uncertainty, 

guidelines for its usage in unconsolidated, semi-consolidated and consolidated sandstones also 

highlighting the implication of using default porosity models on reserve estimation. Total and 

irreducible water saturations as well as residual oil saturation were modelled from conventional 

well logs. The Chapter also shows absolute permeability modelling for North Sea reservoirs 

noting how the existing empirical models fair in the North Sea knowing which one to take forward 

in its relation with core and well test permeability later in Chapter Six. It continues with a deep 

learning modelling of relative permeability for real time application comparing it with other 

networks and common software empirical models.  

Chapter Five offers well test analysis to determine reservoir properties especially permeability 

as well as consider well test uncertainty reduction. Chapter Six analyses the derived log, core and 

well test permeability to ascertain the disparity between them as well as develop a relationship 

between them using both machine learning and nomographic models including validation with 

an independent North Sea data not used for model development. Chapter Seven presents the 

conclusions of the research study, gives a review of the entire work and recommendations for 

further work. 
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Chapter Two 

Review of Sandstone Reservoir Variables 

2.1 Introduction 

For oil and gas to form, there has to be some play elements such as a source rock, migratory path, 

reservoir rock, trap to prevent it from getting to the earth surface and ofcourse the formation of 

the hydrocarbon and the above elements take time (millions of years). The source rock is mainly 

shales (clays with fissility) e.g. the Agbada Formation in the Niger Delta and the Kimmeridge clays 

of the North Sea. Migration from source to reservoir due to factors like buoyancy, compression, 

maturation, thermal expansion, topography, gravitational separation of the fluids. Again traps 

which are not just cul de sac i.e. passive containers or receivers but an active force draft system 

that can discharge water at depth and can also be structural caused by tectonics (anticlines, salt 

domes, faults), stratigraphic due to sediment deposition (pinch outs, unconformity, reef, bedding 

plane), hydrodynamic due to differences in pressure initiated by water flow and lastly 

combination traps due to a combination of the above types with all these traps needing to be 

insitu at the right time to prevent oil and gas migration to the surface. The reservoir element of 

the play fairway can be sandstones or carbonates. Over 60% of the world’s oil and gas reserves 

are found in siliclastic rocks (sandstones) having interconnected pore spaces which are more 

common than carbonate reservoirs (Bjørlykke and Jahren, 2010). Sandstones are the focus of this 

study although the models can also be applied to carbonates especially if the database is 

improved.  

In this Chapter, a brief description of North Sea petroleum system is presented after which a 

review of well logs, core and well test data sources was undertaken together with the tools and 

methods used for evaluating reservoir properties. This is necessary since the study focusses on 

sandstone reservoirs hence carbonates were not exclusively dealt with here. In addition previous 

works in the literature using Net Present Value to justify the chosen parameters focussed on in 

this work, a Monte Carlo simulation was also run on static and dynamic data to systematically 

justify them. The stochastic approach randomly selects combinations of these parameter values 

(and their assigned distribution) using a computer algorithm and a selected number of simulation 

runs to build a reserve distribution curve. A pressure transient parameter sensitivity analysis was 

also carried out using the same technique. These helped to know the important properties on 

both the static and dynamic aspects of reservoir characterization. The working principles of the 
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different logs including gamma ray, resistivity, density, neutron, sonic alongside the different 

properties that they measure was discussed.  

2.2 Sandstone Reservoirs 

Around the world, reservoir rocks are dominated by sedimentary rocks since they contain spaces 

available when the petroleum was formed. These sedimentary reservoir rock can be siliclastic 

(allochthonous) meaning they were weathered from other rocks, transported and deposited. This 

depositional environment is a geographical location where physical, chemical and biological 

processes are taking place to permit the accumulation of sediments e.g. lacustrine (lake), aeolian 

(wind), fluvial (river), deltaic distributory channel, fluvial point bar, marine shelf, marine deep 

water reservoirs (Ganapathy et al. 2000). Each of these sandstones has its distinct internal 

geometry and features controlling the nature of petroleum production. They contain particles 

sizes of between 1/16  to 2 mm in diameter with the lower limit tending towards silt and clay 

while the upper limit towards coarser grains like pebbles (conglomeratic sandstones) as seen in 

Table 2.1. These rocks are referred to as sandstone reservoirs if they contain hydrocarbon (Figure 

2.1). The clays acts as lubricants for the mechanical compaction of the sands and also reduces 

porosity. Quartz cementation increases the rock strength at burial depth of 2-3km (i.e. 80-100oC) 

although due to grain fracturing, coarse grained sands could additionally show substantial 

compaction. Reservoirs can also be carbonates (autochthonous) with carbonate fractions of more 

than 50% e.g. reef, limestone, dolomite. This research focusses on sandstone assets of the 

Northern, Central and Southern North Sea. 
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Table 2. 1 Showing the classification of sandstones in terms of grain size (Wentworth, 

1922). 

∅ = −𝒍𝒐𝒈𝟐𝑫 Size range (metres) Wentworth size 

scale 

Lithology 

<-8 >256 Boulder  

Gravel -6 to -8 64–256 Cobble 

-2 to -6 4-64 Pebble 

-1 to -2 2-4 Granule 

0 to -1 1-2 Very coarse sand  

 

Sand 

1 to 0 0.5-1 Coarse sand 

2 to 1 0.25-0.5 Medium sand 

3 to 2 0.125-0.25 Fine sand 

4 to 3 0.0625-0.125 Very fine sand 

8 to 4 0.0039-0.0625 Silt Mud 

<8 <0.0039 Clay 
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Figure 2. 1 Schematic Geology of Petroleum Resource (Encyclopaedia Britannica, 2012) 

2.2.1 North Sea Basin 

The North Sea which covers an area of about 750,000 squared kilometres, is located at the margin 

of the Atlantic Ocean and is divided into three geographic areas (Figure 2.2) namely: The Viking 

Graben in the Northern part (includes both United Kingdom and Norway); The Moray Firth/Witch 

Ground in the west-central part (United Kingdom only); The Central Graben in the Southern parts 

(Denmark, Germany, Netherlands, Norway and the United Kingdom). The Caledonian Orogeny 

encompassing the Ordovician to Early Devonian (490-390 ma) assembled the configuration of the 

igneous and metamorphic basement rocks which lie beneath the North Sea sedimentary basins. 

This was done through the closure of the Lapetus Ocean and the Tornquist Sea (Andrews et al. 

1990; Johnson et al. 1993; Gatliff et al. 1994; Glennie and Underhill 1998). The Southern North 

Sea was also formed during this time as a result of a long history of basinal subsidence.  

The main source rock is the Kimmeridge Clay Formation which became mature with the help of 

Cretaceous and Cenozoic post-rift thermal subsidence and burial (Johnson and Fisher 1998). 

Sandstone reservoirs caused by mass flows contain about 20% of the proven reserves of this oil 

province (Pengrum and Spencer 1990). Due to an evolution from the emplacement of lateral sheet 

sands on the basin floor, apparently all UK sector Palaeogene sand systems became gradually 

distal to the east and SE. 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiAmIvuwu3fAhV6QRUIHVpoCZgQjRx6BAgBEAU&url=https://www.britannica.com/science/petroleum-trap&psig=AOvVaw3vr9UnuCH6YWqPOUuNB_i3&ust=1547563814633739
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The Central North Sea fields mainly produce from syn-rift Upper Jurassic and/or post-rift Lower 

Cretaceous or Palaeogene reservoir sandstones. The area has fault traps (Piper and Brae fields), 

stratigraphic traps (Britannia field) which are either in shallow or deep depths. In the Southern 

North Sea, Aeolian dune sandstone of the pre-Zechstein Permian Rotliegend Group, produces 

about 85% of all gas while 13% is from Triassic fluvial sandstone. This huge percentage of gas on 

the Permian sandstone shows efficiency of the seal provided by Zechstein Group (Permian 

evaporate-rich succession). 

Table 2. 2 Prospective Recoverable Oil and Gas in the North Sea (OGA, 2016) 

North Sea Graben Recoverable Oil (BBO) Recoverable Gas (TCF) 

Lower Mid Upper Lower Mid Upper 

Northern North 

Sea 

0.53 0.84 1.27 0.67 1.17 2.19 

Central North Sea 2.29 3.05 4.05 5.97 8.65 12.7 

Southern North 

Sea 

0 0 0.23 3.21 4.17 5.47 

West of Shetland 0.47 1.07 2.03 2.47 4.66 7.7 

West of Scotland 0 0.50 2.00 0.49 1.48 6.00 

Land 0.05 0.16 0.32 71 0.25 0.85 

Other areas of the 

UKCS 

0 0.02 0.18 0 0.035 0.42 
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Table 2.2 provides a broad indication of the remaining potential with greater than 5% geological 

chance of success cut off. Some of these leads with their high level of risk may not be produced in 

the immediate future, a data driven uncertainty reduction method discussed in this work should 

be part of the industry and OGA stewardship process since commercially recoverable reserves 

will strongly rely on whether the level of uncertainty in these and many other leads are adequate. 

The total undiscovered oil and gas in the North Sea is estimated at between 3.3 to 10.1 billion 

barrels and 12.9 to 35.3 trillion cubic feet respectively (OGA, 2016). Data from Northern, Central 

and Southern North Sea were used to develop the models and as stated earlier, the emphasis is 

on sandstone assets. 

 

 

Figure 2. 2 Schematic of the North Sea Graben  

 

 



21 
 

2.3 Well Log Practice 

Well logs give a concise and detailed plot of reservoir parameters against depth (Figure 2.3). The 

various properties obtained from well logs and their governing equations are summarily shown 

in Table 2.3. Models obtained from the different logs like gamma ray, resistivity, neutron, density, 

sonic as well as nuclear magnetic resonance logs are highlighted and some of their limitations 

also pointed out. Different results are also obtained for the same variable from the same log, 

adding to the uncertainty. The ability to interprete a log depends on knowing the significance of 

each measurement as summarised in the following sections.  

 

 

Figure 2. 3 Example footprints of the different types of well logs (CSEG, 2017).  
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2.3.1 Gamma Ray (GR) 

GR measures radioactivity that occurs naturally in the formation thus being able to delineate 

reservoir rocks such as sandstone and carbonates from non-reservoir rocks like shales and clays. 

The latter contain naturally occurring radioactive elements like uranium, potassium, thorium and 

gives a high GR deflection while sands give a low GR value. This is found in track one of Figure 2.3.  

2.3.2 Spontaneous Potential (SP) 

This log gives a measurement of the difference in voltage between a fixed electrode at the surface 

and a movable electrode in the well bore. The potential difference is caused by exchange of fluids 

with different salinities i.e formation fluid and mud filtrate which invades the permeable 

formation during drilling. If filtrate salinity is less than formation fluids, chlorine ions from 

formation water causes the SP log to deflect to the left and vice versa. This was not used in this 

study as they were not available. 

2.3.3 Resistivity 

Resistivity logs measure the resistivity of the flushed zone around the borehole (shallow), the 

mud filtrate invaded zone (medium) and the uncontaminated zone which is the true resistivity of 

the pristine formation (deep). The diameter of mud filtrate invasion and delineation of permeable 

zone can be evaluated using the separation of the curves. Resistivity log is shown if track 2 of 

Figure 2.3.  

2.3.4 Density 

This log measures the electron density of a formation. The tool emits gamma rays into the 

formation which collides with formation electrons thus giving off energy and scattering in a 

process referred to as Compton scattering. The number of collision is related to the number of 

electrons in the formation hence in low density formations, more scattered GR reach the detector 

than in high density formations. In Figure 2.3, they are shown in track 3 alongside the neutron 

log. 

2.3.5 Neutron 

Rock pores are filled with water and hydrocarbon which has hydrogen as the main constituent. 

This concentration can be used to determine porosity. Hydrogen atoms have similar mas as 

neutron which emitted by the tool using a chemical source. The neutrons loose maximum energy, 

slow down and reach very low energy (thermal state) when they collide with hydrogen. The rate 

at which this happens is proportional to hydrogen index (hydrogen concentration) when is then 
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converted to porosity. Neutron porosity assumes clean, liquid filled formation and hence needs 

accurate calibration to be useful. It captures clay bound water thus used in the determination of 

irreducible water saturation which is dependent on lithology as shown in Chapter Four. They are 

shown in track 3 alongside the density log. 

2.3.6 Sonic 

Sonic logs measure the interval transit time ∆𝑡 as a compressional wave in microseconds per foot. 

It is affected by lithology and porosity. Fluid filled porosity slows down waves while they are 

faster in dense and consolidated formations. Interval transit time is the inverse of velocity. Sonic 

log response are adversely affected by non-uniform hole size, sonde tilt, and gas cut bore hole fluid 

leading to erroneously high or low reading depending on the size of the non-uniform hole and 

geometry of the tilted sonde. They are affected by fractures as well depending on the hole 

orientation. Compressional wave amplitudes is drastically reduced across fracture planes with dip 

angles of 15-850 but much less affected by near horizontal, horizontal or vertical fractures. In 

Figure 2.3, the sonic log is shown in track 4. 
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Table 2. 3 Log and example equations of how their properties were obtained as well as their limitations. 

LOGS PROPERTIES MEASURED MODELS REMARKS 

Gamma Ray 

(GR) 

Lithology identification 

Gamma Ray Index (𝐼𝐺𝑅) 

Volume of Shale (𝑉𝑠ℎ) 

Correlating cores with logged depth 

Estimate bed boundaries 

Clay volume 

Permeability calculation (𝑘) 

Wave velocity calculation 

Perforation depth control 

𝐼𝐺𝑅 =
𝐺𝑅𝑙𝑜𝑔 − 𝐺𝑅𝑚𝑖𝑛

𝐺𝑅𝑚𝑎𝑥 − 𝐺𝑅𝑚𝑖𝑛
 

 

Larionov (1969) 

𝑉𝑠ℎ = 0.083(23.7𝐼𝐺𝑅 − 1) 

 

Xue et al., 1997 

𝒍𝑜𝑔(𝑘) = 0.151∆𝑡 − 0.019𝜙

− 0.0392𝐼𝐺𝑅

+ 0.0222𝑅𝑅 − 7.7 

 

 

 

Need to be sure of the age of the rock 

Resistivity 

(LLS, LLD, 

ILD) i.e. 

shallow and 

deep 

laterolog and 

deep 

induction 

log.  

 

Formation water, true and flushed zone 

resistivities estimation (𝑅𝑤, 𝑅𝑡, 𝑅𝑥𝑜) 

Porosity (𝜙) 

Permeability (𝑘) 

Water saturation (𝑆𝑤) 

Movable hydrocarbon 

Lithology delineation 

Qualitative estimate of shaliness 

Archie, 1950 

𝑆𝑤
𝑛 =

𝑎𝑅𝑤

∅𝑚𝑅𝑡
 

 

Waxman-Smit (1968) 

1

𝑅𝑡
=

𝑆𝑤
2

𝐹∗. 𝑅𝑤
+

𝐵𝑄𝑣𝑆𝑤

𝐹∗
 

 

Schlumberger (1972) 

Archie fails for shaly sands since it was 

formulated with brine as the only 

conductive medium. 

 

 

W-S requires an iterative process since 

water saturation is on both sides 
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1

𝑅𝑡
=

𝑆𝑤
2

𝐹(1 − 𝑉𝑠ℎ)𝑅𝑤
+

𝑉𝑠ℎ𝑆𝑤

𝑅𝑠ℎ
 

 

Timur (1968) 

𝑘 = 0.136
∅4.4

𝑆𝑤𝑖
2  

 

Tixier, 1949 

𝐾
1

2⁄ = 250
∅3

𝑆𝑤𝑖
 

Kozeny-Carman (1927) 

𝑘 = 𝐴1

∅3

𝑆𝑂
2(1 − ∅)2

 

 

 

Saner et al., 1997 

𝑙𝑜𝑔(𝑘) = 7.04 − 4.19(𝐹) 

 

 

 

 

Applicable where condition of residual 

water saturation exists. 

 

 

Physically limited due to the paucity of 

the logs to show a valid OWC. 

 

K-C are suitable for packs of uniformly 

sized spheres and also Surface area 

can only be determined using special 

equipment for core analysis.  

 

Determined by multiple correlation 

from relatively few data. Not used for 

high gravity crudes (API>400) and for 

depths greater than 6500ft. 

Sonic (DT) Porosity evaluation 

Fluid typing 

Interval transit time 

Wyllie et al., (1958) 

𝜙 =
∆𝑡𝑙𝑜𝑔 − ∆𝑡𝑚𝑎

∆𝑡𝑓 − ∆𝑡𝑚𝑎
 

Need to be sure of the fluid type 
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Identification of gas bearing intervals 

Cement evaluation 

Wellbore and Perforation stability 

Anisotropy for determination of orientation of 

natural fractures 

Abnormal pressure 

Gas detection i.e compressive fluid detection 

(better seismic int) 

Assists in Lithology estimate and identification 

Permeability index 

Saturation evaluation 

Understanding rock mechanical properties 

from shear velocity 

Completion design (Hydraulic fracture 

evaluation) 

Estimate rock permeability (𝑘) 

 

Sen et al., 1990 

𝑘 = 106.59(∅𝑚𝑉𝑝 𝑆⁄ )
2.08

 

 

 

Density i.e. 

bulk(RHOB) 

and 

formation 

compensated 

(FDC) 

Porosity and permeability estimation 

Gas zone identification (with other logs) 

Estimates mechanical properties (with sonic) 

Mineral identification esp. in evaporates 

Evaluation of shaly sands and complex 

lithologies 

Schlumberger (1975) 

𝜙 =
𝜌𝑚𝑎 − 𝜌𝑏

𝜌𝑚𝑎 − 𝜌𝑓
 

Tixier, 1949 

𝑘 = 𝑧 (𝑎
2.3

𝜌𝑤 − 𝜌𝑜
)

2

 

Need to know the fluid type with 

certainty 

 

Necessity to estimate exact 

hydrocarbon density. 
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Reservoir type 

Reservoir thickness 

Fracture, LDT 

Inter-well correlation 

Over-pressured zone detection 

Determination of hydrocarbon density 

Determination of oil shale yield 

 

Neutron i.e. 

compensated 

log (CNL) 

and neutron 

porosity 

(NPHI) 

Porosity determination 

Porous formation delineation 

Gas zone identification  

Complex lithology determination Evaluation of 

shale content  

Depth correlation 

  

Nuclear 

Magnetic 

Resonance 

(NMR) 

Petrophysical Analyses 

Porosity estimation and distribution 

- Effective porosity, 𝜙𝑒 
- Total porosity, 𝜙𝑡, vugs, fracturing, 

pores 
Clay bound water and bulk volume irreducible 

water in shaly sands evaluation 

Permeability evaluation (𝒌) 

Lithologic Characterization 

Timur-Coates  

𝑘𝐶𝑜𝑎𝑡𝑒𝑠 = [(
𝜙

𝐶
)

2 𝑀𝐹𝐹𝐼

𝑀𝐵𝑉𝐼
]

2

 

 

Quintero et al., 1999 

𝒌 = 𝑪𝒑𝒇𝟒. 𝟔∅𝟒𝑻𝟐𝒍𝒎
𝟐  

 

T-C represent matrix 𝑘 hence not 

applicable to estimation of fracture 𝑘 
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Grain size and sorting 

Rock composition 

Mineralogy 

Clay presence 

Grain size 

Hydrocarbon identification, characterization 

and typing 

Hydrocarbon vs water 

Gas vs oil 

Heavy vs light oil 

Viscosity estimation  

Type of fluid 

Quality of fluid hydrocarbons 

Reserve estimates 

Hydrocarbon producibility by means of free 

fluid index (FFI) 

Low-resistivity/low-contrast pay evaluation 

Low porosity/low permeability, tight 

formations 

Residual oil saturation determination 

Other applications 

Swanson (1981) 

𝒌 = 𝟒. 𝟔∅𝟒𝑻𝟐𝒍𝒎
𝟐  

 

 

 

SDR Model 

𝒌𝑺𝑫𝑹 = 𝑪 × 𝑻𝟐𝒈𝒎
𝟐 × ∅𝟒 

 

 

 

 

Sen et al., 1990 

𝒌 = 𝟏𝟎−𝟎.𝟏(∅𝒎𝑻𝟏)𝟐.𝟏𝟓 

 

 

Quintero et al., 1999 

𝜙𝑻 = 𝐹𝐹𝐼 + 𝐵𝐹𝑉 

 

 

 

 

 

SDR works only for water saturated 

formations but fails for oil and gas 

bearing unlike T-C model 
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Enhancing stimulation design by selection of 

best sites for well paths and perforations. 
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2.4 Core Analysis 

 

Core analysis information is considered as one of the main corner stones of formation evaluation. 

The improvements in core technology have been driven by the need to acquire core to support 

reservoir exploration and development in new environments and in new play types, including 

deep- and ultra-deep water, high-temperature/high-pressure (HT/HP) reservoirs, and 

unconventional reservoirs, including shale-gas and tight-oil (Owens and Evans, 2013). Whether 

the coring objective is focused on routine core analysis, special core analysis (SCAL) or other 

geologic objectives, significant advancements in core handling have been made to ensure that 

acquired core reaches the laboratory in the best possible state for analysis like being undisturbed, 

contains its fluid saturation, prevention of excessive pressure differential when tripping out of 

hole e.t.c (Skopec, 1994). 

Once the cores are brought to the surface, in most situations they cannot be immediately used to 

calibrate logs. Core depths are different from log depths and thus a basic problem is common 

depth scale (Worthington, 1991). A very time consuming pre-processing job has to be done to 

prepare core data for further quantitative analysis. Core-log matching is a difficult task because it 

involves the comparison of measurements obtained at different scales (Figure 1.1). Moreover, 

factors such as the type of sampling carried out on cores, the laboratory measurement conditions, 

the volume of investigation and the precision of each measurement may affect the comparison of 

wireline log interpretations with core measurements. Furthermore, core data are usually not 

available in all lithological zones due to cost or technical feasibility. 

Over the years there appears to have been a shift from laboratory core measurements to the use 

of logging measurements to derive similar information. Examples include Laboratory 

determination of mineralogy (XRD) vs. “geochemical” logging (elemental analysis) mineralogy; 

core-plug wettability vs. NMR logging measurements; laboratory relative-permeability 

measurements vs. those predicted/estimated from combined NMR and resistivity log analysis. 

Core analysis are still required as “ground truth” for calibrating these new logging-derived 

measurements. 

Today, the time interval separating exploration/exploitation and project management needs a 

faster analysis of core data. One way of achieving this is to estimate reservoir rock properties 

from well log data. Based on papers presented over a decade ago, the focus was on developing 

new experimental protocols that could make core data analysis faster but today, there appears to 

be less emphasis along these lines. Digital rock physics is currently the solution to obtaining core- 
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analysis data more quickly but at present still needs experimental data for validation. The 

experimental data used for calibration e.g., temperature, fluid saturation, pore pressure and 

stresses which ideally should be obtained at reservoir pressure, are often not existing. 

As already stated, core analysis could be special or routine. Special core analysis gives a more 

detailed measurement than routine analysis and must take into account the effects of oil-based 

mud filtrate on especially wettability, variation of relative permeability across different rock 

products and the effect of extraction, drying and test procedures on laboratory water flood 

performance amongst others. Their measurements include capillary pressure, relative 

permeability, NMR analysis, wettability determination, Archie exponents determination (a, n, m), 

pore volume compressibility, core mechanical properties, rock fluid sensitivity, residual oil 

saturation. The common technique for relative permeability determination from core is steady-

state method that involves saturating the core with the wetting phase and the non-wetting phase 

to sustain the needed water saturation. Their relative permeabilities is then determined from the 

resulting pressure and flow rates. Another technique is to first saturate with oil and then displace 

with water while measuring the resulting flow rate and pressure to determine their 

permeabilities. The routine core analysis involves the determination of porosity, permeability 

(vertical and horizontal), rock and grain density, salinity analysis, CT scanning and slab 

orientation.  

2.5 Well Test Analysis 

 

A well test records changes in downhole pressure that follows a change (starting, stopping or 

abridging) in flow or injecting fluid involving a single or multistep rate. Wells are tested to obtain 

reservoir parameters which cannot be measured adequately (in context of scope and quality) 

with other methods like mud and electrical logging, seismic surveys and coring. Well testing 

comes in different modes, sizes and can be done at any stage in the life of the reservoir. Openhole 

testing with Modular Formation Dynamics Tester (MDT), Drill Stem Test (DST) to cased hole 

testing mode using Cased Hole Dynamics Tester tool (CHDT), Reservoir Saturation Tester (RST). 

Production well testing is possible using slickline bottomhole pressure surveys while others 

monitor pressure during shut-in. Some objectives are achieved in hours but some run for days or 

even weeks (pressure build-up test) which could be complicated by many factors such as 

wellbore/boundary conditions and production time. Some of the different types of well testing 

techniques are explained below: 
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2.5.1 Pressure Build-Up (PBU) 

 

These are the measurement and analysis of the bottomhole pressure data obtained following the 

shutting-in (zero rate) of a producing well. The well is first produced at a constant stabilized rate 

and then shutin at time 𝑡𝑝 (Figure 2.4). Reservoir properties like permeability thickness, skin 

effects. It is said to be the most preferred well testing technique as precise control of the rate and 

initial pressure can be ensured. However it leads to loss of production time costing companies 

huge sums of money annually.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 4 Schematic for Pressure buildup technique 
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2.5.2 Pressure Drawdown (PDD) 

 

This is a test in which the rate is held approximately constant as the buttonhole pressure is 

measured (Figure 2.5). It involves shutting-in the well till pressure reaches a static level after 

which it is flowed at a constant rate. They are used to determine permeability thickness as well 

just like build up but they are quite noisy and are quite difficult to interprete, difficult to maintain 

constant production rate and initial pressure determination requires long shut-in period.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 5 Schematic for Pressure drawdown technique 

 

 

 

 

 

 

 

 

 

R
a
te

, 
q
 

B
o
tt

o
m

h
o
le

 

P
re

s
s
u
re

, 

, p
s
ig

 

Time, t 



34 
 

2.5.3 Drill Stem Test (DST) 

 

DST is a technique to temporarily complete a well in order to determine productive 

characteristics of a zone of interest. They provide an indication of the fluid content of that zone, 

the extent of formation damage and the need for stimulation to also increase effective wellbore 

size.  The sequence of pressure recording during DST are shown in Figure 2.6 below: 

 

 

 

 

 

 

 

 

 

 

Figure 2. 6 Drill Stem Test precedure (Chaudhry, 2004) 

 

a) Lowered the tool into the hole causes hydrostatic mud pressure to increase 

b) Setting of the packers causes compression of the mud in the annulus in the test interval 

leading to a corresponding increase in pressure 

c) The tool is opened causing an inflow from the zone of interest 

d) Period of pressure build up resulting from closure of the test tool 

e) The test has ended and the packers are pulled loose leading to a return to hydrostatic mud 

pressure 

f) Tool is pulled. 

 

2.5.4 Interference Testing 

 

In this test, a disturbance is caused in one layer or well while the response is measured form 

another layer or well (Figure 2.7). From the above definition, it can be vertical interference testing 

or multiwall interference testing. The formal involves pressure transient applied to one 

perforated horizon and the response is measured at another perforated horizon in the same well. 

This is used to determine vertical permeability and assessment of presence and degree of vertical 
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communication. In multiwell interference testing, the transient is applied at one horizon in one 

well and the pressure is measured at the same genetic unit in another well. This gives average 

permeability as well as an assessment of horizontal communication.  

 

 

 

 

 

 

 

 

Figure 2. 7 Pressure Data of Interference Test (Heinemann and Zoltan, 2003) 

2.5.5 Pulse test 

 

This is similar to interference test but usually within a considerably shorter amount of time with 

smaller pressure changes thus requiring special differential pressure gauges (Figure 2.8). The 

production and shutin periods are different but the cycles must be the same. The tangent is drawn 

to the maximum and the minimum of the pressure waves and the time lags 𝑡𝐿1, 𝑡𝐿2, 𝑡𝐿3 and the 

corresponding pressure differences ∆𝑃1, ∆𝑃2, ∆𝑃3 are measured.  
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Figure 2. 8 Schematic pulse test rate and pressure history showing definition of time and 

pulse response amplitude. 

 

2.5.6 Injection Tests 

 

This is the testing of wells by fluid injection into the reservoir. The injection and falloff tests are 

used to determine the reservoir properties of injection wells during secondary and tertiary 

recovery. Injection well testing and analysis are simple as long as the mobility ratio of the 

displacing and displaced insitu fluids is one and the radius of investigation is within the injected 

water bank. This test is similar to pressure drawdown test except that constant rate is negative 

with a certain value of 𝑞𝑖𝑛𝑗. Its procedure involves shutting-in the well until pressure is stabilised 

at initial reservoir pressure followed by injecting at a constant rate 𝑞𝑖𝑛𝑗 and recording the bottom 

hole flowing pressure 𝑝𝑤𝑓 (Figure 2.9).  
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Figure 2. 9 Rate schedule and pressure response in injectivity test (Chaudhry, 2004) 

 

2.5.7 Falloff Tests 

A pressure falloff test is preceded by a long duration injectivity test. Shutting in an injection well 

results in a pressure fall-off that is analogous to a pressure buildup. Thus the procedure includes 

carrying out an injectivity test that lasted for a total injection time 𝑡𝑝 at a constant injection rate 

as well as well shut in followed by pressure analysis by Horner’s method (Figure 2.10).  
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Figure 2. 10 Rate schedule and pressure response for falloff testing (Chaudhry, 2004) 

 

2.5.8 Modular Dynamic Tester (MDT) 

 

 Modular Dynamic Tester consists of multiple probes and dual inflatable packers capable of 

multiple sampling in one trip for timely and accurate decision making. To obtain the sample, the 

unwanted fluid is discarded before collecting the reservoir fluid sample. Discrimination between 

formation fluid and filtrate from water and oil based mud is done using the flowline resistivity 

measurements taken by the probe module. A pump-out module makes sampling possible while 

monitoring the flowline resistivity by pumping filtrate contaminated fluid into the mud column. 

They give real time fluid gradients, permeability and contamination assessment. 

2.5.9 Reservoir Saturation Tool (RST) 

The RST is used to determine water and hydrocarbon saturations while avoiding the lapses of the 

conventional techniques for doing this like thermal decay time (TDT) logging and carbon/oxygen 

(C/O) logging. The TDT tool uses the rate of thermal neutron absorption explained by the capture 

cross section ∑ of the formation to estimate water saturation. Saline water has high absorption 

rate as it contains lots of chlorine which abundantly absorbs thermal neutron efficiently. Fresh 
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water or hydrocarbon has low absorption rate. When formation water salinity is high, constant 

and known, this tool provides good saturation estimates. With water injection to enhance 

recovery comes a reduction in salinity (less than 35,000 parts per million) causing problems for 

the tool as it cannot accurately distinguish between oil and water whose neutron capture cross 

sections are similar. C/O tools on the otherhand, are used when salinity is too low or unknown. It 

measures gamma ray emitted from the inelastic neutron scattering to ascertain the relative 

concentrations of carbon and oxygen in the formation. Oil bearing formations have high C/O ratio 

while water and gas bearing zones show low C/O ratio. They have large diameters meaning wells 

have to be killed and production tubing removed to accommodate the C/O tools. They also have 

slow logging speeds and are more sensitive to borehole fluid than the actual reservoir fluids thus 

measurements are less precise.  

The RST combines both methods in a tool slim enough to fit through tubing hence no need to kill 

the well, avoids reinvasion of perforated intervals, allows well to be observed under operating 

conditions, provides a log of borehole oil holdup, and saves money and time. However its radius 

of investigation, response to gas and use in uncharacterized environment are still not well known. 

RST data was not used since they were not available.  

In this work, pressure build-up and drawdown were the focus and are discussed in more detail in 

Chapter Five. Permeability was obtained from these analysis and then compared with their 

corresponding log and core values to generate a model relationship for these different sources. 

2.6 Sandstone Reservoir Rock Properties 

2.6.1 Porosity 
 

Porosity can be the number of total or interconnected pore spaces present. Bhatt (2002) recalls 

that laboratory measurements of porosity most often than not, are higher than in insitu 

conditions owing to the fact that it is not corrected for overburden pressure. In this regard, 

porosity from density logs has the potential of being a better estimate since it considers the insitu 

compressibility of the rock. It is well known that there are lots of uncertainty associated with its 

measurement and it’s detrimental to the accurate determination of other parameters such as 

permeability, fluid saturation, hydrocarbon in place etc. Figure 2.11 is an arbitrary plot (not 

drawn to scale) between core porosity and porosity inverse from density, neutron and sonic 

sources. Figure 2.11a is an ideal case of no uncertainty with each one of density, neutron or sonic 

porosity at a time on the x-axis having the same value as core porosity which is on the y-axis (A-

A1) while Figure 2.11b is a case with uncertainty thus leading to overestimation (B-B1) or 

underestimation (C-C1) of the property. Although core have their own uncertainty, the focus here 
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is on the uncertainty arising from the x-axis parameters which are density, neutron and sonic 

porosities.  

 

 

Figure 2. 11 Schematic showing cross plot of core porosity versus density, neutron and 

sonic porosity inverse explaining the uncertainty inherent in its determination with (a) 

showing a case where density, neutron and sonic porosities matched core i.e no 

uncertainty in measurement (A-A1) while (b) density, neutron, sonic porosities all give 

different values from core porosity due to uncertainty leading to over-estimation (B-B1) 

or underestimation (C-C1). 

 

Wyllie Time Average 

∅S =  (
∆tlog − ∆tmat

∆tf − ∆tmat
)   

                                                                 (2.1) 

Raymer-Hunt-Gardner 

∅S =  0.625 (
∆tlog − ∆tmat

∆tlog
) 

                                                               (2.2) 

For unconsolidated formations 

∅S = (
∆tlog − ∆tmat

∆tf − ∆tmat
) .

1

Cp
 

                                                                 (2.3) 

Where, 𝐶𝑝
=∆𝑡𝑙𝑜𝑔×𝐶

100
  

(a) (b) Uncertainty in measurement 

INVERSE OF PHID, PHIN, PHIS INVERSE OF PHID, PHIN, PHIS 
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Schlumberger, 1972 

∆tmat, ∆tf, 𝐶𝑝, ρma,  are very uncertain parameters and thus affects the accuracy of porosity 

predictions. 

2.6.2 Fluid Saturation 

Gas, oil and water can be all present in a reservoir and their proportion is defined as saturation. 

The lowest that this saturation can be is termed as irreducible or residual. This parameter can be 

estimated from resistivity logs, direct measurement on core plugs. Widarsono (2008) pointed out 

that assuming an error of 20% in water saturation, large errors as high as 50% may occur. This 

could potentially be higher considering the difference in the results from the different models. 

Both total and irreducible water saturation models were developed in this work as further 

described in Chapter Four.  

2.6.2.1 Total Water Saturation Determination for Sandstone Reservoirs 

Water saturation is determined using the following methods listed below 

• Using resistivity well logs 

• Nuclear Magnetic Resonance (NMR) 

• Laboratory capillary/saturation measurements 

• Dean-Stark water volume determination using oil based mud (OBM) 

A hybrid of these techniques can also be used as well to include all wells and the entire 

hydrocarbon column. 

2.6.2.1.1 Well logs determination of Water Saturation 

As have been shown in Figure 2.12, there are different models used for the determination of water 

saturation from resistivity logs. Starting with Archie in 1942 model for clean sands and since 

several models for shaly sands have been developed with some considering volume of shale while 

others consider cation exchange capacity of the clays. To determine water saturation accurately 

from resistivity logs, connate brine resistivity (Rw) or conductivity (Cw) needs to be accurately 

determined as well. This is achieved by using the Spontaneous potential log in wells drilled with 

water based mud, back calculate using invasion corrected logs, a and m with Archie models in the 

∅D =
ρma − ρb

ρma − ρf
 

                                                               (2.4) 
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aquifer since Sw is 100% in this region, samples obtained from flow tests of the aquifer interval 

(which must be checked for contamination by mud filtrate invasion). Since Rw varies with 

temperature at constant connate water composition, Sw is affected by temperature which is 

measured with most log and DST. At any given temperature level, there appears to be no 

significant effect of oil viscosity on irreducible water saturation. An increase in temperature 

decreases residual oil saturation and increases wettability and therefore irreducible water 

saturation and the relationship is said to be partially reversible (Poston et al. 1970). Electrical 

concepts application require distinct salinity contrasts between formation waters and the 

conductive muds as well as well-defined invasion profiles in order to quantify and separate the 

conventional volume conductivity term from the surface conductivity term (Pape et al. 1987). 
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Figure 2. 12 Different shaly sand water saturation models with Cw as water conductivity 

which is the inverse of resistivity (Dawood et al., 2002) 

 

2.6.2.1.2 Nuclear Magnetic Resonance  

Nuclear Magnetic Resonance (NMR) logs has shown they can solve petrophysical problems. The 

pulse-echo technique and the capability to measure T2 signals below 1ms, can give insitu 

recording of T2 spectra and its BVI component. This is used for differentiating between movable 
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and immovable fluids and they are lithology independent. Despite its importance, these logs are 

expensive, relies on 𝑇2 cutoff which is difficult to determine in the laboratory, affected by tool run 

speed, presence of hydrocarbon which is inevitably present in the reservoir and needs 

environmental corrections.  

2.6.2.1.3 Capillary/Saturation Measurements 

The concept underlying this is that the reservoir has attained a state of equilibrium over geologic 

time and it is this equilibrium that is reproduced in these laboratory experiments using 

centrifuge, mercury injection capillary pressure (MICP) and porous plate techniques. This is an 

indirect method of water saturation determination and requires several assumptions and 

inferences. 

 

2.6.2.1.4 Oil-Based Mud Water Saturation Determination 

This method uses distillation extraction where water in the sample is vaporized using a boiling 

solvent which is later condensed and flowed back into the core sample to extract the oil as well. 

They provide one of the most direct methods of water saturation determination above the 

transition zone and requires less assumptions. The pitfall of this technique been that it does apply 

to the lowest parts of the transition zone where the water phase has mobility. Also due to expense, 

the number of OBM core data is limited to fewer wells. This technique of water saturation 

determination requires proper planning and monitoring from mud formulation to actual 

measurements hence lots of time and effort is required to achieve success of the project.  

2.6.2.2 Influencing Parameters on Irreducible Water Saturation 

Historically, the water saturation at the top of the pay zone is approximated as the irreducible 

water saturation and then assumed to be constant throughout the reservoir thus indicating that 

the reservoir is homogeneous which means that permeability is underestimated, implying to be 

dependent only on porosity and not on variations of pore throat distributions, irreducible water 

saturation, grain size, texture, capillary pressure. This underestimation is valid if there is no 

considerable separation between the free water level (FWL) and the reservoir top hence the 

water saturation at this position may also be way more than the irreducible water saturation. It 

has also been shown by some authors that water rather than clay is the primary contributing 

factor to low resistivity pays which is currently an industry problem. 
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Irreducible water saturations may vary between 27 and 55% of the total core porosity (Ringen et 

al., 2001). The industry standard for determining irreducible water saturation has been to drill 

cores with oil based muds (since water based muds will increase contamination). The connate 

water can itself be mobile and maybe moved by mud invasion (oil or water) or gas expansion in 

the transition zone. This is key since at some point into the transition zone, the Sw from the core 

may not be trusted and thus it may then be critical to determine the residual oil saturation using 

retort test. Even with the irreducible water above the transition zone determined and residual oil 

in the aquifer known, there is still going to be uncertainty in the lower section of the transition 

zone. 

Due to the foregoing, there is need for a systematic approach for the estimation of irreducible 

water saturation for accurate application in other models to be valid for each product of rock that 

forms the reservoir. Both a machine learning stacked ensemble model using well logs and an 

empirical model computed from influencing parameters such as specific surface area to pore 

volume ratio, volume of shale and flow zone indicator hence obtaining the property as continuous 

curve across reservoir intervals from well logs is discussed. Their relationship with irreducible 

water saturation is shown in Figure 2.13. Some of these parameters are discussed below: 

2.6.2.2.1 Surface Area to Pore Volume  

Specific surface area is a key parameter to understand the physics of porous media. Laboratory 

measurements on a large number of different sedimentary reservoir rocks indicates a close 

relationship between specific surface and several petrophysical parameters (Ripe 1979, 1984). 

Results of several experiments have shown that surface area is not just a function of grainsize but 

more importantly of mineralogy as similar sizes of quartz and clay give remarkably different 

surface area values. Furthermore, for the common reservoir clays, studies have shown that 

smectite gives a very high surface area of an order of magnitude higher than illite which is a factor 

of 2 or 3 times more than kaolinite (Zamanek, 1989). Hence it is logical to say that irreducible 

water saturation is strongly dependent on lithology and mineralogy. Hence, where grains are 

small, the formation has high surface to volume ratios leading to high irreducible water saturation 

resulting in reduced bulk resistivities. The use of the resistivity log as pay indicators could result 

to bypass of pay zones which is a challenge. 

This powerful geometrical parameter is also affected by variations in permeability, porosity, 

tortuosity and formation resistivity factor which encapsulates the size, shape, distribution, 

sorting and packing of the grains. In addition to its role in reservoir engineering for understanding 
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hydrocarbon recovery (Chilingarian, 1992; Barlai, 1976), it finds extensive use in environmental 

studies (Salem, 1992; Sen at al., 1990); chemical engineering (Carman, 1956; Bear, 1972; Chalkley 

et al., 1949); sedimentology (Pettijohn et al., 1973); geophysics, petrophysics, hydrogeology 

(Carman, 1937, 1938; Bear, 1972; Salem, 1992). 

 

 

 

Figure 2. 13 Shows relationship between irreducible water saturation and (a) specific 

surface area to be directly proportional (b) flow zone indicator  as inversely proportional 

(c) volume of shale to be directly proportional while (d) shows the role of surface area in 

reducing the permeability-porosity scatter.  
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2.6.2.2.2 Flow Zone Indicator (FZI) 

 

FZI is a unique and useful value for quantifying the flow character of a reservoir. Fluid flow quality 

of a rock is a function of pore geometry, grain shape, size, packing, sorting, mineralogy and they 

help to zone reservoir into several units. Reservoirs with large pore throats and high permeability 

have short transition zones, and the transition zone at a gas-oil contact will be shorter than that 

at an oil-water contact simply because of the inter-phase density differences involved. Amaefule 

et al. (1993) described how porosity and permeability can be related to the wetting surface of a 

porous medium by the concept of mean hydraulic radius (𝑟𝑚ℎ). 

That is, 

𝑟𝑚ℎ =
𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎

𝑊𝑒𝑡𝑡𝑒𝑑 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
 

                                                                       (2.6) 

Assuming cylindrical capillary tube from  

𝑟𝑚ℎ =
𝑃𝑜𝑟𝑒 𝑟𝑎𝑑𝑖𝑢𝑠, 𝑟

2
 

                                                                       (2.7) 

Using 82 corrected and 240 uncorrected samples, Winland developed a correlation for pore 

radius, r, using the 35th percentile mercury injection 𝑅35,  

 

𝑙𝑜𝑔(𝑅35) = 0.732 + 0.588𝑙𝑜𝑔(𝑘𝑤𝑖𝑛) − 0.864 log(∅)                                                (2.8) 

For a bundle of capillary tube modelled reservoir (Kozeny-Carman), a relationship between 

porosity and permeability can be derived by applying Darcy and Poisseuille’s equation to obtain: 

 

𝑘 =
∅𝑒𝑟2

8𝜏2
=

∅𝑒

2𝜏2
(

𝑟

2
)

2

=
∅𝑒𝑟𝑚ℎ

2

2𝜏2
 

                                                (2.9) 

And hence derived surface area per grain volume to be: 

𝑆𝑔𝑣 =
2

𝑟
(

∅𝑒

1 − ∅𝑒
) =

1

𝑟𝑚ℎ
(

∅𝑒

1 − ∅𝑒
) 

                                              (2.10) 

 

𝑟𝑚ℎ = 𝑅𝑄𝐼 = 0.0314√
𝑘

∅𝑒
 

                                              (2.11) 
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Thus  

𝐹𝑍𝐼 =
𝑟𝑞𝑖

∅𝑧
 

                                              (2.12) 

Where 

∅𝑧 =
∅𝑒

1 − ∅𝑒
 

                                              (2.13) 

2.6.2.2.3 Volume of Shale 

The water-wet microporosity can cause high immobile water saturations resulting in low electric 

resistivities (1-5ohmm) of the pay zones. As stated earlier, several reservoir clays have different 

affinity to water but generally the greater the volume of shale the more the irreducible water held 

back from flow (Figure 2.13). Several models like Larionov, Clavier, Stieber could be used for 

determining this property although Larionov’s model for older rocks (Equation 2.14) was used in 

this work since most of the sandstone formation are of Jurassic age. 

Larionov for older rocks (1969): 

𝑉𝑠ℎ = 0.33 (2(2∗𝐼𝐺𝑅) − 1)                                               (2.14) 

Larionov for Tertiary rocks (1969): 

 

𝑉𝑠ℎ = 0.083 (2(3.7∗𝐼𝐺𝑅) − 1)                              (2.15) 

Clavier (1971): 

 

𝑉𝑠ℎ = 1.7 − [3.38 −  (𝐼𝐺𝑅 + 0.7)2]
1
2 

                                              (2.16) 

Stieber (1970): 

 

𝑉𝑠ℎ =
𝐼𝐺𝑅

3 − 2 × 𝐼𝐺𝑅
 

                                              (2.17) 
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2.6.2.3 Residual Oil Saturation Determination 

 
Several methods are available for the determination of residual oil saturation and these are 

summarized in Table 2.4. None of the methods for determination of the property can be regarded 

as the best method (Teklu et al. 2013). Although there is a difference between remaining oil 

saturation and residual oil saturation, they are used interchangeably in this work since innovative 

methods can reduce even the residual value just like the remaining oil saturation. An example of 

this was described by Chun and Gary (2008) that while a tertiary polymer flood (after water 

flood) could not mobilize residual oil in homogenous and water wet core, a secondary polymer 

flood i.e without waterflood, could displace the residual oil as noticed in the same core.  
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Table 2. 4 Pros and Cons of the different residual oil saturation measurements (Chang et al., 1988) 

Method Models Pros Cons 

Core Rathmell et al.1973 

(𝑆𝑜̅𝑟)𝑟𝑒𝑠 = (𝑆𝑜̅𝑟)𝑐𝑜𝑟𝑒𝐵𝑜𝐸 

Craig (1971) 

(𝑆𝑜̅𝑟)𝑟𝑒𝑠 = (𝑆𝑜̅𝑟)𝑐𝑜𝑟𝑒𝐵𝑜𝐸
𝑀

1 − 𝑉2
 

Excellent accuracy  

Widely available 

Difficult to get gas saturation 

Poor to fair core recovery 

Difficult to obtain insitu 𝑆𝑜𝑟 

New well required 

Well log Resistivity log 

Archie, (1942) 

𝑆𝑜𝑟 = 1 − (
𝑅𝑜𝑥

𝑅𝑡
)

1 𝑛⁄

 

 

Good accuracy 

Good radius of 

investigation  

 

Widely available 

Uncertainty with det. of 𝑛 

NMR log 

Neuman and Brown, (1982) 

𝑆𝑜𝑟 =
𝐹𝐹𝐼

∅
 

 

Direct measurement 

Lithology independent 

Expensive  
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PNC log 

Randall et al., (1983) 

𝑆𝑜𝑟 = 1 −
𝛴𝑏2 − 𝛴𝑏1

∅(𝛴𝑤2 − 𝛴𝑤1)
 

Where 

𝛴𝑏 = 𝛴𝑚𝑎(1 − ∅) + 𝛴𝑤𝑆𝑤∅

+ 𝛴ℎ𝑐(1 − 𝑆𝑤)∅ 

Porosity not required 

Excellent accuracy 

Can measure movable 

oil saturation 

Different btw gas, oil 

and water bearing fm 

Excellent accuracy of 

ROS det. behind casing 

Cross section determination uncertainty 

Can be sensitive to chlorine content of formation water 

Indirect measurement 

Carbon/Oxygen log 

Horner and Sanyal (1984) 

𝑆𝑜𝑟

=
𝐶 𝑂⁄ 𝑙𝑜𝑔 − 𝐶 𝑂⁄ 100%𝑤𝑎𝑡𝑒𝑟

𝐶 𝑂⁄ 100%𝑜𝑖𝑙 − 𝐶 𝑂⁄ 100%𝑤𝑎𝑡𝑒𝑟

 

 

Not sensitive to 

chlorine content of 

water 

Independent of 
shaliness 

Good accuracy 

Uncertainty of some of its parameters 

Well 

Tracer 

Bragg et al., (1976) 

𝑆𝑜𝑟 = 𝛽 (𝛽 + 𝑘1)⁄  

Where 

𝛽 = 𝑘𝑖𝑆𝑜𝑟 (1 − 𝑆𝑜𝑟)⁄  

Large radius of 

investigation 

 

Applicable in a wide 

range of conditions 

 

Weighted average single value per pay zone 

 

Expensive 

Sometimes difficult to achieve 

Tracee recovery an issue 
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and 

𝑘1 = 𝑐1(𝑜𝑖𝑙) 𝑐1(𝑤𝑎𝑡𝑒𝑟)⁄  

Insitu measurement 

Well Test Cordiner et al., (1972) 

𝑆𝑜𝑟 =
𝑐𝑡 − 𝑐𝑤 − 𝑐∅

𝑐𝑜 − 𝑐𝑤
 

Where 

𝑐𝑡 =
0.0002637(𝑘 𝜇)𝑡⁄

∅𝑟2

∆𝑡𝑀

(
𝑡𝐷

𝑟𝐷
2) 𝑀

 

Large radius of 

investigation 

 

Excellent accuracy 

Less accurate in saturated reservoirs 

 

Expensive 

Requires RP Curve from cores 

Weighted average single value per pay zone 

Material 

Balance 

Terry and Rogers (2014) 

𝑆𝑜𝑟 =
(𝑁𝑜𝑖 − 𝑁𝑝)𝐵𝑂𝑊𝐹

7758𝐴ℎ∅
 

Large radius of 

investigation 

Weighted average single value per pay zone 

Uncertainty in reserve estimate 

Accuracy in doubt 

Production 

Data 

Dietrich (1975) 

𝑆𝑜𝑟 =
𝑉𝑜

𝑉𝑃

=
(𝑁𝑜𝑖 − 𝑁𝑝)𝐵𝑂

𝑁𝑜𝑖𝐵𝑜𝑖(1 − 𝑐∅∆𝑝)/(1 − 𝑆𝑤𝑖)
 

Insitu measurement 

Large radius of 

investigation 

Simple calculations 

Reliable input parameters difficult to obtain 

 

Reservoir 

simulation 

Numerical Large radius of 

investigation 

Geologic model uncertainty 

Poor accuracy 
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It is important to note that these residual oil are found in the pore hence as can be deduced from 

Table 2.4, the larger the radius of investigation the lower the resolution and accuracy of 

measurement as well as obtaining the property as a profile. Machine learning model was 

developed from logs and core capable of giving accurate predictions of the parameter. 

2.6.3 Permeability 

Permeability refers to the ease with which fluids flow in a reservoir. While porosity and water 

saturation are scalars, permeability is a tensor (Matheron 1967). Even though permeability 

variation is more pronounced than that of porosity, its determination usually requires extensive 

petrophysical analysis, pressure and rate transient analysis. Reservoir simulation models require 

permeability values to be as accurate as possible in order to forecast performance with less 

uncertainty. Permeability can be absolute, effective or relative. Permeability measurements from 

core are absolute influenced by the microscopic nature of the measurement, absence of insitu 

temperature, pressure and saturation conditions (environment). As stated before special core 

analysis can determine relative permeability. Most logs on the otherhand, measure absolute 

permeability. The complexity of sandstone reservoir structures and the scanty parameterization 

make their models nonuniversal although their parameters are measured at insitu conditions. In 

this work, deep learning models with their special ability to generalise were used to determine 

relative permeability from logs. Lastly unlike most core and well log measurements, well test 

measures effective permeability when the effective flow interval (EFI) is known but lacks the foot 

by foot resolution of the other two. In this work, Lorenzo plots were used to determine the 

effective flow interval.  

 

2.7 Choice of Variables 

2.7.1 Based on Net Present Value 

Although Helle et al., (2001) stated that porosity and permeability are the most important 

reservoir parameters, it was Bouchard and Fox, (1999) who presented a methodology using value 

of information based decision making by means of Monte Carlo integrating uncertainty to 

determine the most important parameters controlling the Net Present Value of an asset (Figure 

2.14) and concluded that absolute permeability, relative  permeability, heterogeneity, residual oil 

saturation, porosity, irreducible water saturation and wettability are the most important 

parameters influencing the value for different reservoir assets like complex carbonates, fractured 

oil reservoir and over pressured mini basin at almost every stage of their life. 
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𝑁𝑃𝑉 = ∑
𝑅𝑡

(1 + 𝑖)𝑡

𝑛

𝑡=1

 

Where 𝑅𝑡 is the net cash inflow-outflows during a single period of time 𝑡, 𝑖 is the discount rate or 

return that could be earned in alternative investments, 𝑡 is the number of timer periods. 

 

Figure 2. 14 Simplified Influence Diagram Showing Relationship between Reservoir 

Parameters and Net Present Value (Adapted from Bouchard & Fox, 1999) 

 

Bjørlykke and Jahren (2010) also mentioned that the most important reservoir parameter are 

porosity and permeability critical for petroleum and even groundwater recovery.  

 
2.7.2 Based on Reserve Estimation 
 
Monte Carlo simulation was used to calculate the uncertainty range for a reserve from 

independent parameters (Equation 2.18). The stochastic approach randomly selects 

combinations of these parameter values (and their assigned distribution) using a computer 

algorithm and 1000 simulation runs was selected to build a reserve distribution curve (Figure 

2.15). The vertical axis depends on the number of times each reserve estimate occur. The P10 

(upside), P50, P90 (downside) and the base case were developed. 

 

𝑁 = 7758𝐴ℎ∅[1 − 𝑆𝑤]/𝐵𝑜𝑖*RF                                                                     (2.18) 
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Figure 2. 15 Distribution function showing the P100, P90, P50 and P10 using 1000 

simulation runs for the Ness reservoir, Northern North Sea. 
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Figure 2. 16 Showing porosity and water saturation as the most sensitive for reserve 

estimation with both P10 and P90 cases for Ness Reservoir, Don Field, North Sea. 

 

From Figure 2.16 it is clear that amongst the parameters used for reserve estimation such as 

porosity, reservoir area, pay thickness, formation volume factor (Bo), water saturation and 

Recovery Factor, it was porosity and water saturation that were the most sensitive. Error in the 

calculation of these parameters could greatly increase the uncertainty of base case, downside and 

upside reservoir estimation (Garb, 1988). 
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2.7.3 Based on Pressure Transients 
 
The stochastic Monte Carlo simulation was also run on pressure transient parameters involved 

in radial flow regime in infinitely acting reservoirs (Equation 2.19) as shown in Figure 2.17 and 

2.18. The parameters used were permeability, reservoir thickness, flow rate, formation volume 

factor, viscosity, skin, well radius, compressibility, time, porosity. It is clear to see that 

permeability is the most sensitive and an uncertainty in it can result in greater error in pressure 

transient calculations compared to equal uncertainty in other parameters involved.  

 

∆𝑝 = 162.6
𝑞𝐵𝜇

𝑘ℎ
[𝑙𝑜𝑔∆𝑡 + 𝑙𝑜𝑔

𝑘

∅𝜇𝑐𝑡𝑟𝑤
2

− 3.23 + 0.87𝑆] 
                                                                    (2.19) 

 

Figure 2. 17 Distribution function showing the P100, P90, P50 and P10 using 1000 

simulation runs for the Sherwood reservoir, North Sea. 
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Figure 2. 18 Showing permeability as the most sensitive for pressure transient estimation 

with both P10 and P90 cases for Sherwood Sandstone Reservoir, North Sea. 
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2.8 Summary 
 
 
Porosity, fluid saturation and permeability have been demonstrated both from the literature and 

analysis of reserve and pressure transients, to be the most important parameters of porous 

media. Monte Carlo simulations were run to carry out sensitivity analysis for all the parameters 

using Oracle Crystal Ball software. Optimistic, most likely, pessimistic and base case scenarios 

were also modelled. The simulation runs show porosity as the most sensitive parameter followed 

by water saturation in terms of reserve estimation while permeability was the most sensitive with 

respect to pressure transients (among several other parameters considered) hence we are 

considering them in this work. Oil and gas companies are interested in accurate reserve estimate 

which are rarely so thereby making projects less economically profitable. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 
 

Chapter Three 

Methods, Concepts and Models  

 
3.1 Introduction 

 
An overview of the approach, theories and techniques used in this study to reduce the uncertainty 

in the determination of the chosen reservoir properties, are shown in this section.  The research 

methodology involves data gathering of sandstone assets from about fifty (50) different wells in 

Northern, Central and Southern North Sea. The datasets include well logs like gamma ray, deep 

and shallow resistivity, neutron, density, caliper, sonic, photoelectric factor where available; core 

and well test data. They were digitized both manually and with the use of digitization software 

packages. The digitized data was then wrangled and outliers removed. Logs cross checked with 

caliper for diameter consistency to identify borehole rugosity while log headers were checked for 

depth datum. Lithology identification was done with gamma ray as well the photoelectric factor 

log (PEF) while fluids were identified using pressure profile from modular dynamic tester (MDT), 

PEF, neutron-density cross plot as well as from the resistivity logs.  

Porosity, water saturation and permeability (and their variants) were determined from well logs 

using both machine learning and empirical models. Several machine learning models were tried 

using R software package and literature searched for the appropriate one to use. Training of the 

models was done with log data as the independent variable and cores as the dependent variable. 

In line with these, support vector regression models were used to determine porosity, an 

ensemble model was used for the saturation models, deep learning oil and water relative 

permeability models were also developed. Modeling with existing permeability data (using 

porosity and water saturation) with North Sea data found Equation 4.22 (Timur, 1968) to be the 

closest to the data although a modified Equation 4.26 (Coates, 1973) was formulated due to its 

flexibility. Well test buildup and drawdown analysis were done using Kappa software package for 

permeability determination.  

Appropriate log, core and test depth matching was also ensured including upscaling combined 

with Lorenzo plot to identify the dominant flow interval and give an idea of the heterogeneity of 

the formation.  The database of the log, core and well test permeabilities was then formed from 

these analysis as well as from the literature. A support vector regression model using well test 

permeability as the dependent variable and core together with log as independent variables. This 

is useful to predict well test permeability when not available due to time and cost especially in 



61 
 

marginal fields. A dashboard was developed for real time prediction using the machine learning 

model. A nomogram forming a relationship between the three sources of this important flow 

parameter was also formed. Important to say that more still has to be done in terms of data 

gathering to improve these models. 

3.2 Data Gathering and Well Distribution 
 
Well log suites which included Gamma Ray (GR), Sonic Log (Vp), Bulk Density (Rhob), Density 

Porosity (DPHI), Neutron Porosity (NPHI), Caliper Log and Photoelectric Factor (PEF) were 

obtained from several wells in the North Sea chosen based on several criteria like (a) if their 

reservoir is siliclastic (b) have good quality data (c) wide coverage of the basin i.e. drawn from 

Northern, Central and Southern North Sea (d) they contain both core and well test information as 

well 

 

 

 

Figure 3. 1 Distribution of wells used for the different aspects of the study 
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3.3  Data Preparation 

 
Logs were quality checked using caliper logs for wellbore diameter consistency hence rugose and 

compromised depths were identified. Caliper readings are from a scale of 5-15 with most normal 

areas lying between 6 and 7. Values greater that this draws attention to check more for rugosity. 

Of the fifty (50) wells considered, this outlying areas where encountered in reservoirs sections of 

5 wells. All log readings collected from that rugose section and were therefore removed. Log 

headers were checked to ensure quoted depths were relative to subsea. More verifications were 

made using information from their well files and composite logs. Since the work focusses on sand 

stone assets, top and bases of reservoir sands were delineated from well reports and composite 

logs as well as visual examination for consistency of general trend of velocity and density 

behaviours with respect to depth. Routine identification of different lithologies most often 

depends on gamma ray logs with readings typically higher in shales due to high concentration of 

potassium of clay minerals and other radioactive elements. These absorbed radioactive minerals 

can occur during condensation which is the preservation of relatively long geologic time by a 

relatively thin layer of sediments. Condensation can also form hot sands (highly radioactive 

sands) thus giving similar gamma ray readings as shales causing misinterpretation. To ensure 

that hots sands are not mistaken for shales, the photoelectric factor, the Kataharan-type plot, 

neutron-density logs in addition to the resistivity log was used.  

3.3.1 Katahara sand/shale cutoff 
 
Katahara (2008) makes use of the differential between neutron porosity and density porosity for 

shale discrimination from other lithologies such as sand since bulk density calculates rock 

porosity assuming water filled pore and grain densities (Figure 3.2). When plotted, these 

porosities overlap across sands filled with fluid but are separated across shales.  
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Figure 3. 2 Kataharan plot discriminating shale from sand rich facies. 

 

3.4 Fluid Identification  

The modular formation tester was used to ascertain the fluid type and contact in the reservoir 

where available. The hydrostatic pressure differential produced with depth. Fluid levels are 

obtained from open-hole pressure data and fluid contacts are gotten from core and logs to cross 

check the fluid level reading. In general, there is good agreement between the different methods 

to pick the gas/oil contact with a maximum difference of 2 ft between the log and pressure data 

possible due to depth control.  
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Figure 3. 3 Gamma ray, neutron-density and pressure data with depths in feet. The 

Intersection gives the fluid contact as shown by the broken line coinciding with the base 

of the coarsening upward sequence and the intersection of the neutron and density logs.  

Fluid identification was also done using the shallow and deep resistivity logs in relation to the 

type of drilling mud used.  
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3.5 Uncertainty Recognition and Reduction in Log, Core and Well Test 

Analysis. 

Schlumberger (2016) described uncertainty as the extent to which predicted values deviates from 

measured data. With respect to reservoir characterisation, it is reservoir modelers best estimate 

of how a modelled reservoir quantity might deviate from the true value of that quantity. Thus the 

challenge of the Oil and Gas industry is to accurately characterise reservoir parameters made 

difficult due to these uncertainties. Each analysis begins with demonstrating the degree of 

uncertainty inherent in the determination of the reservoir rock properties. An appreciation of the 

degree of uncertainty in porosity from density and sonic logs by just getting the reservoir fluid 

type right (hence MDT if available was used to verify this) or whether the formation is 

consolidated, semi-consolidated or unconsolidated. WeII test data provides one of the few 

effective methods of direct reservoir analysis, and therefore it is important for petroleum 

engineers to overcome as much of the uncertainty as possibIe, and to understand in more detail 

the part which cannot be overcomed. There are several sources of uncertainty in cores, log and 

well testing. The principal ones include:  

• Physical error in the core, log and pressure data e.g. noise, drift, temperature effects and 

time shift, poor calibration, hysteresis and creep disturbs pressure sensors.  

• Uncertainty due to the fact that processed data can be interpreted in many ways with both 

processing and interpretation requiring models themselves. 

• Uncertainty from type of geological setting used which are inturn interpreted from 

models and data which are uncertain themselves. 

• Errors in the flow rate information. Since flow rate measurements are commonly made at 

the surface and pressure measurements are made downhole, there is a significant 

disconnection between the knowledge on the impulse which caused it. These 

measurements, both surface and downhole, are very less accurate than pressure 

measurements and are treated with less care. Flowrate can be subject to liquid carryover, 

gas entrainment, poor metre calibration, foamy crudes as well as other operational 

problems that disrupts flowrate such as uncertainty from low rates been read below the 

flow meter reading. 

• Ambiguity in the response. With a sufficient duration of test, most pressure transient 

information can provide an unambiguous indicator of the character of the reservoir. 

However many well tests cannot or are not run for sufficient duration to reach a point 

which excludes ambiguity. It is not uncommon therefore to encounter well test data that 
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can be matched to several different interpretation models with apparently equal 

resemblance.  

• Parameter estimation ill-poisedness. The use of nonlinear regression analysis to solving 

problems of well tests has revealed that the estimation of common reservoir parameters 

is difficult or even impossible in cases where the reservoir response is a weak function of 

the parameter values while strong correlations can imply that the estimated values are 

meaningless.  

• Uncertainties in properties. The estimates of reservoir parameters such as permeability 

k depends on the knowledge of fluid and rock properties such as viscosity and 

compressibility Ct. In practice, these parameters are not as well-known as they ought to 

and therefore the estimates of reservoir parameters are affected.  

• Test are carried above fluid saturation conditions to maintain single phase. 

• Determination of the Middle Time Region (MTR) representing the infinite acting radial 

flow period based on which permeability is determined especially when there are several 

plateaus on the pressure derivative. The derived permeability from each plateau can be 

different by an order of magnitude.  

• Trade-off between spatial and resolution uncertainty as well test gives larger coverage 

but lesser detail compared to logs and cores.  

 

3.6 State-of-the-Art of Uncertainty Analysis Methods 

3.6.1 Deterministic Approach 

This works by using a single value of each input parameter into a suitable mathematical model to 

give exact solutions of the expected outcomes. It is often used at the start of a field development 

when understanding of the field is low. Washburne (1916) stated that the earliest efforts at 

analysing and managing uncertainties in oil reserve estimation were done by contouring the 

geological structure and basal water of the map. Afterwards came the Mapping and Estimation 

Method with experimentally obtained porosity. This was then followed by more advanced 

computing (Sheldon et al., 1960). These techniques had outcomes that are specifically determined 

through known relationships and expressed in three levels such as “Best Case, Most Likely and 

Worst Case”. A single model (Keijzer and Kortekas, 1990) or a few more models (Ringrose and 

Bentley, 2015) are built to describe some scenarios of the reservoir.  
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3.6.2 History Matching Technique 

History matching could be referred to as a hybrid between deterministic and non-deterministic 

approaches. Conventional history matching could be considered as a separate approach but 

modern history is very much dependent on probability methods e.g. Ensemble Kalman Filter 

(EnKF) and stochastic methods. It is the procedure for comparing the reservoir simulation model 

with the observed data and adjust the uncertain parameters in the simulation model to reduce its 

mismatch with the observed data, is known as history matching. This procedure can be 

deterministic or probabilistic. The deterministic method entails obtaining one simulation model 

between many probable matches to the field data by running the initial simulation model with 

several input values. The probabilistic procedure considers different reservoir model scenarios 

thereby using the uncertainty analysis technique. Since the input space to be searched can be high 

dimensional, outputs collection to be matched may be very huge and each single valuation may 

take a long time thus identifying the input parameters within which the simulation match the 

observed data can be a difficult assignment.  

3.6.3 Probabilistic /Stochastic Technique 

This involves a stochastic (random) description of the specific parameters of the reservoir model 

through predefined probabilistic algorithms and thus able to model the likelihood scenarios. 

Monte Carlo simulation is an example of this method as shown in Figure 2.12-2.14 conveyed as 

percentiles of the cumulative probability distribution as P90, P50 and P10 indicating pessimistic, 

median and optimistic case respectively (Sanyal and Sarmiento, 2005). It was run on both STOIIP 

and pressure transient models where their inputs where randomly drawn from their distribution 

to understand how the output changes (O’Hagan, 2006; Uusitalo et al., 2015, Ani et al., 2016). The 

observed change could be high or low depending on how sensitive the model output is to a 

parameter. Some workers favour changing a few parameter values (Nakayama, 2000), while 

others favour randomly picking likely values for all parameters (Kumar and Varghese, 2005; 

Baroni and Tarantola, 2014). Apart from MC, Experimental Design (ED) is another example of this 

method (Lee et al., 2006; Lawal, 2009).  

Caers (2011) stated that deterministic and statistical/probabilistic numerical models can only 

not fully capture true variability since they do not consider the spatial function. This prompted 

the application of geostatistics to allow the modelling of reservoir property distribution to 

capture spatial variability and uncertainty.  
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3.6.4 Geostatistical Approach 

These examine the data distribution, trends, directional components as well as outliers of 

geological parameters across the reservoir (Holden et al., 1988; Caers, 2011; Ringross and 

Bentley, 2015). They use variograms which describes the degree of spatial dependence between 

sample values on separation distance (lag). The semivariogram depicts the spatial 

autocorrelation of measured sample points. Although semivariograms are sometimes used 

interchangeably as variograms, they should be avoided (Bachmaier and Backes, 2011). The 

difference between the two is that the latter uses each pair of data elements just once while all 

possible data pair are used by the former. Thirdly, they could use a technique known as kriging 

which interpolates between sample values considering their separation distance as well as 

determine from known values in a nearby grid, the value of a point in heterogenous grid. As stated 

by Yarus and Chambers (2006), inappropriate use of variables and poor technique 

implementation will never be compensated for by geostatistical analysis which are also not 

automatic. Machine learning and artificial intelligence is therefore needed to fill this gap.  

3.6.5 Machine Learning Algorithms 

 
Due to the ever increasing need to accurately model reservoir parameters and constant 

development of better techniques for reservoir characterization and uncertainty analysis, 

artificial intelligence (AI) has become the tool of choice evident in self driving cars and several 

automation systems. Machine learning is an application of Artificial Intelligence based upon 

giving machines data to learn from and then make predictions or decisions. The trend of soft 

computing in reservoir and uncertainty modelling will continue to rise (Wong, Aminzadeh and 

Nikravesh, 2013). Machine learning can be divided into supervised, unsupervised and 

reinforcement learning (Figure 3.2).  

 

3.6.5.1 Reinforced Learning 

Reinforcement algorithms is a type of machine learning algorithm where intelligent systems 

receives a delayed reward in the next time step in other to evaluate its previous action i.e. it learns 

from past experience and then makes future decisions. It does not need correct input/output 

pairs and sub-optimal actions do not need to be corrected explicitly. Its focus is on finding a 

balance between exploration of unchartered territory and exploitation of current knowledge 

(Kaelbling et al., 1996). Examples include Markov decision process, Q-Learning, State-Action-

Reward-State-Action (SARSA), Deep Q Network (DQN), Deep Deterministic Policy Gradient 

(DDPG), Monte Carlo Algorithms. 
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3.6.5.2 Unsupervised Learning 

Unsupervised learning does not have a target variable and can be grouped into clustering and 

association problems. The goal is to learn more about the data by modelling the structure or 

distribution underlying the data (Hinton et al., 1999). Unsupervised learning infers an apriori 

probability distribution (Hastie et al., 2009). Examples include apriori algorithm for association 

rule learning problems and k-means clustering etc.  

 

3.6.5.3 Supervised Learning 

Supervised learning algorithms maps inputs to desired outputs in order to efficiently 

approximate the mapping function when there is new data e.g. regression, decision tree, random 

forest, nearest neighbour, logistic regression etc. A major issue with supervised learning being 

that a set of solved examples are given to the algorithm (including all possible results) so that it 

devises a way of determining the outcome for problems with unknown outcomes. Other concerns 

are the dimensionality of the input space which can confuse the algorithm causing it to have high 

variance, bias vs variance tradeoff, function complexity and amount of training data, effect of 

noise in the output values (Geman et al., 1992; James, 2003; Brodely and Friedl, 1999; Smith and 

Martinez, 2011). Examples include Support Vector Machines (SVM), Neural Networks, Random 

Forest, Gradient Boosting Model (GBM). 

 

 

 

Figure 3. 4 Different groups of machine learning algorithms 
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This work utilized Supervised Learning algorithms such as Deep Learning for modelling complex 

multiphase processes like relative permeability due to its ability to perform better with more data 

where other algorithms flatten out in performance (Figure 4.34). Support Vector Machine for both 

porosity and uncertainty reduction across log, core and well test permeability due to its ability to 

perform well with irregular and smaller number of data mainly due to its kernel function and 

other hyperparameters. Other algorithms like Random Forest, Neural Networks were also tried. 

Stacked Ensemble of Neural Networks and GBM models for fluid saturation modelling since they 

gave best predictions. Other models tried include Random Forest, Generalized Linear Model 

(GLM) but were not used in the Stacked Ensemble. Their results were compared with both 

existing and developed empirical models.  

 

3.6.5.3.1 Neural Networks 

Artificial neural networks are an artificial intelligence technique that tries to imitate the 

behaviour of the human brain and nervous system. They are well suited for modelling systems 

with complex relationships between input and output which is what is obtainable in natural earth 

systems. In such cases with no prior knowledge of the nature of non-linearity, traditional 

regression analysis is not adequate (Gardner and Dowlings, 1998). Its typical structure consist of 

a number of processing elements (nodes) arranged in layers (input, hidden and output). The input 

signal from each node (𝑥𝑖) at the input of synapse 𝑖 connected to neuron 𝑗 is multiplied by an 

adjustable connection weight (𝑤𝑖𝑗). The weighted input signals at each node are summed and a 

threshold value is added and the combined input is passed through a non-linear transfer function 

(Equation 1) to produce the outputs (𝑦𝑖) which then provides the input for the next neuron. An 

externally applied 𝑏𝑘 which increases or decreases the net input (depending on whether it is 

positive or negative) of the activation function is also part of the architecture. A neural work with 

four (4) hidden layers and sixteen (16) neurons were used for training the relative permeability 

models used for comparison with the deep learning model in Chapter Four.  
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Figure 3. 5 Neural network model elements 

Mathematically, the neuron (𝑗) function is given by: 

𝒚𝒋 = Ø(𝑢𝑗 + 𝑏𝑗)                                                                                (3.1) 

Where 

𝑢𝑗 = ∑ 𝑤𝑗𝑖𝑥𝑖

𝑚

𝑖=1

 
                                                                               (3.2) 

𝑥𝑖 is the input signal form an 𝑚 dimensional input, 𝑤𝑗𝑖 is the synaptic weights of the neuron 𝑗, 𝑢𝑗 

is the linear combiner output as a result of the input signal, 𝑏𝑗 is the bias, Ø (·) is the activation 

function and 𝑦𝑗  is the output signal of the neuron.  
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Figure 3.6 Schematic for the final neural network used for the prediction of water (blue) 
and oil (green) relative permeabilities showing sixteen (16) neurons and four (4) hidden 

layers. Same input variables were used for both.  

3.6.5.3.2 Deep Learning 

Deep learning is neural networks with a large number of hidden layers. It seeks to exploit the 

unknown structure in the input distribution so as to discover good representations at different 

levels of abstraction with higher level learnt features defined in terms of lower level features thus 

allowing the system to learn complex functions mapping of the input directly to the output from 

data without depending totally on human-crafted features. It provides an effective way to 

initialize the weights which allows the network to learn these low-dimensional codes which 

works much better than principal component analysis for reduce data dimensionality. Deep 

Learning was applied for real time prediction of relative permeability since it has the scalability 

advantage of being able to continuously perform better as more data is obtained compared to 

other algorithms that flatten out in performance at some point. Ten (10) sets of water-oil relative 

permeability data with 132 data points from a NorthSea field with four-fifths used as training set 

and one-fifth as validation set. Another set of water-oil relative permeability data from a separate 

field were used as the testing set after data wrangling and normalization. There were also 12 

input parameters fed into the network, having one hundred hidden layers with twelve neurons.  
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3.6.5.3.3 Support Vector Machines 

This is a supervised machine learning technique used for both regression and classification. Due 

to their ability to generalize for unseen data, they are increasingly replacing other algorithms as 

the tool of choice for pattern recognition and prediction. The main idea is to minimize error, 

individualizing the hyperplane which maximizes the margin of tolerance, keeping in mind that 

part of the error is tolerated. The kernel functions it uses transforms the data into a higher 

dimensional feature space to make it possible to perform the linear separation that it does. 

𝐻𝐼𝐽 = 𝑦𝑖𝑦𝑗𝑘(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖. 𝑥𝑗 = 𝑥𝑖
𝑇𝑥𝑗                                                                                (3.3) 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 which is an example of a kernel function and are based on calculating inner 

products of two vectors. That is, if the functions can be recast into a higher dimensionality space 

by some potentially non-linearly feature mapping function 𝑥 ↦ Ø(𝑥) only inner products of the 

mapped inputs in the feature space need be determined without us needing to explicitly calculate 

Ø. 

For regression the method includes: 

Selection of how meaningfully misclassifications should be treated as well as how large the 

insensitive loss region should be by selecting suitable value for the parameter є (epsilon). The 

linear insensitive loss function є, ignores errors that are within its distance by treating them as 

equal to zero. The loss is calculated based on the distance between observed y values and the є 

boundary. 

Find 𝛼+ and 𝛼− so that: 

 

∑(

𝐿

𝑖=1

𝛼𝑖
+ − 𝛼𝑗

−)𝑡𝑖 − 𝜖 ∑(

𝐿

𝑖=1

𝛼𝑖
+ − 𝛼𝑗

−)

−
1

2
∑(𝛼𝑖

+ − 𝛼𝑗
−)(𝛼𝑖

+ − 𝛼𝑗
−)Ø(𝑥𝑖). Ø(𝑥𝑗)

𝑖,𝑗

 

                                        (3.4) 

Is maximized. 

Where 𝛼+and 𝛼− are lagrange multipliers. 

Calculate  
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𝑤 = ∑(

𝐿

𝑖=1

𝛼𝑖
+ − 𝛼𝑗

−)Ø(𝑥𝑖) 
                                                                               (3.5) 

Determine the set of support vectors S by getting the indices 𝑖 where 0< 𝛼<C and ξ𝑖 = 0. All 

observations inside the epsilon tube have lagrange multipliers 𝛼𝑖
+ = 0 and 𝛼𝑗

− = 0. If either 𝛼𝑖
+or 

𝛼𝑗
− is not zero, then the corresponding observation is called a support vector. The property, 𝛼, of 

a trained SVM model stores (𝛼𝑖
+ − 𝛼𝑗

−) which is the difference between two lagrange multipliers. 

𝑏 and 𝑥𝑚 are stored in the properties Bias and Support Vectors respectively. 

The calculate 

𝑏 =
1

𝑁𝑠
∑[

𝑠∈𝑆

𝑡𝑖 −  𝜖 − ∑ [(𝛼𝑖
+ − 𝛼𝑗

+)Ø(𝑥𝑖). Ø(𝑥𝑚)]

𝐿

𝑚=1

 
                                                    (3.6) 

Each new point is evaluated by  

𝑦΄ = ∑(

𝐿

𝑖=1

𝛼𝑖
+ − 𝛼𝑗

−)Ø(𝑥𝑖). Ø(𝑥΄) + 𝑏 
                                                                               (3.7) 

Implementing a SVM comes down to selecting the variable 𝑤 and 𝑏 that the training data could be 

described by, 𝛼 is the lagrange multiplier. Summarily, the goal is to find a function 𝑦 that deviates 

from 𝑦𝑛 by a value no greater than  

This algorithm was used to predict both porosity in Chapter Four and for the uncertainty 

reduction across log, core and well test discussed in Chapter Six.  The former SVM porosity model 

used a dataset comprising 446 data points from Northern, Central and Southern North Sea 

sandstone reservoirs comprising Unconsolidated, Semi-consolidated and Consolidated 

sandstones, 435 training sets, 11 validation sets and separate data for testing while the latter SVM 

model used a total of 114 datasets which was randomly divided into 105 training set and 9 

validation sets while a separate data form another field was used for testing its ability to 

generalise. 

3.6.5.3.4 Ensemble Models 

Several base models can be combined to form a better meta-model. This involved placing different 

machine learning models over one another and their predictions are passed to the top layer which 

then makes decisions based on these base predictions. Gradient Boosting model and Neural 



75 
 

Networks models were built separately after which they were combined to form a stacked 

Ensemble which gave a better prediction. This algorithms was used to develop the total water 

saturation, irreducible water saturation and the residual fluid saturation models with great 

accuracy. The dataset for the Stacked Ensemble water saturation model was randomly divided 

using stratified technique into 425 training sets, 24 validation set and 22 test set. The irreducible 

water saturation had 290 datasets randomly divided into 243 training set, 16 validation set and 

31 testing set. The residual oil saturation model used 243 datasets again randomly divided into 

195 training set, 16 validation set and 32 test sets. A second level of deep learning algorithm 

(metalearner) was then trained to learn optimal combinations on the level-one models.  
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Chapter Four 

4.1 Uncertainty Reduction in Porosity Usage 

4.1.1 Introduction 

One of the most essential rock properties for reservoir evaluation is porosity. Despite its 

importance, its determination has lots of uncertainty. The density log has been regarded by 

several authors as the best source for porosity from logs but it gives different results if different 

fluid types are assumed. Same goes for Raymer and Wyllie if different lithology and compaction 

levels are uncertain or assumed. While cores on the other hand may not be available due to 

unconsolidation or secondary porosity such as vugs or natural fractures hence porosity will have 

to be determined from well logs. These logs do not measure porosity directly but have a greater 

radius of investigation than cores. Haldorsen (1986) presented that the volume of rock 

investigated by a sonic log is 162 times the volume of a one inch diameter core plug especially for 

large spacing between source and receivers getting undamaged measurements beyond the 

borehole wall.  

Therefore log data if appropriately used could provide a more accurate prediction of porosity. 

Porosity from different data sources should not give different results and although their 

discrepancy especially for neutron and density, is useful for the identification of fluid type and 

contact, the goal of obtaining accurate measurement of porosity should not also be forgotten. The 

differences in these sources of porosity must be reconciled and accounted for. Rightly so since by 

design, neutron and density tools measure formation largely filled with mud filtrate and having 

residual hydrocarbon saturation as it assumes that most of the hydrocarbon in the sensitive 

volume measured by these tools are moved by invasion in low to moderate formations (Gaymard 

and Poupon, 1968; Segesman and Liu, 1971; Schlumberger, 1972). In practical terms, the 

uncertainty from neutron, sonic, density and even core measurements produce a scatter observed 

in the crossplots between them (Figure 2.11). It seems right to say that the problem of accurately 

estimating reserve (which is an industry problem) is very sensitive to the uncertainty in porosity 

as shown in Figure 2.13. 

The differences in core and log porosity in general must also be taken into consideration (Figure 

4.1) since the former is thought to provide effective porosity values depending on pore types 

present, clay content and method of cleaning and drying. This is so because helium porosity from 

cores (used in this work) should exclude unconnected pores and clay-bound water. It should also 

be remembered that core conditions are different from that of the reservoir. On the otherhand, 
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total porosity (which includes microporosity, fracture porosity and bound water associated with 

clays) is obtained from neutron, density although isolated pores are excluded in sonic total 

porosity. Needless to say that caved and irregular holes present an interesting problem in density 

log interpretation thus might not give actual porosity reading. Hence the interpretation of 

averaging the neutron and the density porosity with respect to sonic transit time may lead to 

wrong conclusions.  (James, Jorden and Campbell, 1986). Spears (2006) also presented evidence 

that this averaging for gas bearing zones at Erha field in the Niger Delta were way different from 

the available conventional core porosity range. Practically, uncertainties in neutron, sonic, density 

and core porosity produce scatter observed in the cross plots between them (Figure 2.11). 

The Chapter compares results of existing porosity models, new empirical model and machine 

learning specifically Support Vector Machine Regression (SVM) using data from Northern, Central 

and Southern North Sea. Log data such as neutron, sonic, and density were explored using core 

porosity, saturation or permeability (as the case may be) as the dependent variables to build the 

model. Their predictive power in unconsolidated, semi-consolidated and consolidated sandstones 

was investigated. It further went on to discuss fluid saturation and consequently permeability. 

There is need to reduce the uncertainty and confusion in the prediction of these parameters. This 

becomes crucial since they are sensitive to one another and to other parameters. 

 

Figure 4. 1 Log and Core porosity measurements (after Eslinger and Pevear, 1988) 
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Table 4. 1 Typical ranges in porosity of common rock types (modified after Freeze and 

Cherry, 1979; McWaorter and Sunada, 1977) 

Lithology Porosity % Mean Porosity 

Sandstone 5.0 – 50.0 25.0 
Shale 10.0 – 30.0 20.0 

Clay 34.0 – 51.0 42.0 
Karst Limestone 7.0 – 56.0 30.0 

Dolomite 0.0 – 20.0 10.0 

Siltstone 21.0 – 41.0 35.0 
Weathered granite 34.0 – 57.0 45.0 

Weathered gabbro 42.0 – 45.0 43.0 

Gravel 24.0 – 36.0 28.0 
Fractured basalt 5.0 – 50.0 25.5 

Schist 4.0 – 49.0 38.0 

 

4.1.2 Methodology 

The existing porosity models (Equations 2.1-2.4) are better for some sandstone types and not so 

great for others. Also knowing for sure the type of fluid can be a challenge as different fluids gives 

different porosity results. This inconsistency creates uncertainty. Three different approaches 

were developed for porosity modelling of the North Sea (a) Improving on Raymer-Hunt-Gardner 

(RHG) and Wyllie Time Average (WTA) models (referred to as Raymer and Wyllie in this work for 

convenience) to obtain their local and regional mean using sonic log (b) Develop a completely 

empirical but modified Schlumberger density model to reduce the uncertainty caused by fluid 

density (c) Machine learning technique using Support Vector Regression allowing the model to 

learn directly from a combination of these well logs. The different porosity model results were 

then analysed and compared. In addition to these, to further assess the accuracy of these models, 

they were applied to three sandstone datasets i.e unconsolidated, semi-consolidated and 

consolidated types. Core porosity was used as dependent variable hence their depths were 

ofcourse accurately tied to log depths (Figure 4.2). Important to note that the purpose of (a) is to 

get regional and local constants for RHG and WTA for the NorthSea, (b) is to empirically modify 

the Schlumberger density porosity model such that it is not affected by the uncertainty of the fluid 

type and (c) which is actually the main focus, is a machine learning model that can accurately 

predict for all sandstone types. 

The deviation effects of the different logs were examined by comparing their models with actual 

data. The default coefficients of both Raymer and Wyllie were perturbed to obtain unique values 

both locally and regionally thus preserving the original form of these equations as well improving 

their accuracy. The models predict porosity in the mesoscale and especially the machine learning 

model can be used in all sandstone types whether consolidated, semi-consolidated or 
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unconsolidated. It can also be used where core porosity could not be obtained and when the fluid 

type whether water, oil or gas is uncertain. 

 

 

 

Figure 4. 2 Gamma ray showing lithology with photomicrograph of core taken from 

Joanne sandstone Formation indicating permeability, porosity and grain density. 
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4.1.2.1 Uncertainty in Porosity Determination 

As shown in Figure 2.11, there is discrepancy in porosity values from the different sources. 

Different density porosity values are also obtained if water, oil or gas are assumed (Figure 4.3). 

Same goes for sonic log as Raymer gives different results if consolidated or unconsolidated 

formation is assumed (Figure 4.4). Therefore for porosity models to be accurate, the fluid type 

(whether water, oil or gas) and the degree of  consolidation (loose or indurated) of the formation 

should be known to reduce uncertainty. 

 

 

Figure 4. 3 Fluid type uncertainty in porosity determination from density logs (dphi) 

from Equation 2.4 (Schlumberger 1974). The effect of the fluid type uncertainty for oil, 

water or gas is obvious in porosity. 
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Figure 4. 4 Lithology uncertainty on Raymer-Hunt-Gardner porosity from Equations 2.2 & 

2.3 using sonic log. Different results obtained if consolidated, semi—consolidated, 

unconsolidated or even a different rock type (shale) was considered. If the level of 

induration is not known for sure, porosity calculation from these models will lead to 

error. 

 
4.1.2.2 Support Vector Regression Modelling (SVR) 

This is the machine learning technique (mentioned in Section 4.1.2 above) for modelling porosity 

in addition to the modified Raymer, Wyllie and Schlumberger models. The data was first cleaned 

to ensure no missing numbers are in any row or column. If such were found they were removed 

since just a few rows (< 4 rows) had this issue. A median transformation would have been applied 

if such points were many. The relationship between the independent (nphi, rhob and sonic) and 

dependent variables gave very visual trends that was used for input data selection (Figure 4.5). 

Thus bulk density (rhob) was not used for the prediction. A non-probabilistic support vector 

regression model was developed to learn the non-linear function using a linear learning machine 

mapping from the input space into a high dimensional feature space.  More explanation of this 

technique has already been given in Section 3.6.5.3.2. The dimensionality of the feature space 
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does not influence the parameters controlling the capacity of the system. The dataset comprising 

446 data points from Northern, Central and Southern North Sea sandstone reservoirs comprising 

unconsolidated, semi-consolidated and consolidated sandstones, was randomly divided into 435 

training sets and 11 validation sets. Separate datasets of Unconsolidated, Semi-consolidated and 

Consolidated sandstones were used for testing the developed SVM model. Neutron porosity 

(nphi) and sonic data were used as the independent (input) variables while core porosity data 

was used as the dependent variable (as this is a supervised learning technique). The radial basis 

kernel function was used for the training and prediction using a gamma value of 0.2 (a parameter 

needed by kernels except linear kernel), with a constant of the regularization term in the 

Lagrangian formulation (cost) of 100 and an epsilon in the insensitive loss function set as 0.1.  As 

a reminder, gamma is an hyperparameter that controls the trade-off between error due to 

variance and bias in the SVR model. The small gamma value was used to try to avoid overfitting 

as possible. Also, the cost is a hyperparameter that controls how much we penalize our slacked 

variables and if we need more penalty, we just increase the value of the cost. Slacked variables 

allow us to relax the constraints. The radial basis was also used as the preferred kernel function 

due to its applicability in non-linear modelling. The tuning function was then applied for the SVM 

(grid search) using 10-fold cross validation. Values of epsilon between 0 and 1 using steps of 0.01 

(i.e. 101 values of epsilon) and cost function with exponential steps of 2. Summarily 101 values of 

epsilon and 8 values of cost function, thus 808 models were tested to get the best. After tuning, 

the best epsilon and cost were 0.15 and 128 respectively (Figure 4.6). This model was used in 
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other chapters to compute porosity especially where needed but not present. 

 

Figure 4. 5 Feature engineering showing the relationship between the different data 

types such as nphi (neutron porosity), rhob (bulk density), son (sonic) considered and to 

the independent variable (core) at a glance. 
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Figure 4. 6 Porosity SVR model performance 

 
 
Colour coding was used to show the performance of the various models. Darker areas imply better 

accuracy indicating that the best values for epsilon lie between 0 and 0.2. Although one can further 

zoom in on this interval and retune using lower steps but had to stop to avoid overfitting. The 

legend to the right shows the Mean Squared Error (MSE) of the prediction. Root mean squared 

error was therefore reduced from 0.1481 to 0.0541 (equivalent to RMSE of 0.3848 - 0.2326). 

Other machine learning algorithms tried include neural networks with RMSE value of 0.3121, 

Gradient Boosting Model had RMSE of 0.2993, Random Forest gave 0.3235 and Stacked Ensemble 

with best RMSE value of 0.2598. These are good RMSE values but the Support Vector Models gave 

the best value of 0.2326 hence it was taken forward as the machine learning model of choice in 

the instance to model porosity. 
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Table 4.2 shows the different combinations of the training set used. After 97%, the root mean 

squared error began to increase at 98% hence 97% was used for the analysis. This combination 

was used for the unconsolidated, semi-consolidated and consolidated sandstones.  

 

Table 4.2: Different combinations of training data sets showing the best performance at 

97%. 

S/N Proportion of Training Set (%) RMSE 

1 60 2.5631 

2 70 0.9453 

3 80 0.6001 

4 90 0.4222 

5 95 0.3879 

6 97 0.2326 

7 98 0.2594 
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4.1.3 Results and Discussion 

4.1.3.1 North Sea Porosity Modelling 

In addition to developing local and regional coefficients for Raymer and Wyllie, a modified 

Schlumberger model (Equation 4.7) for density porosity was formulated to deal with the fluid 

uncertainty as described in section 4.1.2.1. The developed model is completely empirical 

emanating from data. The comparison was made with Schlumberger model as shown in Figure 

4.7. Equation (4.7) which was empirically fitted with data was modified from Schlumberger 

Porosity model. 

 

 

Where d = 1.22 for the North Sea wells considered as shown in Table 4.3. 

Table 4. 3 Distribution of best fit (BF) coefficients and their associated errors for Default 

Raymer (DR), Default Wyllie (DW) and Modified Schlumberger (MS) models (Equation 4.7) 
 

Raymer 
  

Wyllie 
  

Mod 
Schlum 

  

Field Best fit NRMSE NRMSE Best fit NRMSE NRMSE Best fit NRMSE NRMSE   
BF DR 

 
BF DW 

 
BF MS 

1 0.5 2.89 3.97 0.83 2.76 3.9 1.2 0.68 1.36 

2 0.64 7.62 7.68 1.2 8.44 9.84 1.24 1.1 3.2 

3 0.66 0.38 0.42 0.85 0.73 0.85 1.25 0.45 0.49 

4 0.55 0.97 1.47 0.95 1.63 1.67 1.33 1.36 1.41 

5 0.46 4.76 7.82 0.82 5.28 6.5 1 8.67 12.48 

6 0.61 0.55 0.67 0.9 0.96 1.5 1.2 0.4 2.11 

7 0.6 0.32 0.33 0.98 0.31 0.32 1.2 0.26 2.08 

8 0.55 0.7 1.71 0.8 0.78 2.77 1.25 1.65 2.76 

9 0.4 4.64 18.33 0.65 4.34 18.92 1.25 3.79 5.89 

10 0.5 3 5.55 0.8 3.12 5.49 1.28 3.43 4.89 

Region 
al 

Mean 

0.55 2.58 4.80 0.88 2.84 5.18 1.22 2.18 3.67 

 

 

 

∅D = d ∗ (
ρlog − ρma

ρlog
) 

                                                               (4.7) 
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The error for default coefficients and local best fit for the different wells are summarized in Table 

4.3. Local mean is the average porosity obtained from the individual fields numbered 1-10 of the 

same Table. Regional mean values were then obtained from the average of all the local means 

considered. These results were obtained from the default and locally derived values in the well. 

There is considerable variation in the porosities estimated for Raymer, Wyllie and modified 

Schlumberger model using their default values. RHG (Equation 2.2 & 2.3), WTA (Equation 2.1) and 

the Modified Schlumberger (Equation 4.7) have coefficients, hence coefficient was used along side 

their root mean squared error. For Raymer, the best coefficients ranges from 0.4 up to 0.66 while 

for Wyllie, they range from 0.8 to 1.15. The coefficients of the modified Schlumberger model, range 

from 0.65 to 1.28.  The calculated regional mean coefficient values of 0.55 for Raymer instead of 

default of 0.625, 0.88 for Wyllie instead default of 1 and 1.22 for Modified Schlumberger Density 

Model instead of a default of 1 (Equations 2.1-2.4). Figure 4.7 is the graphical representation of 

Table 4.3 where the ten fields are shown in the abscissa. The errors generated while using the best 

fit and default coefficients for Raymer, Wyllie and Schlumberger are shown in the ordinate.  

Figure 4.8 shows an improved accuracy (determined from the range of errors associated with the 

local values) of 1-74% for Raymer, a lower value means that not much difference between the 

default and the best fit. For Wyllie, the improved efficiency ranged from about 4-77% and about 

3-88% for the modified Schlumberger model. In Field 9 for example, the normalised root mean 

squared error for default Raymer was 18.33 but this error dropped to 4.64 when calibrated locally. 

It is clear from Table 4.3 that the default Raymer and Wyllie were quite different from their derived 

forms as their fitting coefficients decreases or increases with respect to the default values. The 

data specific coefficients reduced the uncertainty in these estimates. Regionally, there was a 12% 

decrease from the original Raymer model coefficient, a 12% decrease in the Wyllie’s coefficient 

which was originally 1 for consolidated sandstones and 22% increase for Schlumberger 

coefficient. 

Although the Schlumberger density model has been described by several authors as the most 

accurate for porosity determination, it gave an error of 3.67 regionally but this reduced by about 

40% when the modified Schlumberger model was used. It is also important to note that more 

often than not these inaccuracies in prediction are always in terms of over-prediction rather than 

under-prediction. 
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Figure 4. 7 Errors associated with estimation of porosities from sonic using derived best 
fit for Raymer, Wyllie and Density 

 

Figure 4. 8 Improvement accuracy of estimated based on new coefficients over the default 
Raymer, Wyllie and Schlumberger Density model coefficients. 
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The performance of the models were examined for the unconsolidated, semi-consolidated and 

consolidated case described in the following section.  

4.1.3.1.1 Unconsolidated Sandstones  

Galley sandstone Formation located in Bowmore Field (15/24a-9), is a loose and friable 

sandstone formation, moderately well sorted, with poor inferred porosity. The volumetric clay 

content is from zero to 0.5. It is an over-pressured sand underlain by the Claymore Sandstone with 

Piper sandstone further down which is normally pressured and condensate liquids of 20.8 BCF of 

gas. Estimated proved reserves of 4.6 MMBBL of crude oil. The bulk of the field occupies the 

culmination of a structural teerace on the downthrown part of the E-W fault forming the Northern 

margin of the Witch Ground Graben with the east, west and south having a dip closure while the 

North has a fault closure. 

The line is drawn at 450 from both the predicted and actual axis to show the level of correlation 

between them. The line passing through the data would mean a good level of correlation between 

the predicted and actual values. Figure 4.9 shows the effectiveness of density logs in 

unconsolidated sandstones. Although the default Schlumberger model performed less effectively, 

the modified Schlumberger model (Equation 4.7) did better. The SVM model made very good 

predictions in this geological setting as it was able to map the non-linear relationship between the 

dataset using a linear function in a higher dimensional feature space.  

Figure 4.10 also shows that default Raymer and Wyllie are less effective in predicting porosity in 

unconsolidated sandstone formations as have been pointed out by several authors (Dvorkin and 

Nur, 1996). Amongst other things, this might be caused by the uncertainty in accurate 

determination of compaction factor for Wyllie.  
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Figure 4. 9 Porosity prediction using default Schlumberger, modified Schlumberger, and 

Support Vector Machine Regression models for the unconsolidated Galley sandstone 

turbidites. 

 

 

14350

14355

14360

14365

14370

14375

14380

14385

14390

14395

14400

0 20 40

Depth
ftss

GR (API)

14350

14355

14360

14365

14370

14375

14380

14385

14390

14395

14400

0 5 10 15 20
Porosity (%)

Core
Mod Schlum
Default Schlum

14350

14355

14360

14365

14370

14375

14380

14385

14390

14395

14400

0 5 10 15 20

Porosity (%)

Core

svm



91 
 

  

 
 

Figure 4. 10 Comparison between predicted and actual core porosity for the 

unconsolidated Galley Sandstone formation.  
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4.1.3.1.2 Semi-Consolidated Sandstone 

Captain Sandstone member of the Carrack Formation in Blake Field (13/24a-6) is dominated by 

massive, structureless and minor parallel stratified sandstones with friable quartz grains and 

argillaceous intervals. They have been interpreted to be mainly deposited from sand rich high 

density turbidity currents hence are relatively shale free. It has an erosive basal contact with the 

underlying Vauxhall Formation shales. Formation pressures are from 2321.1-2441.6 psia. Average 

grain size ranges from very fine to moderate and sorting ranges from poor to moderate well sorted 

with an average of moderately sorted.  

Figure 4.11 shows a good correlation between the Modified Schlumberger model and the actual 

porosity. Again demonstrated that there is need for correction of the Schlumberger density model 

for it to be appropriate for porosity determination. The SVR model gave very excellent predictions 

of porosity in this case as well. The prediction was better than the developed empirical model in 

this semi-consolidated case as well. Again showing the power of machine learning to accurately 

determine reservoir parameters. The majority of the porosity seems to be effective between 20-

30% and can result in very high permeabilities. Like most reservoirs, this macroporosity and pore 

connectivity alongside total cement proportion will play a huge part in its character. This porosity 

will enhance vertical sweep in the reservoir since permeability decreases with depth. 

Figure 4.12 shows the correlation between their predicted values and the actual porosity. Raymer 

and Wyllie this time gave better predictions than in the unconsolidated example. It seems that 

Raymer gave better prediction than Wyllie even in this case where porosity seems to be effective 

thus the general notion that Wyllie gives effective porosity is not accurate.  
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Figure 4. 11 Showing the different porosity models alongside gamma ray for semi 

consolidated Captain Sandstone Member., Carrack Formation, Blake Field, 13/24a-6. 
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Figure 4. 12 Comparison between predicted and actual core porosity for the Semi-

consolidated Captain Sandstone formation, Carrack Formation, Blake Field, 13/24a-6. 
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4.1.3.1.3 Consolidated Sandstones  

The Dogger Reservoir, Upper Brent Formation is an indurated, well sorted, laminated sandstone 

with poor to good porosity.  This Field is located in the Northern part of North Sea (3/9a-1). 

Significantly has both horizontal and vertical permeability. The Kimmeridge Clay overlies it. The 

Broom, Rannoch, Etive, Ness and Tarbert units are genetically related to those of Lyell, Hutton and 

others.  

Figure 4.13 shows modified Schlumberger making very good predictions is consolidated 

sandstone formations. No doubt that these sandstones, compaction is a main factor influencing 

its porosity. Most of the porosity lies between 20-30%. Again the Default Schlumberger model 

prediction shows that if used the way it is (which is the case most times) could lead to poor 

porosity results and thus consequently affect other properties like water saturation, permeability 

and even reserve estimation. The SVM model on the otherhand, also made good predictions.  

Figure 4.14 clearly illustrates the improvement of Raymer and Wyllie model predictions in this 

consolidated example. Compared to less indurated rock formation discussed in previous sections, 

the 450 line cuts through most of the data indicating its correlation with the core data. The default 

Schlumberger model actually performed the worst in this instant. 
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Figure 4. 13 Plot of Gamma Ray, Modified Schlumberger, Default Schlumberger for 

consolidated Dogger Reservoir, Brent Formation, Northern North Sea (3/9a-1). 

 

 

 

 

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

0 50 100

Depth
metre

s

GR (API)

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

0 10 20 30

Porosity (%)

core
Mod Schlum
Default Schlum

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

0 10 20 30

Porosity (%)

svm

core



97 
 

 
 

 
 

Figure 4. 14 Comparison between predicted and actual core porosity for the Consolidated 

Captain Sandstone formation, Carrack Formation, Blake Field, 3/09a-1. 
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Table 4. 4 Porosity uncertainty in reserve estimation (in MMSTB) assuming other 

parameters have no uncertainty. 

Lithologic 

Description 

Actual Modified 

Schlum 

Schlumberger Raymer Wyllie svm 

Unconsolidated 149 139 175 166 170 152 

Semi-

consolidated 

450 440 472 434 430 445 

Consolidated 331 324 325 338 340 329 

Table 4. 5 Percentage error in reserve estimation arising from porosity uncertainty 

assuming other parameters have no uncertainty. 

Lithologic 

Description 

Modified 

Schlum 

(%) 

Schlumberger 

(%) 

Raymer 

(%) 

Wyllie 

(%) 

Svm 

(%) 

Unconsolidated 7 17 11 14 2 

Semi-consolidated 2 5 4 4 1 

Consolidated 2 2 2 3 1 
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4.1.4 Summary and Conclusion 

Raymer and Wyllie models for the North Sea were formulated as well as Modified Schlumberger 

model thus reducing the uncertainty associated with its prediction. Support Vector Machine 

Regression was also used to make predictions and found to perform well in unconsolidated, semi-

consolidated and consolidated sandstones investigated. The chapter becomes very relevant as 

later chapters deals with permeability or water saturation with some wells not having core 

porosity data hence knowledge of local, regional and support vector machine regression were 

comfortably used to determine this with greater level of confidence. 

The results show the default Schlumberger model exaggerating predictions while default Raymer 

and Wyllie are not suitable for porosity determination in unconsolidated formations. Their 

accuracy in sandstone formations seems to be related to consolidation. SVM performed best in all 

sandstone types considered. It is also important to note that more often than not, these 

inaccuracies in prediction are always in terms of over-prediction rather than under-prediction in 

most of the cases examined as can be seen by the upward lying of most points above the 450 line 

on the actual versus predicted cross plots. Thus the assumption that Wyllie gives effective porosity 

seems not to be true. Local and regional mean values for Raymer, Wyllie and Modified 

Schlumberger were then determined giving values of 0.55, 0.88 and 1.22 respectively for the 

North Sea.  

Application of the different sources for reserve estimation in fields of known reserve value gave 

seemingly different reserve figures as well. The commonly used Schlumberger, Raymer and Wyllie 

Time Average could lead to errors of up to 17% in unconsolidated sandstones, about 5% in semi-

consolidated sandstones and about 3% in consolidated sandstone reservoirs. 
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4.2 Solving the Fluid Saturation Problem Using Stacked Ensemble 

and Empirical Methods 

 

4.2.1 Introduction 

Water production control and identifying pay zones with high irreducible water saturation are 

important formation evaluation issues which can result to delayed decisions on completion and 

cause additional expenses on field management. High water saturation is not much of a problem 

if huge fraction of the water is immovable (Oraby and Eubanks, 1997). Their accuracy impacts on 

hydrocarbon saturation. Complexities in the determination of water saturation emanates due to 

the fact that not only are there different approaches for its determination but also typically 

complicated that they all produce different results. This may result to remarkable differences due 

to their sensitivity in reserve and Net Present Value estimation as have been discussed in Chapter 

Two. Technical teams are posed with the challenge of obtaining a consistent technique or model 

hence they try to resolve the differences among the water saturation results obtained with the 

different procedures in order to arrive at its best calculation and distribution (vertically and 

areally) throughout the reservoir.  

Again, reliable identification of water free hydrocarbon producing zone is a difficult task and 

reservoir analysts in general are sceptical about the production of water free hydrocarbon at 

water saturation greater than 50% leading to unwillingness to carry out a well test on such zones 

especially in the presence of less uncertain intervals. By-passed zones are common with the 

calculation of reserves using only reservoir with < 50% water saturation and assuming that 

those with > 50% water saturation contribute little or nothing to reserves. The domain of the 

constant range relative permeability curve depends on the combination of irreducible water 

saturation and residual oil saturation. Statistically, the irreducible water saturation falls between 

10-20% and 2-5% for residual oil saturation (Calhoun, 1953; Amyx, 1960). As can be seen from 

Figure 4.15, 1-20% seems to be the most sensitive range of this parameter as it pertains to its 

relationship with permeability and porosity. Again a small increase in water saturation could 

result in a significant reduction of oil relative permeability obviously because relative 

permeability depends on phase saturation. 

Each existing technique used in water saturation determination (Table 4.6) has weaknesses such 

as selecting from a myriad of models with a variety of input parameters (Just as Herrick and 

Kennedy (2009) pointed out on the quagmire of these equations actually compounding the 

problem instead of relieving the confusion of its determination), conversion from laboratory to 
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reservoir conditions, time taken for laboratory measurements to reach equilibrium, application 

to the lowest part of transition zones where the brine phase is mobile, limited amount of cores 

due to expense, inaccurate procedures for parameter determination.  

Table 4. 6 Some water saturation models for shaly sands with 𝑹𝒕 as the true resistivity, 

water resistivity (𝑹𝒘), formation factor (F) and resistivity of shale (𝑹𝒔𝒉). 

Models Formula 

Poupon et al. 1954 1

𝑅𝑡
=

(1 − 𝑉𝑠ℎ)𝑆𝑤
2

𝐹. 𝑅𝑤
+

𝑉𝑠ℎ

𝑅𝑠ℎ
 

Simandoux (1963) 1

𝑅𝑡
=

𝑆𝑤
2

𝐹. 𝑅𝑤
+

𝑉𝑠ℎ

𝑅𝑠ℎ
 

Schlumberger (1972) 1

𝑅𝑡
=

𝑆𝑤
2

𝐹(1 − 𝑉𝑠ℎ)𝑅𝑤
+

𝑉𝑠ℎ𝑆𝑤

𝑅𝑠ℎ
 

Hossin (1960) 1

𝑅𝑡
=

𝑆𝑤
2

𝐹. 𝑅𝑤
+

𝑉𝑠ℎ
2

𝑅𝑠ℎ
 

Poupon and Leveaux (1971) 
1

𝑅𝑡
=

𝑆𝑤
2

𝐹. 𝑅𝑤
+ √

𝑉𝑠ℎ
2−𝑉𝑠ℎ

𝐹𝑅𝑤𝑅𝑠ℎ
𝑆𝑤

2

+
𝑉𝑠ℎ

2−𝑉𝑠ℎ𝑆𝑤
2

𝑅𝑠ℎ
 

Clavier et al (1977) 1

𝑅𝑡
=

𝑆𝑤
2

𝐹𝑜𝑅𝑤
+

(𝐶𝑏𝑤 − 𝐶𝑤)𝑉𝑄𝑄𝑣𝑆𝑤

𝐹𝑜
 

Waxman and Smits (1968) 1

𝑅𝑡
=

𝑆𝑤
2

𝐹∗. 𝑅𝑤
+

𝐵𝑄𝑣𝑆𝑤

𝐹∗
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Where  𝑅𝑡 is true resistivity of the pristine rock formation and not th flushed zone 

(𝑅𝑥𝑜 𝑛𝑜𝑡 𝑢𝑠𝑒𝑑 ℎ𝑒𝑟𝑒) , 𝑉𝑠ℎ is volume of shale, 𝑅𝑤 is water resistivity, 𝑅𝑠ℎ is shale resistivity, 𝐹 is 

formation factor, 𝑄𝑣 is counter ion concentration (meq/gm), 𝐵 is  equivalent conductance of clay 

cation, 𝐶𝑏𝑤 is bulk water conductivity, 𝐶𝑤 is water conductivity.  

Nuclear Magnetic Resonance (NMR) have shown capability to estimate reservoir fluid saturation. 

Although the physical concept of the NMR interpretation has a generic nature, practical 

experience with NMR logs in about twenty (20) North Sea oil and gas wells indicated the existing 

need for cores to investigate potential effects of changes in wettability by oil based mud invasion 

especially in multiphase flow environments and also to determine BVI cut-offs (T2 spectra 

calibration). Again NMR parameters are difficult to acquire due to vertical resolution, depth of 

investigation and disturbing environmental/borehole effects. On the otherhand, maintaining 

reservoir overburden pressure (NOB), preserving core wettability, time, expense and 

unconsolidated reservoirs are major concerns for accurate special core analysis. 

Several workers like Al-Bulushi (2009) used neural networks for water saturation determination 

from both well logs and core parameters. Mardi et al., (2012) used four different structures to 

make predictions of water saturation from log data after which comparison was made with dual 

water model and found to perform better. Helle and Bhatt (2002) used committee machines 

comprising neural networks for the prediction of reservoir fluids using well log data. The best 

nine experts were selected from 20 trained experts and averaged to obtain final predictions. 

Kamel and Mabrouk (2002) both developed empirical and regression methods for the prediction 

of total water saturation. Kenari and Syamsiah (2013) also developed committee machine for the 

prediction of water saturation using well log data. They also applied pruning steps to make the 

models betters. Most of them focussed on total water saturation and not much has been done with 

respect to irreducible water and residual oil saturation. 

In this work an Stacked Ensemble model (Section 3.6.5.3.4) in which the predictions that are 

generated by using different learning algorithms in this case Gradient Boosting Model (GBM) and 

Neutral Networks (NN) as inputs in a second level learning algorithms and the stack is then used 

to predict total water, irreducible water and residual oil saturation. More details of the Stacked 

Ensemble models used for the prediction of fluid saturation is explained in Section 3.6.5.3.4. In 

addition to this, a new empirical model was also developed for irreducible water saturation using 

the factors affecting the parameter.  
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4.2.2 Methodology 

The methodology involves the development of both empirical and an ensemble of machine 

learning models for connate and irreducible water as well as residual oil saturations using North 

Sea wells. Details are given in the following sections. 

4.2.2.1 Machine Learning (Stacked Ensemble) Approach 

Stacked Ensembles combines several individual models (base models) into one model (meta 

model) in order to get improvement in prediction performance. The machine learning approach 

involves using conventional well logs which are always available to estimate connate and 

irreducible water saturation as well as residual oil saturation. For the total water saturation 

model, a total of 471 datasets with four inputs such as Gamma Ray (GR), Resistivity (ILD), Neutron 

(NPHI) and Bulk Density (RHOB) while core Sw was used as the output. The dataset was randomly 

divided using stratified technique into 425 training sets, 24 validation set and 22 test set. The 

irreducible water saturation had 290 datasets randomly divided into 243 training set, 16 

validation set and 31 testing set. The residual oil saturation model used 243 datasets again 

randomly divided into 195 training set, 16 validation set and 32 test sets. As already mentioned, 

the data comprises wireline logs and core which were normalized lying between 0 and 1 to ensure 

that the input variables were independent of their measurement units. Several sensitivity analysis 

were undertaken by varying some parameters such as the number of hidden layers, learning 

algorithms, transfer functions and scaling methods. A design matrix was done to specify both the 

predictors and target variables after which the data was divided into training, validation and test 

sets. An ensemble approach that combined the best machine learning algorithms for the data after 

testing several algorithms was adopted using a technique known as stacking in bid to reduce 

prediction variance.  

Two levels of learning were used. The first set of learners (base learners) involved different 

algorithms like Gradient Boosted Model (GBM) and Neural Networks (NN). From Figure 4.16, 

both models did not correlate hence they have strengths in different aspects of the data. They 

were trained using the training dataset and then a 5-fold cross validation was performed on each 

learner. These predicted results were combined to form a matrix which together the original 

response vector is called the level-one data. A second level of deep learning algorithm 

(metalearner) was then trained to learn optimal combinations on the level-one data. The resulting 

ensemble model comprises the base learning models and the metalearning model. It is imperative 

to note that Stacked Ensembles only work with cross validation. In selecting the models for the 

ensemble, it was ensured that individual models fulfil a particular accuracy criteria and that the 
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base model are not highly correlatable (Figure 4.15) with each one capturing different aspects of 

the data. The different types of ensemble models are discussed in detail in Chapter 3. 

Figure 4.15 Correlation between the different base algorithms. The least correlatable i.e 

blue plots farther away from the 450 line were selected. GBM, Neuralnet and Random 

Forest where selected as base models for the Stacked Ensemble saturation models. 
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4.2.2.2 Empirical Model Approach 

Empirical model was also systematically developed for the estimation of irreducible water 

saturation to be valid for each product of rock that forms the reservoir. It was entirely computed 

from influencing parameters such as specific surface area to pore volume ratio, volume of shale 

and flow zone indicator hence obtaining the property as continuous curve across reservoir 

intervals from well logs is discussed (Figure 2.11). Results were then compared to actual core 

data. 

4.2.3 Results and Discussion 

Excellent results were obtained from testing on North Sea reservoirs showing good correlation 

with measured data. Model construction was done using both the training and validation sets 

while the test set data was used for out of sample prediction capability. This section is divided 

into different sub-sections representing total water saturation, irreducible water saturation and 

residual oil saturation.  

4.2.3.1 Ensemble Total Water Saturation Model  

The ensemble model was chosen to predict the water saturation in both a Northern and Central 

North Sea reservoir which was then compared with commonly used water saturation models like 

Archie, Simandoux, Schlumberger, Indonesian. Hosin. Figure 4.16 and 4.17 give the results of the 

above models alongside the ensemble model and actual core data. All models appear to have 

performed well probably since the reservoir cut by the well is a relatively cleaner sand. 

Simandoux gave a root mean squared error value of 0.0349, Schlumberger had values of 0.0427, 

Indonesia gave values of 0.0648, Hosin had values of 0.0711, Archie had 0.0712 while the stacked 

ensemble model gave the lowest error value of 0.0136. Figure 4.18 and 4.19 show that the 

reservoir seems to be more heterogenous as seen from the gamma ray behaviour at that well 

location. Simandoux had a root mean squared error of 0.1477, 0.1357 for Schlumberger, 0.1975 

for Indonesia, 0.2265 for Hosin, for Archie it was 0.2282 while Stacked Ensemble gave a value 

0.054. Modeling at depths of about 15250-15350ft, 15450-15560ft, representing areas of high 

shaliness, the disparity between the different models is more. Archie is suited for clean sands 

while the other shaly sand models that seem to have done well in Figure 4.16, have not done well 

in the more shaly sand formation shown in Figure 4.18. This inconsistency in accuracy raises the 

question of which one should be used for water saturation estimation thus increasing the 
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uncertainty. As have been seen from both figures, the trained water saturation ensemble model 

performed well in both cases and this consistency answers the above question that machine 

learning models can be trusted to give accurate predictions aligning to the 450 line which shows 

the correlation between the predicted and actual values.  
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Figure 4.16 Stacked Ensemble, Archie, Schlumberger, Simandoux, Indonesian and Core 
alongside Gamma Ray for the Brae field, Northern North Sea. 
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Figure 4.17 Cross plot of actual core against (a) Simandoux with rmse of 0.0349 (b) 
Schlumberger with rmse of 0.0427 (c) Indonesia gave rmse of 0.0648 (d) Hosin had rmse 
of 0.0711 (e) Archie gave rmse of 0.0712 and (f) Stacked Ensemble had 0.0136 
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Figure 4.18 Stacked Ensemble, Archie, Schlumberger, Simandoux, Indonesia and Core 

alongside Gamma Ray for the Brae field, Central North Sea. 
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Figure 4. 19 Cross plot of actual against (a) Simandoux with 0.1477 (b) Schlumberger had 

0.1357 (c) Indonesia had 0.1975 (d) Hosin gave 0.2265 (e) Archie gave 0.2282 and (f) 

Stacked Ensemble had 0.054 values of rmse. 
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4.2.3.2 Empirical and Ensemble 𝑺𝒘𝒊 Models 

The results of both the comprehensive but simple irreducible water saturation and the ensemble 

of regression models to reduce the uncertainty associated with its prediction is discussed.  

Equation 4.16 represents a non-linear regression on volume of shale, specific surface area and 

flow zone indicator to obtain the empirical model for irreducible water saturation (Figure 4.20). 

Figure 4.21 shows the sensitivities of the different parameters in the model in Equation 4.18. 

 

𝑙𝑜𝑔(𝑆𝑊𝐼) = 0.2483 ∗ log (𝑉𝑠ℎ) − 0.0766 ∗ 𝑙𝑜𝑔 (𝐹𝑍𝐼) + 0.4352 ∗ 𝑙𝑜𝑔 (𝑆𝑝)                      (4.17) 

 ℎ𝑒𝑛𝑐𝑒  

𝑆𝑤𝑖 =
𝑉𝑠ℎ

0.25𝑆𝑝
0.44

𝐹𝑍𝐼0.08
 

                           `                  (4.18) 

𝑤ℎ𝑒𝑟𝑒 𝑉𝑠ℎ  𝑖𝑠 𝑖𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡, 𝑆𝑝 𝑖𝑛 𝑚−1, 𝐹𝑍𝐼 𝑖𝑛 𝜇𝑚.  

 
 
Figure 4. 20 Showing the influence of irreducible water saturation on permeability with 
each point as a measurement at a depth. 
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Figure 4. 21 Sensitivity of different parameters used in the empirical model (Equation 

4.18) i.e volume of shale, specific surface, FZI and irreducible water saturation 

relationship. 
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Figure 4.20 demonstrated the importance of irreducible water saturation to the accurate 

determination of permeability. The inverse relationship between permeability and irreducible 

water saturation means that errors made at lower values of irreducible water have a higher 

impact on permeability as shown in the above figure. Again, these are synthetic porosity datasets 

used to compute permeability using different values of irreducible water saturation of 15%, 20%, 

25%, 30%, 35% thus illustrating the importance of irreducible water saturation and the 

sensitivity of permeability to it. As irreducible water lies mainly within the 10-25% range, it is 

pertinent to get it as accurately as possible hence the need for more accurate machine learning 

models. Figure 4.21 shows the sensitivity of the different parameters used in the empirical model. 

 

Figure 4.22 shows a comparism of the base learners (GBM, Neural Networks, Random Forest), 

metalearner (Stacked Ensemble) and the empirical model to the actual core data for the validation 

set. Again, closeness and alignment to the 450 line gives an indication to how correlatible both 

axis i.e actual and model, are to each other hence the y=x fit line not used. It is clear to see that all 

models did well with RMSE values of 0.0603 for GBM, Neural Networks gave 0.0691, Random 

Forest had 0.0619, the Stacked Ensemble model gave 0.0581 while the empirical equation gave 

0.071. Figure 4.23 shows the different models against depth alongside gamma ray. The gamma 

ray shows an intercalation of sand and shale lithology with both coarsening and fining upwards 

sequences. Areas with relatively high amount of shale seems to have higher irreducible water 

saturation as shown hence the inclusion of volume of shale as a parameter in the developed 

empirical model. The gamma ray response can give a good indication of irreducible water 

saturation and should be used as an index for the parameter in sandstone reservoirs. For Figure 

4.24 and 4.25, the Gradient Boosting Model gave an RMS error of 0.0626, Neural networks had 

0.0619, Random Forest gave 0.063, Stacked Ensemble gave values of 0.0459 while the Empirical 

model gave values of 0.0773. 
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Figure 4. 22 Comparison between (a) GBM with rmse of 0.0603 (b) Neural Network had 

rmse of 0.0691 (c) Random Forest gave rmse of 0.0619 (d) Stacked Ensemble gave rmse 

of 0.0581 (e) Empirical predicted gave rmse value of 0.071 with actual (core) for the 

Brent validation set, Hutton Field, Northern North Sea. 
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Generally for all the test cases considered, the different machine learning models gave good 

predictions of irreducible water saturation demonstrating the power of this technique. 

Furthermore the Stacked Ensemble model’s ability to combine the different capabilities of the 

individual base models to form a stronger irreducible water model was responsible for it giving 

the best performance of them all for this property. This is again illustrated with a plot of the 

different models against depth alongside gamma ray log (Figure 4.25). Figure 4.26 shows 

resistivity of the formation as the most sensitive for the GBM generation. Most of the irreduciblle 

water saturation values lie mainly between 10 to 50% unlike total water saturation which has 

values of up to 100% in some reservoirs especially when Archie is used.  

 
 

Figure 4. 23 Plot of Gamma Ray, Core, Stacked Ensemble, Neural Networks, GBM, Random 

Forest, and Empirical Models for the Brent Reservoir, Hutton Field, Northern North Sea. 
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Figure 4. 24 Comparison between (a) GBM with rmse of 0.0626 (b) Neural Network had 
rmse of 0.0619 (c) Random Forest gave 0.063 for rmse (d) Stacked Ensemble had rmse of 
0.0459 and (e) Empirical gave 0.0773 values for rmse with actual for the Test set, Hutton 
Field, Northern North Sea 
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Figure 4. 25 Plot of Gamma Ray, Core, Stacked Ensemble, Neural Networks, GBM, Random 
Forest, and Empirical Models for the Brent Reservoir, Hutton Field, Northern North Sea. 
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Figure 4.26 illustrates the sensitivity of the variables used for the irreducible water saturation 

Stacked Ensemble model showing the deep induction log to be most sensitive followed by 

porosity. 

 

Figure 4. 26 Parameter sensitivity of the machine learning model and training scoring 

history. 

4.2.3.3 Ensemble Residual Saturation Model  

The importance of residual oil saturation to reservoir engineers cannot be over emphasized. The 

property is affected by wettability (Schneider and Owens, 1982) and heterogeneity (Sherborne 

et al. 1967). Also important to point out that there are four types of residual oil saturation after a 

water flooding and these are: oil ganglia trapped at pore throats mainly observed in water wet 

rocks. Its mobilization can be estimated in terms of capillary number ( Stegemeier 1974; 1977); 

the second is oil locked in rock crevices and dead end pores associated with both oil and water 

systems; there is also the thin film coating rock surfaces observed in oil wet rocks while the fourth 

is residual oil from waterflooding in rocks with heterogeneity on a small scale (Chuh and Gary, 

2008; Wreath, 1989). It is logical to say that the presence of one type of residual oil does not 

exclude the presence of the other in a reservoir. A machine learning approach has been adopted 
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for the determination of this property so as to help in accurate planning of enhanced oil recovery 

projects and give an accurate saturation value of any other phase(s) present in the reservoir. 

 

Figure 4.27 shows Gradient Boosting Model giving values of 0.0611, Neuralnet has 0.0678, 

Random Forest gave 0.0632 while the Stacked Ensemble had values of 0.0539 for RMSE. It again 

shows that combining several models rightly, improves the accuracy of predictions. Figure 4.28 

is a plot of these models with depth of the pay zone. Overall machine learning gave predictions 

within 5% error although the Ensemble model performed best. Accurately determining 𝑆𝑜𝑟 will 

help to assess technical feasibility and profitability of oil and gas development projects.  

 
 

Figure 4. 15 Comparison between (a) GBM gave rmse values of 0.0611 (b) Neural 

Network had rmse of 0.0678 (c) Random Forest gave rmsee of 0.0632 and (d) Stacked 

Ensemble had rmse values of 0.0539 with actual for the validation set, Hutton Field, 

Northern North Sea. 
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Figure 4. 16 Plot of Gamma Ray, Core, Stacked Ensemble, Neural Networks, GBM and 

Random Forest models for the Brent Reservoir, Hutton Field, Northern North Sea. 

 
 
Figure 4.29 describes prediction error for the test set.  The GBM model gave values of 0.0694, for 

Neuralnet it was 0.0556, Random Forest had 0.0607 while Stacked Ensemble gave values of 

0.0568 for Root Mean Square Error. Figure 4.30 shows a more vertical less heterogenous 

reservoir than Figure 4.28 as indicated by the gamma ray log. This supervised learning algorithm 

was able to use the optimal combination of these base models to make a better prediction.  
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Figure 4. 17 Comparison between (a) GBM gave rmse of 0.0694 (b) Neural Network had 

rmse of 0.556 (c) Random Forest had rmse of 0.0607 and (d) Stacked Ensemble had rmse 

of 0.0568 with actual for the validation set, Hutton Field, Northern North Sea. 
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Figure 4. 18 Plot of Gamma Ray, Core, Stacked Ensemble, Neural Networks, GBM and 

Random Forest models for the Brent Reservoir, Hutton Field, Northern North Sea. 
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4.3 Real-Time Permeability from Logs 

4.3.1 Introduction 

Relative permeability is the most important property of porous media to carry out reservoir 

prognosis in a multiphase situation (Delshad and Pope 1989; Yuqi and Dacun 2004) and therefore 

needs to be as accurate and readily accessible as possible. Theoretically, it is the ratio of effective 

and absolute permeability. It is useful for the determination of reservoir productivity, effective 

mobility, wettability, fluid injection for EOR, late-life depressurization, gas condensate depletion 

with aquifer influx, injectivity, gas trapping, free water surface, residual fluid saturations, 

temporary gas storage amongst others (Figure 4.31). It is well known that a significant variation 

in relative permeability data can have a huge impact on a macroscopic scale.  

 

The oil and gas industry has a need for easily available and reliable relative permeability data, 

expense reduction on experiments and a more general model for the parameter judging by the 

pitfalls pointed out by several researchers after testing the existing two and three phase relative 

permeability models (Table 4.6). Such workers like Fayers-Matthews (1984) and Juanes et al. 

(2006) after testing non-wetting relative permeability interpolation models such as Baker and 

Stone’s I and II, against Saraf et al. (1982), Schneider and Owens (1970), Saraf and Fatt (1967) 

and Corey et al. (1956) experimental data, presented the same conclusion that they give similar 

results for high oil saturations but are different as it tends towards residual oil saturation. 

Manjnath and Honarpour (1984) concluded that corey gives higher values for non-wetting phase 

relative permeability after comparing against Donaldson and Dean data. 

 

Based on the assumption that water and gas relative permeability depends only on their 

saturation and not on that of other phases, Delshad and Pope (1989) concluded after a 

comparative study of 7 relative permeability models that Baker and Pope performed better but 

also stated the need for better models. Siddiqui et al. (1999) found Wyllie-Gardner and Honarpour 

to yield consistently better results at experimental condition after testing 10 relative permeability 

models. Al-Fattah (2009) found Honarpour regression model to be the best after comparing with 

5 other models and also developed his own regression model. Since the coefficients of these 

regression models are not generalized, they are not suitable for real time applications.  

 

Furthermore, for wetting phase relative permeability in consolidated media, Li and Horne (2006) 

showed that the Purcell model best fits the experimental data in the cases studied by them 

provided the measured capillary pressure curve had the same residual saturation as the relative 
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permeability curve which is sometimes not the case. Saraf and McCaffery (1985) could not 

recommend a best model due to scarcity of three phase relative permeability data. The different 

relative permeability correlations have limitations and assumptions which no doubt have 

implications thus increasing the uncertainty in reservoir simulation studies hence the need for a 

more generalized model. 

 

Therefore, the purpose of this study is to implement a generalised Deep Learning model for the 

prediction of relative permeability accounting for reservoir depletion, saturation and phase 

changes with time. Most of the reviewed models (Equation 4.19) are static but Deep Neural 

Networks if appropriately tuned can capture the transients faster and more accurately throughout 

the reservoir life while also getting better as more data becomes available with time (Arigbe et al., 

2018). Training can be done offline and the trained networks are suitable for on-board generation 

of descent relative permeability profiles as their computation requires a modest CPU effort hence 

not a concern to real time application. A separate analysis was also done for absolute permeability 

with the aim of demonstrating their ability to model North Sea sandstone formations and thereby 

reducing the uncertainty in its determination from these existing models like Timur, Tixier, Morris 

and Biggs, Coates, Dual water. Generalized empirical models were also generated from Coates and 

Dumanoir model since they offer the flexibility interms of the relationship between permeability 

and irreducible water saturation.  

Wyllie and Rose type models 

𝑘 = 𝐶 ∗
𝜑𝑥

𝑆𝑤𝑖
𝑦  

                                                                            (4.19) 

 

 Where 𝜑 is the porosity, 𝑆𝑤𝑖 is irreducible water saturation and 𝐶, 𝑥 𝑎𝑛𝑑 𝑦 are constants. 
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Figure 4. 19 Schematic of oil-water relative permeability curve  

Table 4.7 shows the assumptions and applications of the commonly used two and three phase 

relative permeability models. It is a fact that relative permeability is dependent on saturation 

history as well as saturation. The direction of saturation change which could be imbibition or 

drainage referring to increase or decrease in wetting phase saturation respectively. The models 

shown in the table are based on the idea that the nonwetting phase is partly immobile and partly 

mobile during saturation change in the imbibition direction as well as the assumption that the 

amount of entrapment at any saturation could be derived from the connection between non 

wetting phase saturations in the drainage direction and residual saturations when imbibition is 

finished. 

The weighting factors (𝑆𝑤 − 𝑆𝑤𝑐), (𝑆𝑔 − 𝑆𝑔𝑟)and (𝑆𝑜 − 𝑆𝑜𝑟) appears in both the numerator and 

denominator must be positive and at worse zero. L’Hopital’s rule has to be applied to either 

saturation to get their proper limit, in the indeterminate case where both the numerator and 

denonminator are zero. L’Hopital’s rule which is often applied to provide limits of indeterminate 

form and converting it to a mathematical expression which can then be easily evaluated by 

substitution. The values of 𝐾𝑟𝑜𝑤 and 𝐾𝑟𝑜𝑔 were obtained from the oil/water and gas/oil relative 

permebability data interpolated at the actual oil and gas saturation respectively.  
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Table 4. 7  Assumptions and application of the commonly used two and three phase relative permeability correlations  

MODEL CORRELATION PHYSICS ASSUMPTIONS APPLICATION 

WINDOW 

Corey et al. 

(1956) 𝐾𝑟𝑜 = (
𝑆𝑜 − 𝑆𝑜𝑟

1 − 𝑆𝑜𝑟
)

2+3𝜆
𝜆

                

𝐾𝑟𝑔 = (
1 − 𝑆𝑜

1 − 𝑆𝑜𝑟
)

2

[1 − (
𝑆𝑜 − 𝑆𝑜𝑟

1 − 𝑆𝑜𝑟
)]

2+𝜆
𝜆

 

An extension of Purcell 

(1941) and Burdine (1953) 

which is based on the mean 

hydraulic radius concept of 

Kozeny-Carman (bundle of 

capillaries model) for each 

pore size in a rock with large 

variety of pores and 

tortuosity expressed in terms 

of fluid saturation. 

𝐾𝑟𝑜 ∝ oil pore area and 

saturation of water and 

gas phases 

Relative permeability of 

wetting and non-wetting 

phase independent of 

saturation of other phases. 

Requires a single suite of 

𝐾𝑟𝑔/𝐾𝑟𝑜 data at constant 𝑆𝑤 

to calculate 𝐾𝑟𝑔 𝑎𝑛𝑑 𝐾𝑟𝑜 for 

all saturations 

Not flexible to force end 

points of isoperms to match 

measured data. 

Applies only to well-sorted 

homogenous rocks. 

Wyllie (1951) 
𝐾𝑟𝑤 = (

𝑆𝑤 − 𝑆𝑤𝑐

1 − 𝑆𝑤𝑐
)

4

 

𝐾𝑟𝑔 =
𝑆𝑔

2[(1 − 𝑆𝑤𝑐)2 − (𝑆𝑤 + 𝑆𝑜 − 𝑆𝑤𝑐)2]

(1 − 𝑆𝑤𝑐)4  

𝐾𝑟𝑜 =
𝑆𝑜

3(2𝑆𝑤 + 𝑆𝑜 − 2𝑆𝑤𝑐)

(1 − 𝑆𝑤𝑐)4  

Based on bundle of 

capillaries cut and rejoined 

along their axis with related 

entrapment of the wetting 

phase. 

Considers irreducible 

water as part of the rock 

matrix. 

Applied when water 

saturation is at irreducible 

level. 

Stone (1970) 
𝐾𝑟𝑜 = 𝑆𝑜

∗ (
𝐾𝑟𝑜𝑤

1 − 𝑆𝑤
∗ ) (

𝐾𝑟𝑜𝑔

1 − 𝑆𝑔
∗) = 𝑆𝑜

∗𝛽𝑤𝛽𝑔     

 

 

 

 

Based on the channel flow 

theory which states that in 

any flow channel, only one 

fluid is mobile hence the 

basis for 𝛽𝑤  and 𝛽𝑔 is tied to 

the notion of identical 

microscopic fluid 

distribution around a two-

phase interface 

Assumes gas/oil 

displacement at zero water 

saturation 

Makes use of a probability 

model to estimate three 

phase relative 

permeability. 

Experimental evidence shows 

that 𝑆𝑜𝑚 (irreducible residual 

oil saturation) should be in 

the range 0.25 ∗ 𝑆𝑤𝑐 to 0.5 ∗

𝑆𝑤𝑐 

Stone (1973) 𝐾𝑟𝑜 = (𝐾𝑟𝑜𝑤 + 𝐾𝑟𝑤)(𝐾𝑟𝑜𝑔 + 𝐾𝑟𝑔) − (𝐾𝑟𝑤 + 𝐾𝑟𝑔) 

 

Permeability to oil at 

irreducible water saturation 

and zero gas saturation. 

 

 

Assumes total 

permeability is the 

product of total water/oil 

and gas/oil permeabilities 

Uses a revised probability 

model for better fit with 

experimental data. 

𝐾𝑟𝑜𝑤 and 𝐾𝑟𝑜𝑔 must be unity 

at irreducible water saturation 

for accurate estimation of 

two-phase relative 

permeability as third phase 

saturation tends to zero. 



127 
 

Honarpour et al. 

(1982) 

Water wet 

𝐾𝑟𝑤 = 0.035388 (
𝑆𝑤 − 𝑆𝑤𝑐

1 − 𝑆𝑤𝑐 − 𝑆𝑜𝑟𝑤
)

− 0.0108074 (
𝑆𝑤 − 𝑆𝑜𝑟𝑤

1 − 𝑆𝑤𝑐 − 𝑆𝑜𝑟𝑤
)

2.9

+ 0.56556(𝑆𝑤)3.6(𝑆𝑤 − 𝑆𝑤𝑐) 

Any wettability 

𝐾𝑟𝑜 = 0.76067 [
(

𝑆𝑜
1 − 𝑆𝑤𝑐

⁄ ) − 𝑆𝑜𝑟

1 − 𝑆𝑜𝑟𝑤
]

1.8

[
𝑆𝑜 − 𝑆𝑜𝑟𝑤

1 − 𝑆𝑤𝑐 − 𝑆𝑜𝑟𝑤
]

2.0

+ 2.6318∅(1 − 𝑆𝑜𝑟𝑤)(𝑆𝑜 − 𝑆𝑜𝑟𝑤) 

𝐾𝑟𝑔 = 1.1072 (
𝑆𝑔 − 𝑆𝑔𝑟

1 − 𝑆𝑤𝑐
)

2

𝐾𝑟𝑔𝑜 + 2.7794𝑆𝑜𝑟𝑔 (
𝑆𝑔 − 𝑆𝑔𝑟

1 − 𝑆𝑤𝑐
) 𝐾𝑟𝑔𝑟𝑜 

Based on proposed empirical 

relationships describing 

experimentally determined 

permeabilities. 

Assumes normally 

distributed variables 

New constant will have to be 

developed for other areas to 

have a good fit. 

Parker et al. 

(1987) 

 

𝐾𝑟𝑜 = (𝑆𝑡̅ − 𝑆𝑤̅)1 2⁄ [(1 − 𝑆𝑤̅
1 𝑚⁄

)
𝑚

− (1 − 𝑆𝑡̅
1 𝑚⁄

)
𝑚

]
2

 

Based on relative 

permeability, saturation-fluid 

pressure functional 

relationships with a flow 

channel distribution model in 

two or three phase flow 

subject to monotonic 

saturation path and to 

estimate effective mean fluid 

conducting pore dimensions. 

 

 

Wettability takes the water 

> oil > gas sequence. 

Irreducible fluid 

saturation is independent 

of fluid properties or 

saturation history 

No Gas/water contact 

occurs in the three phase 

region until the level 

where oil exists as 

discontinuous bolbs or 

pendular rings 

Limited to cases where a 

satisfactory fit to the two-

phase data is provided by the 

fitting equations 𝑚 = 1 −

1/𝑛 

Baker (1988) 
𝐾𝑟𝑜 =

(𝑆𝑤 − 𝑆𝑤𝑐)𝐾𝑟𝑜𝑤 + (𝑆𝑔 − 𝑆𝑔𝑟)𝐾𝑟𝑜𝑔

(𝑆𝑤 − 𝑆𝑤𝑐) + (𝑆𝑔 − 𝑆𝑔𝑟)
 

𝐾𝑟𝑤 =
(𝑆𝑜 − 𝑆𝑜𝑟)𝐾𝑟𝑤𝑜 + (𝑆𝑔 − 𝑆𝑔𝑟)𝐾𝑟𝑤𝑔

(𝑆𝑜 − 𝑆𝑜𝑟) + (𝑆𝑔 − 𝑆𝑔𝑟)
 

𝐾𝑟𝑔 =
(𝑆𝑜 − 𝑆𝑜𝑟)𝐾𝑟𝑔𝑜 + (𝑆𝑤 − 𝑆𝑤𝑐)𝐾𝑟𝑔𝑤

(𝑆𝑜 − 𝑆𝑜𝑟) + (𝑆𝑤 − 𝑆𝑤𝑐)
 

As the saturation of a phase 

tends to zero, that of the 

other two-phase will 

dominate. 

 

The end points of the 

three phase relative 

permeability isoperms 

coincide with the two-

phase relative 

permeability data. 

 

Weighting factors (𝑆𝑤 − 𝑆𝑤𝑐) 

and (𝑆𝑔 − 𝑆𝑔𝑟) must be both 

positive 

Frode (2005) 
𝐾𝑟𝑜𝑤 = 𝐾𝑟𝑜

𝑥
(1 − 𝑆𝑤𝑛)𝐿𝑜

𝑤

(1 − 𝑆𝑤𝑛)𝐿𝑜
𝑤

+ 𝐸𝑜
𝑤𝑆𝑤𝑛

𝑇𝑜
𝑤 

𝐾𝑟𝑤 = 𝐾𝑟𝑤
𝑜

𝑆𝑤𝑛
𝐿𝑤

𝑜

𝑆𝑤𝑛
𝐿𝑤

𝑜

+ 𝐸𝑤
𝑜 𝑆𝑤𝑛

𝑇𝑤
𝑜  

Based on the mean hydraulic 

radius concept of Kozeny-

Carman (bundle of 

capillaries model) 

Assumes that the whole 

spectrum of the relative 

permeability curve can be 

captured with the 𝐿, 𝐸, 𝑇 

parameters. 

It exhibits enough flexibility 

to reconcile the entire 

spectrum of experimental 

data. 
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𝑆𝑤𝑛 =
𝑆𝑤 − 𝑆𝑤𝑖

1 − 𝑆𝑤𝑖 − 𝑆𝑜𝑟𝑤
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4.3.2  Methodology 

 

The most commonly available factors influencing relative permeability such as porosity, ∅, 

viscosity, µ, permeability, k, saturation, Sw, together with Baker and Wyllie parameter 

combinations were used as inputs for the network. Baker gave correlation coefficients of 0.96 

and 0.86 while Wyllie has correlation coefficients of 0.91 and 0.89 for Corey and Leverett-Lewis 

datasets respectively (Table 4.8). The table was compiled by Baker 1988 using different models 

(left column labels) on existing datasets (top row label). Modified by added the last row (Wyllie) 

to it. 

Ten (10) sets of water-oil relative permeability data with 132 data points from a NorthSea field 

with four-fifths used as training set and one-fifth as validation set. Another set of water-oil 

relative permeability data from a separate field were used as the testing set after data wrangling 

and normalization. A seed value was set to ensure the repeatability of the model. An optimised 

number of hidden layers (100) was used to reduce the need for feature engineering. The best 

cross validation result in a 5-fold arrangement was automatically used to train the DNN models 

until convergence using Nesterov accelerated gradient descent (which minimize their cost 

function). The rectifier activation function were used in the DNN modelling to increase the 

nonlinearity of the model, significantly reduce the difficulty in learning, improve accuracy and 

can accept noise (Equation 4.20). This allows for effective training of the network on large and 

complex datasets making it helpful for real time applications. 

 𝑓(𝑥) = max(0, 𝑥 + 𝑌)                                              (4.20) 

Where  𝑌~ℵ(0, 𝜎(𝑥)) is the Gaussian noise applied to the rectifier linear unit. 

They were then validated and tested to check the generalization and stability of the models for 

out of training sample applications. The aim is infer relative permeability data for core samples 

where no flood experiments have been carried out based on existing data. 
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Table 4. 8 Comparison of relative permeability models (vertical) with different datasets 

(horizontal) using correlation coefficient (Modified after Baker 1988)  

DATA  COREY  LEVERETT 

AND LEWIS  

REID  SNELL  SARAF 

ET AL  

HOSAIN  GUCK 

ERT  

STONE I  0.97  0.76  0.90  0.57  0.82  0.85  0.48  

STONE 11  0.77  0.75  0.87  0.75  0.68  0.33  0.50  

AZIZ AND 

SETARRI  
0.8  0.75  0.95  0.75  0.74  0.9  0.48  

COREY  0.88  0.83  0.89  0.48  0.50  0.74  0.6  

BAKER  0.96  0.86  0.88  0.58  0.9  0.84  0.57  

NAAR AND 

WYGAL  
0.74  0.67  0.78  0.50  0.55  0.54  0.50  

PARKER  0.85  0.73  0.88  0.56  0.87  0.93  0.52  

LAND  0.93  0.8  0.89  0.50  0.66  0.74  0.55  

WYLLIE  0.91  0.89  -  -  -  -  -  

 

The developed Deep Neural Networks model was further applied to predict other experimental 

data carried out based on Buckley-Leverett (1942) frontal advance theory (Figure 4.32) and 

Welge (1952) method for average water saturation behind the water front. Permeability is a 

tensor (time dependent), hence relative permeability was obtained from saturation change with 

time that is, the developed Deep Learning model made predictions of relative permeability as a 

function of time from the saturation history.  
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Figure 4. 20 Water fractional flow curve with its derivative for the field considered. 

4.3.2.1 Deep Neural Network  

DNN is a feed-forward, artificial neural network with more than one layer of hidden units between 

its inputs and outputs (Figure 4.33). The ability of the model to transfer to a new context and not 

over-fit to a specific context (generalization) was addressed using cross validation which is 

described in detail below. All networks were trained until convergence with Nesterov accelerated 

gradient descent which also minimizes the cost function (which measures the performance of a 

machine learning for the data). In addition, both 𝜆1 and 𝜆2 regularization (Equation 4.21) were 

used to add stability and improve the generalization of the model.   

Mathematically, 

 
𝐽(𝜃) =

1

2
∑(𝜃𝑇𝑥(𝑖) − 𝑦(𝑖))

2
+

𝑛

𝑖=1

𝜆 ∑ 𝜃𝑗
2

𝑝

𝑗=1

 
                                        (4.21) 

Where 𝒙 are inputs, 𝜽 are parameters, 𝐽 is the regularized objective function, 𝝀 is the tuning 

parameter which decides how much the flexibility of our model should be penalized represented 

as 𝒍𝟏 or 𝒍𝟐 (preferred to 𝒍𝟎 for convexity reasons). Regulaization helps to reduce the variance in 
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predicting test data without increasing bias thereby reducing overfitting. DNN are well suited for 

modelling systems with complex relationships between input and output (Burke, 1992; Hubick, 

1992) which is what is obtainable in natural earth systems. In such cases with no prior knowledge 

of the nature of non-linearity, traditional regression analysis is not adequate (Gardner and 

Dorling, 1998).  It has been successfully applied to real time speech recognition, computer vision, 

optimal space craft landing etc. 

 

Figure 4. 21 Deep Neural Network model architecture showing input, hidden and output 

layers (Lee et al. 2017). 

Again the scale issue is a major concern for most algorithms. We construct bigger neural networks 

and continually train them with more and more data (which is the case for real time applications) 

their performance continues to increase. Performance refers to the prediction accuracy of the 

model for new data not used in the training set. This is generally not the case for other machine 

learning algorithms whose performance reaches a plateau (Figure 4.34).  
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Figure 4. 22 How data science techniques scale with amount of data (Andrew, 2013) 

 

4.3.2.2 Cross Validation  

Overfitting which is the single major problem of prediction when independent datasets is used 

was reduced through cross validation by estimating out of sample error rate for the predictive 

functions built to ensure generalisation. Other issues like variable selection, choice of prediction 

function and parameters and comparison of different predictors were also addressed. A 5-fold 

cross validation technique was used to split the data set into training and test set, build a model 

on the training set, evaluate on the test set and then repeat and average the errors estimated. A 

weight decay was chosen to improve the generalization of the model by suppressing any 

irrelevant component of the weight vector while solving the learning problem with the smallest 

vector. This also suppresses some of the effects of static noise on the target if chosen correctly.  
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4.3.3 Results and Discussion  

4.3.3.1 Absolute Permeability Modelling of the North Sea 

Figures 4.35, 4.36 & 4.37 are cumulative curves showing the permeability distribution for 

Northern, Central and Southern North Sea.  Different permeability datasets from sandstone 

reservoirs in the NorthSea were plotted into a cumulative distribution curve to show the 

distribution of permeability in the different regions of the NorthSea. It appears that the median 

permeability range in the Northern North Sea is between 100 to 500mD (Figure 4.35), the 

Southern North Sea has a median permeability of 0.1 to 1.0mD (Figure 4.36) while it is between 

1 and 10mD in the Central North Sea. Generally absolute permeability in the North Sea ranges 

from 0.0001mD to about 3692mD. The median range of values for the Northern North Sea appears 

higher than both for Central and Southern North Sea. This distribution gives a better 

understanding of how varied the datasets from the NorthSea is. The median values are the mid 

points in the distribution of permeability in Northern, Central and Southern North Sea. 

 

 

Figure 4. 23 Permeability distribution in Northern North Sea sandstone reservoirs. 
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Figure 4. 24 Permeability distribution in Southern North Sea sandstone reservoirs. 

 

Figure 4. 25 Permeability distribution in Central North Sea sandstone reservoir. 
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The different absolute permeability models have been dealt with in Chapter Two. Several of the 

most commonly used absolute permeability models like Timur, Tixier, Morris and Biggs, Coates 

were modelled for the North Sea as shown in Figures 4.38-4.39. As can be seen from the figure 

below, none of the existing models perfectly models the North Sea data although Timur gave the 

closest. Ahmed et al. (1991) also pointed out that the Wyllie-type models generally suffer from 

the difficulty of getting zero permeability as irreducible water saturation approaches 100% and 

when porosity approaches zero hence they might disregard irreducible water approaching 100% 

and honour only the porosity limit for permeability approximation that are zero. Since the Coates 

and Dumanoir (1973) free fluid model allows zero permeability at zero porosity and 100% 

irreducible water saturation, it was modified to model absolute permeability for North Sea 

sandstone reservoirs. The original Coates and Dumanoir (1973) model is shown in Equation 4.25 

while the Modified Coates and Dumanoir model for the North Sea is given by Equation 4.26 

although more data is needed to get a more confident model (it is not the model in Coates original 

paper but Equation 4.22 to 4.25 are the original models).  

Timur 1968 

𝑘 = 0.136
∅4.4

𝑆𝑤𝑖
2  

                                                              (4.22) 

Tixier 1949 

𝐾
1

2⁄ = 250
∅3

𝑆𝑤𝑖
 

                                                              (4.23) 

Kozeny-Carman 1927 

𝑘 = 𝐴1

∅3

𝑆𝑂
2(1 − ∅)2

 
                                                              (4.24) 

Coates and Dumanoir (1973) 

𝐾0.5 = 70 ∗
𝜑2(1 − 𝑆𝑤𝑖)

𝑆𝑤𝑖
 

                                                                      (4.25)                                                                                                                                                                          

Modified Coates and Dumanoir 

𝐾 = 0.004 ∗
𝜑2.7(1 − 𝑆𝑤𝑖)

𝑆𝑤𝑖
 

                                                                       (4.26)                                                                                                                                                        
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Figure 4.38 illustrates the original Coates model for the North Sea while Figure 4.39 shows the 

good fit of the modified Coates model in logarithmic porosity scales.  

 

Figure 4. 26 Distribution of permeabilities across the Northern, Central and Southern 

North Sea indicating their different depositional environments 

 

Figure 4. 27  Tixier, Morris, Coates, Timur modelled over North Sea data. Broken line is 

obtained from the data and passes through the centre. 
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4.3.3.2 Oil-Water Relative Permeability Prediction 

 
Deep neural networks model have been validated using separate out of sample datasets not used 

for the training. The good agreement between experimental data and DNN’s model predictions 

indicates that the complex, transient, non-linear behaviour of reservoir fluids can be effectively 

modelled as their saturation and phase changes with time. 

 

Figures 4.28, 4.29 & 4.30 give a comparison between actual experimental values and model 

predictions using neural networks without cross validation, neural networks with cross 

validation and the deep neural networks. The objective here was to see how Deep Learning out 

performs ordinary networks on new data. These cross plots show the extent of agreement 

between the laboratory and predicted values. A perfect agreement means all points lie on the 45o 

line on the plot. For the testing set drawn from a different field from the training set, the Deep 

Neural Networks for both the wetting and non-wetting phase relative permeability (Figure 4.28 

b&d) gives very close values to the perfect correlation line in all data points compared to the 

other models.  Figure 4.40 a&c representing Neural Networks without cross validation, gave an 

RMSE value of 0.2484 and 0.0767 while Neural net with cross validation gave an RMSE of 0.0624 

and 0.0765 (Figure 4.29 a&c). The Deep Neural Net gave an RMSE value of 0.2517 and 0.065 

(Figure 4.30 a&c) for both wetting and non-wetting relative permeability. It is clear that all the 

models did well for the validation set although the deep neural networks performed better than 

the other two models. The different models were then shown new data from a separate field to 

see how they performed. For the test set (which is an out of sample dataset) obtained from a 

different field, the RMSE for neural network without cross validation is 0.9996 and 0.8483 

(Figure 4.28 b&d), 0.2295 and 0.8022 with cross validation (Figure 4.29 b&d) while DNNs gave 

0.0759 and 0.15 (Figure 4.30 b&d) for wetting and non- wetting relative permeability 

respectively. The deep learning model used the fourth cross validation model which happen to 

be the best for the wetting phase with a correlation coefficient of about 97% (Table 4.9) and the 

lowest error of 0.0014 while the second cross validation model was used for the non-wetting 

phase relative permeability having 96% correlation coefficient and the lowest error value of 

0.0010 (Table 4.10).  
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Figure 4. 28 Actual vs predicted value for neural networks without cross validation with 

(a) wetting phase relative permeability for validation set with an error of 0.2484 (b) 

wetting phase relative permeability for test set with error of 0.9996 (c) non-wetting 

relative permeability for validation set with error of 0.0767 (d) non-wetting relative 

permeability for the test set with error of 0.8483. 

 
Figure 4. 29 Actual vs predicted value for neural networks with cross validation with (a) 

wetting phase relative permeability for validation set without an error of 0.0624 (b) 

wetting phase relative permeability for test set haing an error of 0.2295 (c) non-wetting 

relative permeability for validation set with an error of 0.0765 (d) non-wetting relative 

permeability for the test set with an error of 0.8022. 

 



140 
 

 

Figure 4. 30 Actual vs predicted value for deep neural networks with (a) wetting phase 

relative permeability for validation set with an error of 0.2517 (b) wetting phase relative 

permeability for test set with an error of 0.0759 (c) non-wetting relative permeability for 

validation set with an error of 0.065 (d) non-wetting relative permeability for the test set 

having an error of 0.15.  

Table 4. 9 Accuracy of the deep learning model for the wetting phase 
 

mean sd 5-Fold Cross Validation Results 

1 2 3 4 5 

mae 0.0489 0.0068 0.0558 0.0477 0.0612 0.0330 0.0468 

mrd 0.0052 0.0022 0.0053 0.0047 0.0108 0.0014 0.0038 

mse 0.0052 0.0022 0.0053 0.0047 0.0108 0.0014 0.0038 

r2 0.9259 0.0186 0.9121 0.9086 0.9018 0.9745 0.9325 

rd 0.0052 0.0022 0.0053 0.0047 0.0108 0.0014 0.0038 

rmse 0.0689 0.0150 0.0728 0.0684 0.1037 0.0380 0.0615 

rmsle 0.0541 0.0130 0.0509 0.0558 0.0854 0.0277 0.0509 

 

 

 

 

 



141 
 

Table 4. 10 Accuracy of the deep learning model for the non-wetting phase 
 

mean sd 5-Fold Cross Validation Results 

1 2 3 4 5 

mae 0.0470 0.0109 0.0633 0.0395 0.0593 0.0209 0.0521 

mrd 0.0052 0.0019 0.0065 0.0038 0.0089 0.0010 0.0060 

mse 0.0052 0.0019 0.0065 0.0038 0.0089 0.0010 0.0060 

r2 0.9214 0.0217 0.8800 0.9636 0.9099 0.9043 0.9492 

rd 0.0052 0.0019 0.0065 0.0038 0.0089 0.0010 0.0060 

rmse 0.0690 0.0153 0.0805 0.0619 0.0941 0.0309 0.0774 

rmsle 0.0489 0.0090 0.0641 0.0466 0.0578 0.0266 0.0492 

 

 

Figures 4.31 and 4.32 display the trend comparing the different models using the standard 

relationship between saturation and relative permeability. The Deep Learning model clearly out 

performs the other models giving better predictions for both the wetting and non-wetting 

phases. Measurement error which causes input values to differ if the same example is presented 

to the network more than once is evident in the data. This limits the accuracy of generalization 

irrespective of the volume of the training set. The Deep Neural Networks model deeply 

understands the fundamental pattern of the data thus able to give reasonable predictions than 

ordinary networks and empirical models (Figures 4.31 and 4.32). The curves show that significant 

changes in the saturation of other phases has large effect on the wetting phase ability to flow as 

observed from the less flattening of the water relative permeability curve and vice versa for the 

flattened curve. Although this flattening behaviour is usual in the secondary drainage and 

imbibition cycles but mainly in the wetting phase when flow is mainly through small pore 

networks. Again, the curve flattening of the oil relative permeability curve could from experience 

be from brine sensitivity and high rates causing particle movements resulting to formation 

damage.  
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Figure 4. 31 Experimental and predicted relative permeability models using neural 

network with and without cross validation and deep neural networks on the validation 

set. The neural network model with cross validation (cv) partitioned the dataset into 5-

fold and then trained and tested the model using the different folds.  

 

 
 

Figure 4. 32 Experimental (actual) and predicted relative permeability models using 

neural network (both with and without cross validation) and Deep Neural Networks on 

the out of sample test set (Stafjord reservoir). Cross validation (cv) involved in the 

network helped to improve its accuracy for out of sample datasets. 
 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

R
el

at
iv

e 
Pe

rm
ea

b
ili

ty
 (

p
ct

)

Water saturation (pct)

Actual_Krw

nnet_Krw

Actual_Kro

nnet_Kro

nnet+cv_Krw

nnet+cv_Kro

dnn_Krw

dnn_Kro

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

R
el

at
iv

e 
Pe

rm
ea

b
ili

ty
 (

p
ct

)

Water saturation (pct)

Actual_Krw
nnet_Krw
Actual_Kro
nnet_Kro
nnet+cv_Krw
nnet+cv_Kro
dnn_Krw
dnn_Kro



143 
 

Figure 4.33 and 4.34 compares the Deep Neural Network model with commonly used empirical 

relative permeability models like Baker, Wyllie, Honarpour, Stones, Corey, Parker.The Baker 

equation is used to extrapolate oil-water and oil-gas relative permeabilities tot eh three phase 

case. Despite the fact that some of these models where developed using lots of datasets way more 

than the amount used for training the Deep Neural Networks, it still out performed them showing 

that it is more able to capture the transients and eddies in real time scenarios due to its ability to 

regularize and generalize using its robust parameters as discussed earlier.  

 

 
 

Figure 4. 33 Comparison of Wyllie, Corey, Parker, Stone, Baker, Honarpour, Deep Neural 

Networks for the Brent reservoir, North Sea. The DNN gave better prediction than the 

existing models for this validation set. Corey’s , 𝝀, taken to be 2 and Parker’s 𝒏 parameter. 
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Figure 4. 34 Comparison of Wyllie, Corey, Baker, Honarpour, Deep Neural Networks 

models for the Stratjford reservoir, NorthSea.  
 

Figures 4.35 and 4.36 corroborates the earlier observation that the Deep Learning model predicts 

better compared to most of the relative permeability models used in reservoir modelling software. 

It is important to note here that the empirical models have a problem of generalization especially 

as every reservoir is unique. Again, the assumptions associated with their formulation might not 

be practically true in all cases but this reservoir uniqueness or generalization is captured by the 

Deep Learning model bearing in mind that it will perform even better as more real time data is 

added to the training set. 
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Figure 4. 35 Comparison of Deep Neural Networks and Baker with the measured wetting 

and non-wetting relative permeability models for the validation set (Brent reservoir).  

 

 

Figure 4. 36 Comparison of Deep Neural Networks and Baker with the wetting and non-

wetting phase relative permeability models with for the test sets (Stratjford reservoir). 

Baker was used since it performed best among the models compared. 
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Field Data of a water flooding operation were further used to test the capability of the deep neural 

network model for other real time applications. Figure 4.37 shows the amount of water injected 

at fixed time for flooding operation. The alphabets s-z represent the water flood fronts at fixed 

time of 30 to 240 days respectively. This becomes essential as water moves into the production 

well (water-oil interface moves upwards) due to greater water mobility than oil (Dake, 1983).  

 

 
 

Figure 4. 37 Water saturation against distance along pay 
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Figure 4. 38 Dimensionless distance against dimensionless time describing saturation 

history 

 

Based on the given depletion profile and history (Figures 4.37 & 4.38), the corresponding relative 

permeability was delineated for both the wetting and non-wetting phase (Figure 4.39 & 4.40) 

using the tested Deep Learning model. As the oil saturation drops, the water saturation increases 

leading to coning which is one of the major problems in reservoirs under water drive hence 

reservoir engineers seek ways to prevent or delay it. This is so vital especially since the cost of 

treating and disposing this water is very high.  
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Figure 4. 39 Wetting and non-wetting phase saturation history of case field 

 

 

Figure 4. 40  Real time wetting and non-wetting phase relative permeability of a case 

field. 
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Figures 4.41 and 4.42 describe the relative importance (sensitivity) of the variables used for the 

wetting and non-wetting Deep Learning relative permeability models. The wetting phase model 

was more sensitive to its saturation and relatively less sensitive to that of the non-wetting phase 

while the non-wetting phase model was very sensitive to both its saturation and that of the 

wetting phase. Both models were also more sensitive to their own viscosities than the other. 

These models seem to obey the basic physics underlying relative permeability modelling. The 

least important variable still contributed above the median mark although in general, all 

variables show greater sensitivity in the non-wetting model than in the wetting relative 

permeability model. The 𝑆𝑤 − 𝑆𝑤𝑐 was the most sensitive of all the input parameters in both the 

wetting and non-wetting phase and immediately followed by 𝑆𝑤 in the wetting-phase and by 𝑆𝑜 

in the non—wetting phase relative permeability. 

 

 

Figure 4. 41 Sensitivity analysis of individual variables used for building the wetting phase 

Deep Learning relative permeability model. 
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Figure 4. 42 Sensitivity analysis of individual variable used for building the non-wetting 

phase Deep Learning relative permeability model. 

 

Table 4.11 shows the performance of the different variables combinations for both the wetting 

and non-wetting phase model. There was an increase in model performance when just the input 

parameters from the factors affecting relative permeability were increased for both phases 

shown from Cases 1 to 7. The error dropped from 0.1204 to 0.0481 for the wetting phase and 

from 0.1532 to 0.0691 for the non-wetting phase. In Cases 8 to 11, the input parameter now 

includes the functional links from Baker nd Wyllie models. As can be seen the performance 

continued to increase as shown by the error reduction from 0.0481 to 0.0380 for the wetting 

phase and 0.0681 to 0.0619 for the non-wetting phase. 
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Table 4. 11 Sensitivity analysis showing the importance of the different to both water and 

oil relative permeabilities. 

 

 

Cases 

Input Variables  

Model Metric 

(RMSE, fraction) Factors affecting Relative 

Permebility 

Functional Links 

(From Baker and 

Wyllie) 𝑲𝒓𝒘 𝑲𝒓𝒐 

1 𝑆𝑤, 𝑆𝑜  0.1204 0.1532 

2 𝑆𝑤, 𝑆𝑜, 𝑆𝑤𝑖  0.1201 0.1057 

3 𝑆𝑤 , 𝑆𝑜, 𝑆𝑤𝑖, 𝑆𝑜𝑟  0.1153 0.0712 

4 𝑆𝑤 , 𝑆𝑜, 𝑆𝑤𝑖, 𝑆𝑜𝑟, 𝑘  0.0906 0.0698 

5 𝑆𝑤 , 𝑆𝑜, 𝑆𝑤𝑖, 𝑆𝑜𝑟, 𝑘, 𝑝ℎ𝑖  0.0705 0.0671 

6 𝑆𝑤 , 𝑆𝑜, 𝑆𝑤𝑖 , 𝑆𝑜𝑟, 𝑘, 𝑝ℎ𝑖, 𝜇𝑜  0.0616 0.0691 

7 𝑆𝑤, 𝑆𝑜, 𝑆𝑤𝑖 , 𝑆𝑜𝑟, 𝑘, 𝑝ℎ𝑖, 𝜇𝑜, 𝜇𝑤  0.0481 0.0681 

8 𝑆𝑤, 𝑆𝑜, 𝑆𝑤𝑖 , 𝑆𝑜𝑟, 𝑘, 𝑝ℎ𝑖, 𝜇𝑜, 𝜇𝑤 (𝑆𝑤 − 𝑆𝑤𝑐) 0.0463 0.0667 

9 𝑆𝑤, 𝑆𝑜, 𝑆𝑤𝑖 , 𝑆𝑜𝑟, 𝑘, 𝑝ℎ𝑖, 𝜇𝑜, 𝜇𝑤 (𝑆𝑤 − 𝑆𝑤𝑐), (𝑆𝑜 − 𝑆𝑜𝑟) 0.0449 0.0652 

10 𝑆𝑤, 𝑆𝑜, 𝑆𝑤𝑖 , 𝑆𝑜𝑟, 𝑘, 𝑝ℎ𝑖, 𝜇𝑜, 𝜇𝑤 (𝑆𝑤 − 𝑆𝑤𝑐), (𝑆𝑜

− 𝑆𝑜𝑟), (1 − 𝑆𝑤𝑐) 

0.0508 0.0732 

11 𝑆𝑤, 𝑆𝑜, 𝑆𝑤𝑖 , 𝑆𝑜𝑟, 𝑘, 𝑝ℎ𝑖, 𝜇𝑜, 𝜇𝑤 (𝑆𝑤 − 𝑆𝑤𝑐), (𝑆𝑜

− 𝑆𝑜𝑟), (1

− 𝑆𝑤𝑐), (𝜇𝑜 𝜇𝑤⁄ ) 

0.0380 0.0619 

 

 

 

 

 

 

 

 

 



152 
 

4.3.6 Summary and Conclusion  

 

A Deep Neural Networks methodology has been formulated for wetting and non-wetting phase 

relative permeability predictions taking into account phase and saturation changes hence its 

capability for real time applications. This work has the following conclusions: 

 

1. Deep Neural Network has shown to be a good predictive and prescriptive tool for relative 

permeability. Its ability to generalize and regularize helped to stabilize and reduce the main 

problem of all predictive tools which is over fitting.  

 

2. In an industry where big data is now available, Deep Learning can provide the platform to 

systematically forecast reservoir fluid and rock properties in order to drastically optimize the 

cost and time needed for laboratory experiments. Even with the amount of data used, the power 

of the Deep Neural Networks is evident in that it gave reasonable predictions which will 

dramatically improve if more data were available. 

 

3. Different results were obtained from different relative permeability models for the same 

reservoir with some of the models giving better predictions at lower saturations but performs 

poorly at higher saturations and vice versa hence lots of uncertainty. Therefore, it is needful for 

practitioners to know the limitations of any correlation used for the prediction of wetting and 

non-wetting phase relative permeability. 
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Chapter Five 

Well Test Uncertainty Analysis  
 

5.1 Introduction 

Well test analysis (sometimes referred to as Pressure Transient Analysis) is an important aspect 

of petroleum engineering as it seeks to give information about the reservoir on a wider scale. A 

transient well test is the only method which enables estimates of the permeability-thickness 

(conductivity) at a truly insitu condition representing an average which is of greater volume than 

core and log permeability. Several rock and fluid parameters are used as input variable for this 

analysis such as porosity, saturation, wellbore radius, pay thickness, compressibility, viscosity, 

flowrate, formation volume factor. As was shown in Chapter Two using Monte Carlo simulations 

to produce tornado plots, some of these properties are more sensitive than others and thus could 

have huge impact on the result of pressure transient analysis. Reaching a decision whether it is 

worth the time and money producing a reservoir at all, there is need to know reservoir 

permeability, initial pressure and boundary. The conductivity (kh) controls the speed of fluid flow 

into the well and thus it is useful for the design of number of wells and their spacing. Drilling a 

well costs companies over 10 million dollars and it is therefore vital to reduce the uncertainty 

associated with the property that controls this design.   

Well test analysis has uncertainty associated with its different input parameters thus it is 

important to note that there is a limit to the level of detail that can be achieved from well testing 

techniques for reservoir description. This is because pressure transmission is an inherently 

diffusive process and therefore it is governed largely by average conditions rather than by local 

heterogeneities. Grader and Horne (1988) showed that it is possible to have a “hole” in the 

reservoir that is as large as the distance between the production well and observation well, 

without that “hole” making any discernible difference in an interference test. Though this 

observation looks discouraging at first, however it underlies the overall usefulness of well test 

analysis hence well tests can be interpreted to estimate bulk reservoir properties because they 

are insensitive to most local scale heterogeneities.  

Since the SPE Monograph 5 (Earlougher 1977), one of the most significant breakthroughs in the 

well test analysis remains the development in the late 1970s and early 1980s of a general and 

systematic approach to the analysis of well tests. This approach unified the various independent 

techniques previously described in the literature and often gave opposing results (Ramey 1992) 
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into one methodology on the basis of signal theory (Jouanna and Fras 1979). This unified well test 

methodology considers the agreement of all diagnostics and plot used from identification of the 

interpretation model, verification to calculation of the interpretation model parameters. By 

considering well testing within the context of signal theory (Gringarten et al., 1979), it became 

easier to understand its scope and limitations like what type of result can realistically be obtained 

from well testing, what is the best method to obtain this result, how does well testing contribute 

to reservoir characterization compared to other methods. In signal theory, signal processing is 

schematically described below: 

 

 

Figure 5. 1 Signal theory schematic for the reservoir (Gringarten 1985a) 

 

Where I is the input signal usually flowrate applied to the reservoir system operator S to obtain 

an output signal O usually pressure in the case of pressure transient analysis. Ramey (1992) also 

gave an example to explain this theory assuming I is (1, 2 and 3), S is addition operator and O is 

6. If both I and S are known (convolution), O has a unique solution which is also the case if S and 

O are known (deconvolution) since I has a unique answer. But if I and O are known (inverse 

problem), S has a non-unique solution as it can be addition operator (1+2+3) or multiplication 

(1×2×3) which is the case in well testing as we don’t know what the system is. In practice, the 

inverse problem is solved during the identification of an interpretation model (Figures 5.2 and 

5.3) which is a combination of the individual flow regimes components that dominate the flow 

period at different times. The emphasis of the integrated approach was on the well test 

“behaviour”, which refers to the response of the well to changes in production conditions. As 

identification techniques become more powerful as with derivatives (Bourdet et al., 1983a, 1989; 

von Schroeter et al., 2001; Agarwal, 1989) and the resolution of measurements improves, the 

number of behaviour components that can be identified increases, resulting in more detailed 

interpretation models. 

 

System (S) Output (O) Input (I) 
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Figure 5. 2 Interpretation model identification process (Gringarten 2012) 

 

Lorenz plot was used to get the dominant flow interval especially if different from the perforated 

interval. In other words, what percentage of the interval in contributing to flow which was then 

used as the pay thickness for the pressure transient analysis. The plot also gave an idea of the 

heterogeneity of the reservoir area cut by the well. Both buildup and drawdown were considered. 

The different sensitivities were also analysed 

The purpose of this chapter is to accurately analyse well test data to obtain specifically 

permeability even though skin and well bore storage introduced by Van Everdingen and Hurst 

were also automatically determined by the analysis.  The obtained well test permeability will then 

be collated with their respective well log and core permeabilities for the same interval in Chapter 

Six to build a database and model for real time calibrations. Important to note that no machine 

learning was considered in the chapter as this talks about well test analysis to primarily 

determine permeability for the sake of this work. 

 

 

 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjbm6uFxPTeAhWv34UKHf2TC2QQjRx6BAgBEAU&url=https://www.spe.org/en/twa/twa-article-detail/?art%3D602&psig=AOvVaw2MJpL6ufE6ZlYVVE7qI6-E&ust=1543406671906261
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5.2 Methodology 

5.2.1 Identification of the Interpretation Model (Inverse Problem)  

Identifying the model, ∑, is the most important step of the analysis process. If the wrong model 

is selected then all reservoir parameters derived from the analysis will be incorrect. One must 

identify a model of the actual reservoir, S, say, the behaviour of which is identical to the behaviour 

of S (Figure 5.1). Identical behaviour in this case means that the observed output signal O 

obtained from the reservoir S and the output signal O’ calculated from the model, exhibit the same 

qualitative characteristics (i.e., show similar shapes):  

 

 

 

Figure 5. 3 Signal theory schematic for the chosen model (Gringarten 1985a) 

 

Finding ∑ which is the model implies solving the inverse problem which requires an 

identification or pattern recognition process. The solution is not unique. The degree of non-

uniqueness increases with the complexity of the reservoir behaviour and decreases with the 

amount of information available on the well and reservoir being tested. The problem of non-

uniqueness is now well recognized in the oil industry. It is the main reason for the increase of the 

use of stochastic modelling techniques, which aim at providing alternative equi-probable 

representations of the reservoir to capture the uncertainty associated with predictions (Hewett 

1986; Suro-Perez et al., 1991).  

 

Identification has improved tremendously with the development of a stable algorithm for 

deconvolution (von Schroeter and Hollaender, 2001). By converting pressure at a variable rate 

into pressure at constant rate, the process of deconvolution transforms a test into a single 

drawdown having the same duration as the test thus increasing the amount of data that can be 

analysed with conventional analyses. The gain is clearly greater in long tests, such as with 

permanent downhole pressure gauges, in which the total test duration of the longest flow period 

at constant rate. Deconvolution is also useful in short tests such as DSTs because it increases the 

radius of investigation and enables the differentiation between true test behaviour and artifacts 

of the derivation calculation.  

Input (I) Model (∑) Output (O) 
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With the model now known at this stage of the interpretation process, the problem to be solved 

is a direct problem. Based on the fact that the solution of the direct problem is unique, there is a 

unique set of model parameter values that can provide a best fit with the observed data. 

Therefore, once the interpretation model is selected, the reservoir parameters corresponding to 

that model are defined uniquely and the numerical values of these parameters are independent 

of the method used to calculate them. So the results must be the same whether parameters are 

calculated by the use of straight lines, log-log type-curve matching or nonlinear regression 

techniques (Rosa and Horne 1983) with the only acceptable difference being those caused by the 

differences in resolution of the various techniques. This was not universally understood before 

the development of the integrated methodology because the different methods gave different 

results.  

5.2.2 Verification of the Interpretation Model  

As already stated, the identification step involves solving the non-uniqueness problem, thus the 

interpretation model was verified. Consistency checks were made among other characteristics 

inferred by the model and the corresponding known information from the actual reservoir and 

measured data. If the model ∑ satisfies all the checks, it is regarded as “consistent” and represents 

a valid solution to the problem but if it fails any checks, it is regarded as invalid. The interpretation 

process must be repeated to identify all possible consistent models which can then be ranked on 

the basis of decreasing probability and possibly a new well test designed to confirm the most 

probable model. 

5.2.3 Calculation of the Interpretation Model Parameters (Direct Problem)  

Once the interpretation model has been identified, its response must be generated, either 

analytically or numerically, and the parameters of the model must be adjusted until the model 

gives the same quantitative response as the actual reservoir and also the same qualitative 

response (e.g. the same shape), a condition that controlled the selection of the model in the first 

place. The adjusted numerical values of the model parameters are then said to represent the 

values of the corresponding reservoir parameters. 

5.2.4 Pressure Buildup Analysis 

Most of the pressure transient analysis where done with buildup data. The analysis describes the 

buildup of pressure in a well with time after a well has been shut in. Because the buildup of 
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wellbore pressure will follow a particular trend, it was possible to not only determine 

permeability around the wellbore but also to use a Non-Parametric Gaussian Process Regression 

method to reconstruct any missing data using flowrate or temperature and vice versa. Other uses 

of buildup test include determination of the presence and distance of fault, any interference 

between producing wells and reservoir boundary especially where there is no strong water drive. 

The technique require that the well was first produced at a constant rate 𝑄𝑜 STB/day for a flowing 

time 𝑡𝑝 days (it’s in effect over the entire time, 𝑡𝑝 + ∆𝑡), long enough to stabilize before shut in for 

a shutin period ∆𝑡 from a flow rate of  𝑄𝑜 to 0. The resulting pressure curve was then analysed to 

obtain reservoir properties. The composite effect is gotten by the addition of the individual 

constant-rate solutions at the specific rate-time sequence shown by: 

 

𝑝𝑖 − 𝑝𝑤𝑠 = (∆𝑝)𝑡𝑜𝑡𝑎𝑙

= (∆𝑝)𝑑𝑢𝑒 𝑡𝑜 (𝑄𝑜−0) + (∆𝑝)𝑑𝑢𝑒 𝑡𝑜 (0−𝑄𝑜) 

 

 

                                                              (5.1)  

With 𝑝𝑖  being initial reservoir pressure (psi) while 𝑝𝑤𝑠 is wellbore shut in pressure (psi) 

 

(∆𝑝)𝑑𝑢𝑒 𝑡𝑜 (𝑄𝑜−0)

= [
162.6(𝑄𝑜 − 0)𝐵𝑜𝜇𝑜

𝑘ℎ
] [𝑙𝑜𝑔 (

𝑘(𝑡𝑝 + ∆𝑡)

∅𝜇𝑜𝑐𝑡𝑟𝑤
2 ) − 3.23

+ 0.87𝑠] 

 

                               (5.2)  

While  

 

(∆𝑝)𝑑𝑢𝑒 𝑡𝑜 (0−𝑄𝑜)

= [
162.6(0 − 𝑄𝑜)𝐵𝑜𝜇𝑜

𝑘ℎ
] [𝑙𝑜𝑔 (

𝑘∆𝑡

∅𝜇𝑜𝑐𝑡𝑟𝑤
2

) − 3.23

+ 0.87𝑠] 

 

                               (5.3)  

Then 
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𝑝𝑤𝑠 = 𝑝𝑖 −
162.6𝑄𝑜𝐵𝑜𝜇𝑜

𝑘ℎ
[log (

𝑡𝑝 + ∆𝑡

∆𝑡
)] 

 

                               (5.4)  

The above equation is commonly referred to as Horner’s equation and a semilog plot of 𝑝𝑤𝑠 

against (
𝑡𝑝+∆𝑡

∆𝑡
) produces a straight line relationship with intercept 𝑝𝑖  and slope 𝑚 from which the 

conductivity 𝑘ℎ is calculated. 

 

𝑚 =
162.6𝑄𝑜𝐵𝑜𝜇𝑜

𝑘ℎ
 

 

                               (5.5)  

And 

 

𝑘ℎ =
162.6𝑄𝑜𝐵𝑜𝜇𝑜

𝑚
 

 

                               (5.6)  

5.2.5 Drawdown Analysis 

Some of the analysis carried out involved a draw down test. This are series of pressure 

measurements done during a constant flow period following a sufficient shut in period which 

allows the pressure to stabilize in the entire formation. Although this analysis could detect pore 

volume reservoir heterogeneity within the well’s drainage area, assess the degree of damage 

induced by drilling and completion activities, the focus here was to obtain the average 

permeability of the reservoir formation. Since a well flowing at a constant rate 𝑄𝑜 under unsteady 

condition has pressure behaving as if it exists in an infinitely acting reservoir, the pressure 

behaviour was described with Equation 5. Below: 

 

𝑝𝑤𝑓 = 𝑝𝑖 −
162.6𝑄𝑜𝐵𝑜𝜇𝑜

𝑘ℎ
[log (

𝑘𝑡

∅𝜇𝑜𝑐𝑡𝑟𝑤
2

) − 3.23 + 0.87𝑠] 

 

 

                               (5.7)  

Just like Equation 5.4, this also produces a straight line on a semi-log paper with slope 𝑚 and 𝑘ℎ 

obtained as in Equation 5.6. 
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5.2.6 Superposition, Type Curves and Pressure Derivatives 

The unified methodology that allows for the several curves to match was adopted. Superposition 

principle states that the sum of the individual solutions to the diffusivity equation is also a 

solution to the equation since in reality there are more than one well in a field. Horner method is 

the solution of superposition of one rate change. In a case of 3 wells for example: 

 

𝑝𝑖 − 𝑝𝑤𝑓 = (∆𝑝)𝑡𝑜𝑡𝑎𝑙 𝑑𝑟𝑜𝑝 𝑎𝑡 𝑤𝑒𝑙𝑙 1

= (∆𝑝)𝑑𝑟𝑜𝑝 𝑑𝑢𝑒 𝑡𝑜 𝑤𝑒𝑙𝑙 1 + (∆𝑝)𝑑𝑟𝑜𝑝 𝑑𝑢𝑒 𝑡𝑜 𝑤𝑒𝑙𝑙 2

+ (∆𝑝)𝑑𝑟𝑜𝑝 𝑑𝑢𝑒 𝑡𝑜 𝑤𝑒𝑙𝑙 3 

 

                      (5.8)  

With the pressure drop at well 1 due to its own production is represented by the log 

approximation to the Eigen (𝐸𝑖) function solution given by Equation 5.7. The additional pressure 

drops at test well 1 due to wells 2 and 3 production was written in terms of the 𝐸𝑖  function 

solution 

 

(∆𝑝)𝑡𝑜𝑡𝑎𝑙 𝑑𝑟𝑜𝑝 𝑎𝑡 𝑤𝑒𝑙𝑙 1 = 𝑝𝑖 − 𝑝𝑤𝑓

=
162.6𝑄𝑜1𝐵𝑜𝜇𝑜

𝑘ℎ
[log (

𝑘𝑡

∅𝜇𝑜𝑐𝑡𝑟𝑤
2

) − 3.23 + 0.87𝑠]

− (
70.6𝑄𝑜2𝐵𝑜𝜇𝑜

𝑘ℎ
) 𝐸𝑖 [−

948∅𝜇𝑐𝑡𝑟1
2

𝑘𝑡
]

− (
70.6𝑄𝑜3𝐵𝑜𝜇𝑜

𝑘ℎ
) 𝐸𝑖 [−

948∅𝜇𝑐𝑡𝑟2
2

𝑘𝑡
] 

 

 

                      (5.9)  

Where 𝑄𝑜1, 𝑄𝑜2, 𝑄𝑜3 are the producing rates of well 1,2,3 respectively. 

Finding the theoretical type curve ∑ that matches the actual system response S from the test well 

and the reservoir on a log-log plot when subjected to changes in pressure or production rates was 

ensured. These type curves introduced by Agarwal, (1980) used dimensionless variables (made 

dimensionless by multiplying by a group of constants with opposite dimensions) to eliminate 

units and parameters in diffusion problems since they are plots of theoretical solutions to 

transient and pseudo steady state flow equations. Dimensionless time 𝑡𝐷 and pressure 𝑝𝐷 are 

shown below: 
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𝑡𝐷 = 0.0002637
𝑘

∅𝜇𝑐𝑡𝑟𝑤
2

∆𝑡 = 𝐴∆𝑡 

 

                            (5.10)  

 

 

𝑝𝐷 =
𝑘ℎ

141.2𝑞𝐵𝜇
∆𝑝 = 𝐵∆𝑝 

 

                            (5.11)  

Where 𝐴 𝑎𝑛𝑑 𝐵 are the groups that make a variable dimensionless. These type curves allowed 

for the identification of flow regimes during early (ETR) and middle time regions (MTR) for 

example a unit slope indicates wellbore storage effect.   

The problem of similarity of shapes (Tiab and Kumar, 1980 and Bourdet et al., 1983) makes it 

difficult to find a match and thus the pressure derivative (Bourdet et al., 1983) is used to 

compliment this ensuring a double match. The derivative of 𝑝𝐷 with respect to  𝑡𝐷 𝐶𝐷⁄  with 𝐶𝐷 

being the Dimensionless wellbore storage, is given as: 

 

𝑝𝐷
ˋ =

𝑑(𝑝𝐷)

𝑑(𝑡𝐷 𝐶𝐷⁄ )
= 1.0 

 

                            (5.12)  

While for radial infinite acting flow period has pressure behaviour given by: 

 

𝑝𝐷 =
1

2
[𝑙𝑛(𝑡𝐷 𝐶𝐷⁄ ) + 0.80907 + 𝑙𝑛(𝐶𝐷𝑒2𝑠)] 

 

                            (5.13)  

Where 𝑠 is the skin factor, hence differentiating with respect to 𝑡𝐷 𝐶𝐷⁄  gives: 

 

𝑝𝐷
ˋ =

𝑑(𝑝𝐷)

𝑑(𝑡𝐷 𝐶𝐷⁄ )
=

1

2
[

1

(𝑡𝐷 𝐶𝐷⁄ )
] 

 

                            (5.14)  

Thus on the log-log diagnostic plot, the unit slope and the half slope on the derivative were used 

to decifer flow regimes and calculate permeability. 
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5.3 Results and Discussion 

5.3.1 Effective Flow Interval and Heterogeneity 

Lorenz plot and Modified Lorenz plot were used to show what fraction of total storage is 

contributing to flow, EFI, (Pinisetti et al., 1998; Corbett et al., 1998), flow units (Gunter et al., 

1997) as well as give an indication of the heterogeneity of the reservoir formation (Jensen et al., 

1998; Jensen and Lake, 1988) which inturn gives an idea of the discrepancy one should expect 

from the different multiscale data sets. This is so crucial since well test permeability calculation 

is strongly influenced by formation thickness estimation (Corbett et al., 1996) as it is commonly 

taken as the total perforated interval (done on the basis of porosity which is a static property) 

which can be different from effective flow interval especially in a heterogenous reservoir (e.g. 

channel sand). This can lead to incorrect results, moreso that the well test gives permeability 

thickness hence thickness has to be right. There is therefore a need to identify the interval likely 

to flow into the well. Both the ordered (Lorenz plot) and the unordered stratigraphic order 

(modified Lorenz plot) were used. 

Figures 5.4-5.8 shows the Lorenz and Modified Lorenz curve for several wells from North Sea. EFI 

analysis like these should be done before carrying out well test analysis to reduce the uncertainty 

associated with accurate determination of its permeability prediction.  
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Figure 5. 4 Lorenz plot and modified Lorenz plot for well 1 sandstone formation. The 

Lorenz curve shows the effective flow interval through the intersection of the ordered 

plot with its tangent at 450 showing that about 70% of flow is coming from approximately 

40% of storage. The unordered plot gives an indication of how heterogenous the 

formation is with respect to the homogeneity line as shown in legend.   

 

The Lorenz plot shown above, displays not just the heterogeneity of the reservoir (Jensen et al., 

1997; Jensen and Lake, 1988) but also the effective flow interval and not just considering the 

perforation height which could be misleading. Also some wells that have been perforated and not 

properly cleaned up prior to the well kill taken during any DST operation, raises concern that 

formation damage had taken place in the near wellbore region and was responsible for poor well 

performance. Bear in mind that the closer the values of flow and storage, the more homogenous 

the formation and the farther apart the values of flow and storage, the more heterogeneous the 

reservoir formation. Again, the zero line is taken as the well and the horizontal axis is the flow 

into the well hence reading is from the 100 mark on both axis (i.e. from reservoir to well) and not 

from the well to reservoir. 
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Figure 5. 5 Lorenz plot and Modified Lorenz plot for well 4 sandstone reservoir. The plot 
shows that about 60% of flow is from approximately 45% of storage.  
 

Figure 5. 6 Lorenz plot and Modified Lorenzo plot for well 3 sandstone reservoir. Here 

85% of flow is from 25% of storage. 
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Figure 5. 7 Lorenz plot and Modified Lorenzo plot for well 2 sandstone reservoir. Here 

90% of flow is from less than 20% of storage. 

Figure 5. 8 Lorenz plot and Modified Lorenzo plot for well 6 sandstone reservoir. Here 

70% of flow is from about 25% of storage. 
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5.3.2 Pressure Transient Analysis 

Figure 5.9 is a history plot illustrating a 70-hour buildup test after an initial pressure drawdown 

of about 50 hours at constant rate of 1500 STB/D (although the entire drawdown period was for 

85 hours). The green line is the observed pressure data from the reservoir system while the red 

line is the simulated bottomhole pressure from the model. The behaviour allows the identification 

of the applicable well test interpretation model, which controls the maximum number of 

parameters that can be obtained from a test and the meaning of those parameters. 

 

 

Figure 5. 9 History plot indicating pressure buildup analysis with observed data (green) 

matching the model (red). 
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Figure 5. 10 Log-log diagnostic plot showing pressure change and derivative  

Figure 5.10 describes a well with wellbore storage as well as skin in a homogenous reservoir with 

infinite conductivity fracture well model, dual-porosity pseudo-steady state reservoir model and 

infinite acting radial flow boundary model. At early time, the curves tend towards each other 

asymptotically with a slope equal to unity representing wellbore storage effect. Since it seems like 

the well is seeing other reservoirs (the possibility of an infinite conductivity fracture or well 

connected fracture network suggested by the strong slope of the derivative and the clear 

stabilization) and thus be cleaning up, the wellbore storage coefficient could drastically increase 

within a short space of time. When this early time wellbore storage effects is over, the constant 

sand face flowrate is then established. A double match of both pressure and its derivative ensured 

a higher level of confidence in the obtained results (Bourdet et al., 1983). Identification of 

boundary effects and analysis of heterogenous formations are deciphered from the derivative 

response since the skin coefficient has limited influence on it. Looks like the flow is not matrix 

dominated and this is supported by an evident ½ slope trend in the pressure derivative plot (that 

indicate the presence of linear flow towards and into the conductive fractures). It does not appear 

as if the well is struggling to deliver rate. There is no evidence from the data of the wellbeing in a 

closed volume due the lack of a derivative roll-over and the system exhibits a radial flow 

behaviour representing an equivalent homogenous system composed of all producing elements. 
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The pressure response flattening during transition is generally difficult to spot on the log-log 

scale, thus in many instances, a semi-log scale has to be deployed for refining the pressure curve 

match. But with the derivative plot (Figure 5.10), the response heterogenous nature is clear thus 

eliminating the need for further adjustments with more plots although there must be consistency 

among all plots. The gain in sensitivity of the derivative technique is illustrated by this double 

porosity model.  

The property of interest in these different well test analysis been permeability thickness of was 

found to give a value of 15mD which is the quotient of its conductivity and pay thickness. The 

heterogeneities were also amplified on the derivative with flow regimes having clear shapes and 

no doubt the overall quality of the interpretation improve by it. 

 

 

Figure 5. 11 Superposition plot of actual and simulated pressure  
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Figure 5.11 is consistent with the results from all other approaches such as the diagnostic and lol-

log plots mentioned earlier. No noticeable unusual jump which could indicate uncertainty in the 

rate history used for the analysis or that the well is seeing a higher pressure unit before it was 

shut-in. This kind of plot is justified as a global diagnosis with the necessary identification of all 

successive flow regimes present in the analysis is now part of a unified well testing methodology 

which can obviously help to provide more than just 𝑘ℎ, skin and initial pressure. Figure 5.12 

shows the numerical model defined based on the model type and the results obtained from the 

above mentioned diagnostic tools. This allowed us to create a model with the regular reservoir 

boundaries, faults and additional wells defined interactively.  

 

 

Figure 5. 12 Numerical modelling of the tested well 
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Figures 5.13-5.15 shows the sensitivities of some the most influential reservoirs parameters on 

pressure change on log-log plots as also described by the Tornado chart in Figure 2.11. It is clear 

to see that permeability shows more sensitivity. This is in agreement with the Monte Carlo 

simulation carried out in Chapter Two. Porosity (values of 0.12, 0.20, 0.29, 0.37 and 0.46 were 

used with the base value been 0.23) had the least impact on the pressure change and its 

derivative. It is also very vital to use accurate value for the pay thickness as it can greatly impact 

permeability results (thick values of 50ft, 88ft, 120ft, 165ft and 200ft were used with the base 

value been 100ft). There are lots of uncertainties associated with their accurate determination as 

the pay thickness at the well may increase or decrease drastically away from the well. Thus we 

cannot rely on just one source of permeability hence Chapter Six builds a relationship based on 

the core, well log and well test permeabilities in order to capture both local and regional 

heterogeneities. More of this plot on another field can be found on Appendix A-7 to A-10. 

 

Figure 5. 13 Log-log plot showing model sensitivity to porosity 
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Figure 5. 14 Log-log plot showing model sensitivity to permeability 

Figure 5. 15 Log-log plot showing model sensitivity to pay thickness 
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Figures 5.16-5.18 shows these sensitivities on both the drawdown and buildup pressures of the 

history plot. The disparity caused by porosity sensitivity is less than that produced by pay 

thickness and permeability on the stabilization pressure when the well was produced at a 

constant flowrate just before shut-in. At the beginning of constant production, changes in porosity 

of the reservoir to even up to 50% could not drastically affect the pressure stabilization before 

shut-in. Due to the uncertainty on pay thickness as already pointed out, its over prediction has 

less impact on both the stabilized pressure drawdown and buildup (Figure 5.18) as well as on the 

pressure derivative (Figure 5.15). The model used a thickness of 100ft but increasing it to 125ft, 

162ft till 200ft generally had less of an impact than reducing it to 50ft. Although Zheng et al., 

(1996) estimated that a well not located at the average thickness of a varying channel sand body 

may lead to errors in well test permeability by 4-15%, it appears it is better to over-estimate pay 

thickness than underestimate it for relatively accurate prediction. Same conclusion can be drawn 

from Appendix A-11 to A-14 showing the sensitivity of porosity, permeability, pay thickness and 

total compressibility on another field. This comes handy as it is an obvious possible source of 

error or uncertainty as the most logical thing to use measurement done at the wellbore although 

the difficult but more accurate approach is to use the average pay tens or hundreds of metres 

away from the wellbore. There is somewhat of a trend for the well test permeability to be less 

than the core and well log permeability probably due to the fact that well test measures average 

reservoir permeability values unlike core and log which give permeability across the thickness of 

the reservoir and therefore were averaged for the comparison.  
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Figure 5. 16 Porosity sensitivity on history plot  

Figure 5. 17 Permeability sensitivity on history plot 

 

Constant flowrate 

Constant flowrate 
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Figure 5. 18 Reservoir thickness sensitivity on history plot 

5.4 Summary and Conclusion 

This chapter described an in-depth well test analysis to obtain reservoir parameters with the 

focus on well test permeability to build a database alongside their already known core and well 

log permeability which has been used in Chapter Six to build a standard relationship between 

them thereby reducing uncertainty. The following conclusions were made: 

• A 50% decrease in the pay thickness appears to cause more destabilization on constant 

and zero flowrate pressure drawdown, buildup respectively and its derivative than a 

100% increase in pay thickness. Overall a high decrease in porosity, permeability and pay 

thickness was more detrimental than a high increase. With this been said, it is very 

important to accurately define Effective Flow Interval defined. Thus its calibration with 

other data sets such as core and logs is discussed in Chapter Six.  

• Lorenz plot was used to determine the Effective Flow Interval as well as the  heterogeneity 

of the reservoir formation. 

 

 

Constant flowrate 
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Chapter Six 

Log, Core, Test Across Scale Uncertainty Reduction (LCTUn) 
 

6.1 Introduction 

 

In heterogenous reservoirs, permeability is arguably the most important reservoir parameter as 

it is very crucial for field development. Evaluation of logs, core and test from several wells showed 

permeability across board to be different which also highlights the uncertainty in their 

interpretation in terms of scale, physics, environment, heterogeneity, formation damage, 

averaging issues etc. The question often asked is which source is the most accurate and can a 

relationship be developed between them in order to determine any of them i.e can we make good 

use of well logs and core permeability for example, to evaluate well test permeability with 

accuracy which is particularly important in the deep water offshore environment and marginal 

fields where the cost of DST’s in every well in an entire field as well as in the different pay zones 

which the well penetrates, may not be justified.  

 

Although Van der Post et al., (2015) presented a technique for estimating long term reservoir 

performance from log data having shown that core permeability over predicted reservoir 

productivity by almost 10-fold and also showed that it is not a good predictor of mid-term well 

performance, Corbett et al., (1998) carried out a study which gave insights into both core and well 

test integration and scaling of their measurements showing the need for improved geological, 

petrophysical and dynamic descriptions in fluvial systems. Appropriate log, core and test depth 

matching was also ensured including upscaling. Arithmetric, harmonic and geometric averages 

were determined. A database of core, logs and well test permeability from different sandstone 

reservoirs in the North Sea was developed. This comparison made before the permeability data 

is used in a reservoir model is a vital aspect of the reservoir description methodology as well as 

looking at the result from each one being used. Several machine learning algorithms were applied 

to build a relationship between these data since all the scales are relevant for robust 

characterization and the Support Vector Machine was found to be suitable. Model tuning was 

done in order to optimise its key parameters. Nomographic approach involving a numerical 

simulation run iteratively on a multiple non-linear regression model obtained from the dataset 

was also run.  

 

This Chapter answered the above questions of which source is the most accurate and a 

relationship being developed between them. The gap between log, core and test was also closed 
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using machine learning and nomographic methods. From the smaller scale core and log 

permeabilities, the larger scale well test permeability was learnt using the machine learning 

technique thus reducing its uncertainty. The machine learning model was then coded into a 

dashboard containing the inputs for its training (Appendix B-4). Their relationship provides the 

bench mark to calibrate one against the other and also create the platform for real time reservoir 

properties prediction. The technology was applied to an independent dataset from Central North 

Sea deep offshore sandstone reservoir for the validation of these models with minimum tuning 

and thus effective for real time reservoir and production management. 

 

6.2 Methodology 

6.2.1 Scale Analysis 

Important to state that the datasets considered have different scales (Figure 6.1). Almost all 

reservoirs are highly stratified. No matter the reservoir, as heterogeneity increases, permeability 

distribution tends towards its average value. Core probe permeameter measures small scale 

variations in permeability. Studies of this type have been done on cores (Hurst and Rosvoll, 1991; 

Corbett and Jensen, 1993) and also on the field (Goggin et al. 1988; Ringross et al. 1993a). Cross 

bedding which creates laminae is one of the most common characteristic structures of 

sandstones. Permeability contrast between these laminae are commonly in the range of 4:1 to 

10:1 and may have a significant effect on oil recovery due to capillary trapping (Ringrose et al. 

1993b). The size of these laminae captured by cores and logs ranges from millimetres to 

centimetre in thickness and from centimetre to decimetre scale in length. As this is small to be 

included in reservoir simulation models, their permeabilities were upscaled by averaging to 

provide effective permeability for large grid blocks of scales of 10metres or more (bearing in mind 

that well test gives average permeability as well). Several other reasons why core, log and well 

test permeability are different are shown in Table 6.1. Averaging is an upscaling method and 

upscaling can be first level where small set of laboratory data need to be interpreted at reservoir 

scale (Paterson et al., 1996) or second level meaning scaling properties from fine geological grid 

to coarse simulation grid. Figure 4.38 shows the porosity/permeability for both Northern, 

Southern and Central North Sea respectively. It is difficult to see a clear relationship between 

permeability and porosity from such a plot, since from a given porosity value, permeability may 

vary by several orders of magnitude. Hence there is need for careful upscaling through averaging 

so that predicted log permeability measurements can be related to larger scale permeability such 
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as well test. Again anomalous values were smoothened by upscaling while also retaining the 

original data.  

Simple averages are used if flow is parallel or perpendicular to continuous layer (Marsily, 1986). 

These averages can be arithmetic, harmonic or geometric. For flows linear and parallel to the 

sedimentary layers and general laminar layering, arithmetic average should be used for effective 

permeability (Quintard and Whittaker, 1988). If permeability has a log linear relationship with 

porosity on a log scale, the upscaled values will lie slightly above this line. For 𝑛 layers having 

permeabilities and thickness, it is described with equation below:  

 

𝑘̅𝑎𝑟𝑖𝑡ℎ =
1

𝑛
∑ 𝑘𝑖

𝑛

𝑖=1

 
                                                                               (6.1)     

 

The harmonic is used if the flow is linear and perpendicular to the layers as it is equal to effective 

permeability. Mainly used for vertical permeability and hardly used for horizontal permeability 

except in steeply dipping or fractured systems. If permeability has a log linear relationship with 

porosity at log scale, harmonic averaged will lie below this line as the lower values control flow. 

It is represented below:   

 

𝑘̅ℎ𝑎𝑟𝑚 = 𝑛 (∑
1

𝑘𝑖

𝑛

𝑖=1

)

−1

 

                                                                               (6.2)     

  

Geometric average is used when there is no apparent preference for horizontal or vertical flow 

and there is no significant anisotropy for flow. Useful for well sorted sandstones with hardly any 

vertical barriers. If permeability has a log linear relationship with porosity at log scale, the 

upscaled values will lie approximately on this line trying to retain low and high values.  

 

𝑘̅𝑔𝑒𝑜𝑚 = (∏ 𝑘𝑖

𝑛

𝑖=1

)

1
𝑛

= 𝑒𝑥𝑝 (
1

𝑛
∑ 𝑙𝑜𝑔𝑒(𝑘𝑖)

𝑛

𝑖=1

) 

                                                                               (6.3)     

 

Measure of heterogeneity 

𝑘̅ℎ𝑎𝑟𝑚 ≤ 𝑘̅𝑔𝑒𝑜𝑚 ≤ 𝑘̅𝑎𝑟𝑖𝑡ℎ 
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Matheron (1967) stated that for steady-state linear flow, effective permeability will always lie 

between arithmetic and harmonic. If flow is at an angle to the layers, crossflow will occur i.e. flow 

may be induced perpendicular to the applied pressure gradient. In this work, arithmetric 

averaging was mostly applied as according to the principle of original horizality most wind and 

water laid sediments were originally deposited horizontally before subsequent tectonic activity. 

For core data having vertical permeability measurements instead of horizontal permeability, 

harmonic averaging was used while in areas where reservoir tends towards homogeneity from 

their Lorenz plot, geometric averaging was used. Another term that is arguably used in place of 

averaging is upscaling. It is usually perfomed for every cell and properties in the coarse grid 

requied in the reservoir dynamic flow simulation. Upscaling can hence be regarded as an 

averaging process where the static and dynamic properties of a fine scale model are 

approximated by that of a coarse scale model.  

 

Figure 6. 1 Relative scales of permeability sources (Cantini et al., 2013) 

  

6.2.2 Reconciling Permeability 

Any agreement between core, log and well test happens if the zone of interest is relatively 

homogenous. The required additional uplift to match dynamic performance can be found in 

alternative mechanisms for distributing permeabilities away from the wellbore in the static 

model. Sequential Gaussian Simulation (SGS) methodology applied to build the static model 

produced significant lateral permeability changes from grid block to grid block in the model and 
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thus could degrade permeability by 5-15% compared to a more uniform layered permeability 

system. A variogram (type exponential) range of 5000 in both major nd minor directions was 

used with an azimuth value of -45, a nugget of 0.1 and a sill of 1.0. There is definitely some 

variability in the oil and gas industry as to how these multiscale data should be expressed. In some 

instances, modification of the porosity-permeability transform by applying corrections and 

assignment of permeability in the static model enable permeability reconciliation between static 

and dynamic data. Important to note that there are different objectives for well testing. It could 

be to assess the degree of damage induced by the drilling and completion operation etc. Again the 

well test considered single phase flow for simplicity and due to the fact that only one fluid is 

flowing during the test hence viscosity is also assumed to be constant. Reconciliation was done 

having Table 6.1 in mind and it was necessary to separate between log and core permeability. 
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Table 6. 1 Factors to consider when reconciling permeability data (Dubrule and Haldorsen, 

1986). 

S/N Factor Effect 

1 Core permeability not corrected for Klinkenberg effect Kcore too high 

2 Core permeability not corrected for overburden pressure Kcore too high 

3 Core permeability not corrected for initial water saturation 

influence 

Kcore too high 

4 Core permeability not corrected for the effect of 

temperature 

Kcore ≠ kinsitu 

5 Core altered during sample recovery and preparation Kcore ≠ kinsitu 

6 Core samples does not contain natural fractures  Kcore ≠ kPTA 

7 Core samples have natural fractures Kcore usually too high 

8 Unconsolidated core missing i.e not included in average 

permeability calculation 

Kcore too low 

9 Different averages from different core averaging 

techniques 

Karith > Kgeom > Kharm 

10 PTA performed when multiple phases are flowing KPTA < Kcore 

11 Wrong choice of PTA flow model (Radial, linear, spherical, 

hemispherical) 

KPTA incorrect 

12 The perforated interval for PTA and the cored interval do 

not match 

KhPTA ≠ Khcore 

13 When bedding, baffling and tortuosity reduce effective 

permeability 

KPTA < Kcore 

° KPTA – Permeability from pressure transient analysis 

° Kcore – Permeability from core 
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A support vector machine algorithm using input features like 𝑘𝑙𝑜𝑔, 𝑘𝑐𝑜𝑟𝑒, (𝑘𝑙𝑜𝑔)1 2⁄ , (𝑘𝑐𝑜𝑟𝑒)1 2⁄ , 

(𝑘𝑙𝑜𝑔)2, (𝑘𝑐𝑜𝑟𝑒)2 was developed to predict well test permeability after trying several other 

machine learning algorithms (i.e machine learning was used for reconciling the datasets). A total 

of 114 datasets was randomly divided into 105 training set and 9 test sets while a separate data 

from a different field not used for training the model was then used to validate the ability of the 

model to predict well test permeability. This proportion was chosen since the data was not much 

and therefore the training set got as much as possible. Training was done using radial basis kernel 

function. Since these non-linearity and strength of the SVM model are introduced by the kernel 

function, tuning of the kernel and other SVM parameters was done to achieve good results such 

as gamma needed by the kernel function, cost constant set as 1, tolerance of termination criterion 

set to 0.001, epsilon parameter set as 0.1, probability which is a logical parameter indicating 

whether the model should allow probability predition was also set as true. Also the SVM does not 

require any assumptions about its functional form. Because the data is separated with maximum 

possible margin, the model becomes very robust and able to deal with incongruences like noisy 

test data and biased training data.  

Summarily, the machine learning algorithm may be trained to recognise or correct for the true 

organisation of permeability based on the averages of the core and log data. The prediction is 

being corrected from the averages. Various averages were used depending on the stratigraphy at 

the well location as some contain layered reservoirs (arithmetic averaging was used) while it is 

more random at other well locations (geometric averaging was used). These were important 

features of the process. 
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Figure 6. 2 Parameter tuning of the SVM model 

Figure 6.2 involves searching for the best SVM model. The tune function used evaluated the 

performance of 1100 models for combinations of maximum allowable error of 0 to 1 with 0.1 

steps and cost parameter of 1 to 100. The optimised model used has value epsilon and cost values 

of 0.6 and 24 respectively. The accuracy of the models are shown by the colour map with the 

legend to the right displaying the value of the mean squared error. This means that the darker 

areas have better accuracy.  

Other methods like Generalized Linear Model (GLM), Gradient Boosting Model (GBM), Random 

Forest (RF), Deep Learning (DL), Stacked Ensemble models (SE) were tried as shown in Appendix 

B-3. None of these did well compared to the Support Vector Regression Model as they gave high 

root mean squared error values for the test set. The GLM gave an error value of 38.00, GBM gave 

error of 38.91, error value was 32.43 for Random Forest, 42.44 for Deep Learning and 47.93 for 

the Stacked Ensemble model. The Support Vector Regression Model gave relatively lower error 

values as seen is Section 6.3.2. This is not to say these models are bad, the point is that for this 

particular case their predictions were less accurate. 
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Also interms of features used for the final Support Vector Machine model, the Table 6.2 below 

shows the effect of feature selection in the accuracy of the model. Using variants of core and log 

permeability as input features improved the accuracy of the model. With more data to train the 

model, it will definitely do better. 

Table 6.2: Accuracy interms of RMSE of the different features tried for the model. 

S/N FEATURES USED RMSE 

1  𝑘𝑙𝑜𝑔, 𝑘𝑐𝑜𝑟𝑒 68.12 

2  𝑘𝑙𝑜𝑔, 𝑘𝑐𝑜𝑟𝑒,(𝑘𝑙𝑜𝑔)1 2⁄ , (𝑘𝑐𝑜𝑟𝑒)1 2⁄ ,  17.68 

3  𝑘𝑙𝑜𝑔, 𝑘𝑐𝑜𝑟𝑒,(𝑘𝑙𝑜𝑔)1 2⁄ ,(𝑘𝑐𝑜𝑟𝑒)1 2⁄ , (𝑘𝑙𝑜𝑔)2, (𝑘𝑐𝑜𝑟𝑒)2 5.22 

 

6.2.3 Depth Matching Multiscale 

Lorenz plot which displays in a graphical form the relationship between permeability thickness 

(transmissivity assuming uniform viscosity) and porosity-thickness (storativity assuming 

uniform compressibility) using core and log measurements. It was used to ascertain the dominant 

flow interval and the degree of heterogeneity. Thus it provides a dynamic cutoff for well test 

permeability analysis. The production logging tool was also looked at where available to establish 

the effective pay contributing to the well test across the perforated interval. The PLT was run in 

some cases to ensure that good contribution was seen across the entire perforated interval and 

therefore representative data acquired from the test. Sandstone reservoirs can have variable 

thicknesses as most are water-laid comprising channel-levee (Figure 6.23) complexes stacked on 

top of each other.  
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6.3 Results and Discussion 

Averaging is commonly used as a form of upscaling. Although Noetinger and Haas (1996) has 

detailed the appropriateness of the power average due to the problem of estimating its exponents. 

Table 6.3 describes the averaging techniques along side their well test permeability value 

showing areas where each of the averaging technique is closely related to the well test 

permeability. 

Table 6. 3 Averages for upscaling core and log data for comparism with well test data 

Arithmetic Harmonic Geometric Log Perm Well Test Perm 

13.25 0.19 3.20 19.86 4.7 

580.8 554.97 567.41 425.20 97 

673.67 360.69 517.73 382.18 154 

1742.96 128.28 731 188.32 158 

2812 2059.39 2367.27 730.15 27.5 

46.78 0.98 11.22 272.50 6.4 
 

6.3.1 Scenarios of More Accurate Scale  

Six (6) producing wells were considered in the reservoir with its pressure been maintained by 

injectors. Core, log and well test permeability were used to model the cumulative oil production 

rate.  Figures 6.3-6.7 shows the different sources varying significantly leading to inconsistent 

estimate of well and/or reservoir performance. At well 6, core permeability appears to be the 

closest to observed production rate but performed very poorly in well 2. Log permeability 

performed best in well 5 while well test did best in well 4. From just the oil production rate, it 

appears difficult to point to one best source of permeability. Their discrepancy is huge in wells 6 

and 5 but seems less in well 4. This discrepancy is a reflection of the degree of heterogeneity of 

the reservoir.  



185 
 

 

Figure 6. 3 Core, log, test permeabilities to model observed production rate for 

production well 6. Cases made for core (brown line), log (red line) and well test (blue 

line) permeability for predicting cumulative oil production. Core was the closest in this 

case to the actual. 

Figure 6. 4 Core, log, test permeabilities to model observed production rate for well 5 
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Figure 6. 5 Core, log, test permeabilities to model observed production rate for well 4 

Figure 6. 6 Core, log, test permeabilities to model observed production rate in well 3. 
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Figure 6. 7 Core, log, test permeabilities to model observed production rate for 

production well 2 

 

These dataset were also used for the prediction of bottomhole pressure as shown in Figures 6.8-

6.10. Well test permeability consistently gave better predictions compared to log and core 

permeability in all the wells considered. Cores on the otherhand, gave the worst prediction of 

bottomhole pressure probably because it has the least radius of investigation. Important to note 

that the flowing bottomhole pressure is also largely dependent on drawdonm completion 

strategy, completion string size, tubing head pressures, choke size, pressure losses in the 

completion as well as multiphase fluid flow.  These are all function of offtake performance. Again 

as this is the case of a reservoir that was already producing, well test permeability was better able 

to account for pressure gradient and hence bottomhole pressure.  
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Figure 6. 8 Core, log and test permeability for estimating bottomhole pressure compared 

with observed bottom hole pressure for well 6. 

 

 

Figure 6. 9 Core, Log and test permeabilities for estimating bottom hole pressure 

compared with observed bottom hole pressure for well 4. 
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Figure 6. 10 Core, Log and test permeabilities for estimating bottomhole pressure 

compared with observed bottom hole pressure for well 3. 

 

This work recognizes that the difference should not be ignored as all the data should be 

considered therefore be reconciled with each other (Figures 6.23 and 6.25) forming a relationship 

between them as well as with the geologic and reservoir models (Figures 6.11-6.19). Figures 6.11-

6.13 shows the reservoir model using log permeability values in the I, j and k directions; Figures 

6.14-6.16 shows thesame reservoir models but this time using core permeability values in the i, j 

and k directions while Figures 6.17-6.19 represents the reservoir models using the well test 

permeability in the i, j and k directions. It is clear that different models are obtained when 

permeability is sourced using the different datasets. Getting an accurate representation of this 

variability and quantity is needful for building robust reservoir models. Figure 6.17-6.19 shows 

that well test lacks the fine detail provided by the core and log permeability. Hence well test 

permeability should be used but constrained with core and log permeability in areas where wells 

have been drilled in the reservoir.  

 

A major reason for the observed difference between them is the scale of investigation of the 

different sources with log and core values at well-bore scale while the well test captures a much 

bigger portion of the reservoir with average of different flow values more heterogenous that seen 

at the former scales. Other reasons for the different are shown in Table 6.1. This difference should 

not be ignored as all the data were instead reconciled with each other forming a relationship 
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between them as well with the geologic and reservoir models. core and log helps us to see the 

heterogeneity within the thickness and laterally as a result of the upscaling but the well test shows no 

variability along the thick just laterally. The cross section of the different wells as seen in Figure 

6.20 showing the core permeability as demonstrates this. 

 

 

Figure 6. 11 Log Permeability distribution in the i-direction 

 

Figure 6. 12 Log permeability distribution in the j-direction 
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Figure 6. 13 Log permeability distribution in the k-direction 

 

Figure 6. 14 Core permeability distribution in the i-direction 
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Figure 6. 15 Core permeability distribution in the j-direction 

 

Figure 6. 16 Core permeability distribution in the k-direction 
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Figure 6. 179 Well test permeability distribution in the i-direction 

Figure 6. 18 Well test permeability distribution in the j-direction 
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Figure 6. 19 Well test permeability distribution in the k-direction 
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Figure 6. 20 Correlation of the pay zone across the different wells also showing variability along depth.   



196 
 

6.3.2 Log, Core and Test Permeability Relationship Using Machine Learning 

on North Sea Reservoir 

Each source of permeability is vital at several stages in the life of a well. Thus having a relationship 

between the different sources in order to obtain any source can be useful whether in the well’s 

early life where average horizontal effective permeability to oil or gas (from well test) is the major 

concern since it controls completion design and productivity of individual wells; or whether later 

in the life of the well where vertical permeability  (from logs and core) is vital due to its influence 

on water and gas coning as well as productivity of both multilateral and horizontal wells; while 

both vertical and horizontal permeability distribution influences reservoir performance, amount 

and viability of secondary and tertiary recovery. 

It is noteworthy to point out that well test measures effective permeability while core and log 

permeabilities are absolute. Log derived permeability depends on a larger scale than core scale 

permeability. In some fields, water saturation is very low (< 10%) and therefore it is reasonable 

to expected that the effective permeability from well test will be close to the absolute permeability 

thus the relative permeability effects will be minor especially in the pre-production drill stem test. 

There is somewhat of a trend for the well test permeability to be less than the core and well log 

permeability. It is important to note that despite the fact that well test measures permeability 

thickness, it is more accurate to make the comparison with just the permeability instead of 

multiplying the log and core with thickness thereby increasing the uncertainty. A summary of the 

major causes of the difference especially of core and well test are highlighted in Table 6.1 above. 

Figure 6.21 is a flow chart of the step by step algorithms adopted for the machine learning process 

for reducing uncertainty across Log, Core and Test (LCTun SVM Model). In Chapter Four, we 

trained log data on core porosity, core fluid saturation, core permeability data so that the models 

generated are used to predict core scale permeability. In the same vein, the LCTun SVM model 

involved training core and log permeabilites on well test permeability data so core and logs are 

used to predict well test scale permeability. 

Figure 6.22 and 6.23 is a crossplot of the support vector regression model against the actual well 

test permeability or the test cases considered with a root mean squared error value of 5.22 and 

8.17 respectively. These indicates that making good use of well logs and core is sufficient to 

evaluate well test permeability and reservoir performance with accuracy which is particularly 

important in the deep water offshore environment where the cost of DST’s in every well will not 

be justified. As pointed out by Potocki (2001), relative permeability effects associated with water 

saturation accounts for some of the difference between core, log and well test. He showed that 
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this difference becomes increasingly bigger as water saturation in the reservoir increase thus in 

chapter Four, water saturation and relative permeability techniques were developed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 21 Flow diagram showing Uncertainty Reduction Support Vector Regression 

Technique 
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Figure 6. 22 Actual well test permeability versus SVM model predicted well test 

permeability (from core and logs permeability) on a randomly selected test set. 

 

 
 
Figure 6. 23 Actual well test permeability versus SVM model predicted well test 
permeability (from core and logs permeability) on a second randomly selected test set. 
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Figure 6.24 is a dashboard of the Well Test SVM model (referred to as LCTun SVM model) built 

using log and core scale permeability data, their squared root and squares  as input to the model 

as already discussed in Section 6.3.2. Parameters are appropriately entered in the slider input 

panel and this automatically computes the corresponding well test permeability using the 

support vector regression model already coded into the package. Considering additional features 

such as the variants of core and log permeability improved the prediction ability of the model 

(Table 6.2). The data tab gives the result of well test prediction made from  𝑘𝑙𝑜𝑔, 𝑘𝑐𝑜𝑟𝑒, (𝑘𝑙𝑜𝑔)1 2⁄ , 

(𝑘𝑐𝑜𝑟𝑒)1 2⁄ , (𝑘𝑙𝑜𝑔)2, (𝑘𝑐𝑜𝑟𝑒)2. The package requires a PC with a windows operating system and 

R software package installed. 
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Figure 6. 24 Screen shot of well test permeability prediction dashboard result from core 

and log permeability. 
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6.3.3 Log, Core and Well Test Permeability Relationship Using Chart 

Method on North Sea Reservoir 

A second approach using Nomographic technique was also used. Figure 6.25 is the result of a 

numerical simulation run iteratively on a multiple non-linear regression model obtained from the 

dataset on Matlab. No doubt models like this requires much more dataset to give more accuracy 

but the idea is to give a reasonable approximation. Similar to what the Schlumberger (1975) chart 

for porosity determination from its various sources like density, neutron and sonic does. The 

legend to the right gives the corresponding well test permeability from the known log and core 

permeabilities. This relationship from these different scales shows that generally well test 

permeability is lower thancore and log permeability and since all scales matter, an idea of the 

more difficult to obtain is known. This shows a lot of promises in forecasting well test 

permeability with more data being made available from different fields around the world and not 

just from a few from the NorthSea, which is the case here. 
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Figure 6. 25 Nomographic technique showing the relationship between core, log and well 

test permeability. 
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6.3.4  Machine Learning Model Validation 

 

A separate North Sea field data not used for the training was used to validate the developed 

support vector machine model. The field is located in the Central Graben in the Central North Sea 

with the main reservoir been the Jurassic shallow marine shoreface Fulmar sandstone. Its upper 

sands appear to be of good quality (140ft thick, NTG =86%, porosity = 19%, Sw = 17%) compared 

to the lower sands (125ft thick, NTG = 70%, porosity = 16%, and Sw = 41%) as shown in Figure 

6.26. The reservoir sections are extensively cored and DSTs also acquired. Some of the wells in 

this field are located in the horst caused by salt movement.  

 

 

Figure 6. 26 Schematic showing the Upper and Lower sand penetrated by some of the 

wells used for validation. 

 

Figure 6.27 shows the comparison between the actual well test permeability and the prediction 

made by the support vector machine model giving a root mean squared error value of 7.01. With 

more data and adequate parameter tuning, the quality of the model can be drastically improved 

to get real time predictions of the parameter from more readily available sources. No doubt more 

still has to be done in this area.  
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Figure 6. 27 Actual well test permeability versus model predicted well test permeability 

from core and logs permeability. 
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6.4 Summary and Conclusion 

 

The multiscale database for permeability including core, log and well test for different sandstones 

reservoirs from the NorthSea have been built. These will provide a multidisclipinary data 

platform compilation which can be grown by adding more and more data in order to make 

predictions from big data more accurate. 

 

It has been shown from using the techniques presented in this work that making good use of well 

logs and core is sufficient to evaluate well and reservoir performance with accuracy which is 

particularly important in the deep water offshore environment where the cost of DST’s in every 

well in an entire field as well as in the different pay zones which the well penetrates, will not be 

justified. A relationship between the different dataset was learnt using appropriate machine 

learning algorithms. 

 

Just like the Schlumberger (1975) chart for porosity from the different sources, a nomograph has 

been developed enabling a quick guide for permeability determination. More data still have to be 

gathered and then used to enhance the multiple nonlinear regression from which a numerical 

simulation was run to develop this model. This will no doubt improve the accuracy of the 

nomographic model  

 

Using the different permeability source to forecast flow rate, it was hard to see which source is 

more accurate but for pressure forecast well test permeability appeared to be the most accurate 

of the different permeability sources considered.  
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Chapter Seven 

Conclusions, Review and Recommendation for Further Work 

The conclusions drawn from the entire work in line with the aim, objectives and the research 

questions raised in Chapter One are presented here.  

7.1 Conclusion 

The following conclusions have been drawn from the work done in this thesis and have been 

highlighted below: 

• Porosity, saturation and permeability were demonstrated from the literature and using 

Monte Carlo simulation runs on reserve estimates (STOIIP), Net Present Value (NPV) and 

Pressure Transient Analysis (PTA). These parameters and their variants appeared to be 

the most sensitive and also have strong influence on other parameters in different 

reservoir assets like sandstones, carbonates, fractured reservoirs. 

 

• An extensive review of the existing models for porosity, fluid saturation and permeability 

indicates that there are lots of uncertainty inherent in the accurate prediction of these 

properties. They are not robust enough for all reservoirs hence they whip up confusion as 

to which should be used judging from the huge number of empirical models available in 

the literature.  

 
• Default Raymer and Wyllie models are not suitable for porosity determination in 

unconsolidated formations as their accuracy seem to be related to consolidation. These 

inaccuracies in prediction appears to be more in terms of over-prediction than under-

prediction in most of the cases examined. Thus the assumption that Wyllie gives effective 

porosity seems untrue. 

 
• Application of the different sources for reserve estimation in fields of known reserve 

values showed that Schlumberger, Raymer and Wyllie Time Average could lead to errors 

of up to 17% in unconsolidated sandstones, about 5% in semi-consolidated sandstones 

and 3% in consolidated reservoir sandstones. The SVM model gave errors of less than 2% 

in all sandstones. This consistency across all sandstone types is essential to increase 

confidence and reduce uncertainty.  
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• There are over thirty models available for water saturation prediction. The stacked 

Ensemble model gave the best prediction of oil and water saturation from well logs than 

its base learners which are Gradient Boosting, Neural Networks and Random Forest. Also, 

the porosity-permeability relationship seems to be more sensitive to about 10-20% range 

of irreducible water.  

 

• The existing relative permeability models gave different results for the same reservoir 

with some performing better at lower saturations but poorly at higher saturations and 

vice versa. The deep learning model gave reasonable predictions at all saturation values 

and therefore suitable for real time usage. This performance of the deep learning model 

is due to its scalability (performance always improving with more data), generalization 

and regularization ability.  

 
• A 50% decrease in pay thickness appears to cause more destabilization on zero and 

constant flowrate pressure drawdown and its derivative than a 100% increase in pay 

thickness. Overall a high decrease in porosity, compressibility and pay thickness was 

more detrimental than a high increase. With this been said, it is very important to 

accurately define Effective Flow Interval. 

 
• Well test permeability appeared to be the most accurate of the different sources.       From 

using core, log and well test permeability to simulate oil flowrate, it was hard to see which 

source gave a better prediction for the cases considered as each did well at different wells 

but from simulating bottomhole flow pressure, well test permeability consistently 

performed better than core and log permeability probably due to its scale of investigation. 

 

• Answering the different questions causing the bottlenecks of comparing core. Log and 

well test permeability such as scale, physics, environment etc of these sources makes it 

difficult to form a physical relationship between them and thus reduce the uncertainty 

across board. A machine learning approach has been adopted to solve this issue by 

learning the pattern of these different sources of data no matter how arbitrarily irregular 

they may be and therefore predict well test permeability from the more available core and 

log permeability. The work shows that using machine learning is a win-win situation thus 

it is a question of proper tuning.  

 

• Just like the Schlumberger (1975) chart for porosity from the different sources, a 

nomograph has been developed enabling a quick guide for permeability determination. 
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More data still have to be gathered and then used to enhance the multiple nonlinear 

regression from which a numerical simulation was run to develop this model. This will no 

doubt improve the accuracy of the nomographic model. 

 
• Machine learning removes the need for guessing certain properties such saturation, 

porosity and permeability discussed in this work. This is critical as the different variables 

are related to each other hence error can easily propagate. 

 

7.2 Review of Work 

This section provides an explanation of the areas of the work that could be improved on as well 

as what should be taken forward for further research. No doubt a lot has been done in this work 

but no matter how good a work is, there is always room for improvement.  

• There are myriads of machine learning models for regression analysis. Those not 

considered in this work such as ridge, gaussian process, lasso, stepwise regression etc 

might have done better than the ones used here. Again using these regression models in 

tandem with optimization techniques like genetic algorithms, ant colony can improve 

their performance if done effectively. 

 

• More confidence on any model is proportional to the amount and variability of data used 

in building it. NorthSea sandstone reservoir data was used for this work. For the model 

performance to improve especially globally, data from different fields in Africa, North and 

South America, Asia and other parts of Europe has to be used for its development. The 

generalization ability would definitely have improved if more data from diverse fields 

were used. This will also make for a more comprehensive model validation using other 

sandstone reservoirs from outside the NorthSea not used for model development 

ofcourse in order to test model repeatability and reproducibility.  

 

• Looking at the different sources across breadth, the most accurate source with respect to 

permeability was difficult to determine from oil flow rate forecast but well test 

permeability appears to be the most accurate source in terms of pressure prognosis. More 

still need to be done to really ascertain this. 
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• Various averages were used especially arithmetic averages due to study of the section of 

wells, tectonic history of the area to see if much tilting and folding has occurred and also 

bearing in mind the principle of original horizontality. Lack of well data cutting reservoirs, 

in come cases made it not clear which averaging technique to use. Again fields consisting 

of layers at some wells and more randome permeability (where the geometric averaging 

is more appropriate) at other well locations causes problems. 

 

• Machine learning and nomographic techniques were used to establish a relationship 

between KWT, KCORE and KLOG necessary to determine the most accurate source from the 

other two when not available due to time and expense. Although very careful analysis of 

the averaging technique was done, a production logging tool log (PLT) would help to 

ascertain the direction of flow more accurately hence narrowing down on what averaging 

technique to use with more certainty. 

7.3 Recommendations for further work 

• More work should be done to understand how water/oil and gas/oil relative permeability 

vary significantly with different facies. These product of rock that have accumulated in a 

depositional environment could be studied in relation to their fluids. The database of this 

can then be built to improve predictions for the property. This understanding will also 

find application in Carbon Capture and Storage (CCS) projects necessary to combat 

climate change. 

 

• Limited data were used in this work for training, validating and testing the developed 

models due to difficulty in sourcing for the right amount of data. Companies need to 

include such filtered database for different reservoir properties as part of joint venture 

agreement such that they could refer to it at all stages of the operation of the reservoir. 

This will help build more confidence and develop a more proactive 

approach/methodology towards reservoir characterization thus reducing Non-

Productive Time (NPT) and cutting down uncertainty drastically.  

 

• All the models, especially the analytical models should be further validated with data from 

different petroleum provinces like the Tertiary Niger Delta sandstone reservoirs which 

was the original plan for this work. The Agbada Formation in this basin contains 
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intercalations of sand and shale with the sandstone serving as the reservoirs and the shale 

in addition to the roll over anticlines serving as traps.  

 

• Reservoir Saturation Tool (RST) well test data from reservoirs having logs and core to 

build a more robust, versatile and adaptable saturation model across the different sources 

would greatly improve the accuracy and radius of investigation of predicting fluid 

saturation away from the invaded zone.   

 
• The work can be extended to include other reservoir types especially carbonate 

reservoirs as well as shale reservoirs. Would suggest one of the variables then to be facies 

type so the model can have an idea of the lithology play a part in the flow. This if properly 

done, will make the models more robust. 
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Appendix A- 1 Input parameters for well test analysis of well  

Reservoir Properties Values 

Porosity (frac) 0.23 

Pay thickness (ft) 100 

Compressibility (1/psi) 3E-6 

Fluid Viscosity (cp) 1.5 

Formation Volume Factor (rb/stb) 1.0 

Flowrate (stb/d) 1000 

Well Radius (in) 3.6 

Reservoir Area (acres) 2500 

Initial Pressure (psia) 4988 

Skin 2.1 

Permeability (mD) 15.15 

 

Appendix A- 2 Input parameters for well test analysis of the infinite conductive reservoir. 

Reservoir Properties Values 

Porosity (frac) 0.20 

Pay thickness (ft) 30.1 

Compressibility (bbl/psi) 0.0011582 

Fluid Viscosity (cp) 1.0 

Formation Volume Factor (rb/stb) 1.2 

Flowrate (stb/d) 2300 

Well Radius (in) 3.6 

Area of Reservoir (acres) 2295.68 

Initial Pressure (psia) 14618.6 

Skin 3.15 

Permeability (mD) 8.034 
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Appendix A- 3 History plot indicating pressure buildup analysis 

 

Appendix A- 4 Log-Log diagnostic plot showing pressure and derivative  
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Appendix A- 5 Superposition plot of actual and simulated plot for well  

 

 

Appendix A- 6 Numerical simulation of the tested well 
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Appendix A- 7 Log-Log diagnostic plot showing model sensitivity to porosity 

 

Appendix A- 8 Log-Log diagnostic plot showing model sensitivity to pay thickness
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Appendix A- 9 Log-Log diagnostic plot showing model sensitivity to permeability 

 

Appendix A- 10 Log-Log diagnostic plot showing model sensitivity to compressibility 
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Appendix A- 11 History plot showing model sensitivity to porosity 

 

Appendix A- 12 History plot showing model sensitivity to pay thickness 
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Appendix A- 13 History plot showing model sensitivity to permeability 

 

Appendix A- 14 History plot showing model sensitivity to compressibility 
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Appendix B- 1  Codes for Support Vector Porosity Model 

# Install Packages 

install.packages("neuralnet") 

install.packages("caret") 

install.packages(“e1071”) 

 

# Load Packages 

 

library(neuralnet) 

library(caret) 

library(e1071) 

 

# Load data 

svm_phi<-read.table("C:/Users/ovkoe/Documents/gaussianProcess/svm_phi.csv",header=T, 

sep=",") 

svm_phi <- as.data.frame(svm_phi) 

plot(svm_phi) 

str(svm_phi) 

 

#Plot data 

plot(svm_phi$nphi,svm_phi$rhob,col=svm_phi$core) 

plot(svm_phi$nphi, svm_phi$son, col=svm_phi$core) 

 

# Create training and testing datasets randomly 

Indo <- sample(1:nrow(svm_phi), 435) 

trainPhi <- svm_phi[Indo,] 

testPhi <- svm_phi[-Indo,] 

 

# Organise the formular names 

allVars <- colnames(svm_phi) 

predictorsvars <- allVars[!allVars%in%"core"] 

predictorsvars <- paste(predictorsvars,collapse = "+") 

form <- as.formula(paste("core~", predictorsvars, collapse = "+")) 

 

# model fitting using neuralnet function 

svm_phi <- svm(core~.,data=trainPhi, cost=128, gamma=0.01, epsilon=0.15) 

 

# predict for test data set 

predictPhi <- predict(svm_phi,testPhi[,2:4]) 

a=cbind(predictPhi,testPhi$core) 

View(a) 
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error <- testPhi$core-predictPhi 

svrPredRMSE <- sqrt(mean(predictPhi-testPhi$core)^2) 

svm_phi_tune <- tune(svm, core~., data = trainPhi, ranges = list(epsilon = seq(0,1,0.1), cost = 

1:100) 

) 

plot(svm_phi_tune,contour=t) 

print(svm_phi_tune) 

 

# retune 

tuneResult <- tune(svm, core~., data=trainPhi, ranges = list(epsilon = 

seq(svm_phi_tune$best.model$epsilon-.15,  

                                                                           svm_phi_tune$best.model$epsilon+.15,  

                                                                           0.1), 

                                                             cost = seq(2^(log2(svm_phi_tune$best.model$cost)-1), 

                                                                        2^(log2(svm_phi_tune$best.model$cost)+1), 

                                                                        length = 6) 

                                                             )) 

 

best_mod <- svm_phi_tune$best.model 

best_mod_pred <- predict(best_mod,testPhi) 

error_best_mod <- testPhi$core - best_mod_pred 

best_mod_rmse <- sqrt(mean(error_best_mod^2)) 

points(testPhi$core, best_mod_pred,col="blue", pch=4) 

 

Appendix B- 2  Codes for Ensemble Total Water Saturation Model 

# Install the packages 

install.packages("h2o") 

install.packages("caretEnsemble") 

 

# Load package 

library(caretEnsemble) 

library(h2o) 

 

# Initialize h2o 

h2o.init() 

 

# sessionInfo() 

plot(ensData) 

 

# Import data from document 
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ensData<-read.csv("c:/Users/ovkoe/Documents/gaussianProcess/sw_ensemble.csv", header = 

T, sep = ",") 

#Make it an h2o dataset 

ensData <- as.h2o(ensData) 

dim(ensData) 

 

# Separate data into ensemble, blending and testing sets 

splits <- h2o.splitFrame(ensData,  

                         ratios = c(0.9, 0.051),  

                         seed = 148)    

train <- splits[[1]] 
valid <- splits[[2]] 

test <- splits[[3]] 

 

# Organise formular names 

y <- "Sw" 

x <- names(ensData)[names(ensData)!=y] 

nfolds=5 

 

# Random grid search 

search_Criteria <- list(strategy="RandomDiscrete", max_runtime_secs=600) 

hidden_opt <- list(c(200,200), c(100,300,100), c(500,500)) 

l1_opt <- c(1e-5,1e-7) 

hyper_params <- list(hidden = hidden_opt, l1 = l1_opt) 

grid <- h2o.grid(algorithm = "deeplearning", hyper_params = hyper_params, search_criteria = 

search_Criteria, x=predictors, 

y=labelName, training_frame = ensembleSwi_h2o, validation_frame= blenderSwi_h2o) 

 

# Instruct how the train function provides the best parameters for the model 

modelControl <- trainControl(method = 'repeatedcv', number = 10, repeats = 3, savePredictions 

= TRUE, classProbs = TRUE) 

 

# Train & Cross-validate a GBM 

my_gbm <- h2o.gbm(x = x,  

                  y = y,  

                  training_frame = train2,  

                  distribution = "gaussian", 

                  model_id = "gbm_def", 

                  max_depth = 7, 

                  learn_rate = 0.2, 

                  nfolds = nfolds,  

                  fold_assignment = "Modulo", 
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                  keep_cross_validation_predictions = TRUE, 

                  seed = 1) 

 

# Eval perf 

perf_gbm_train <- h2o.performance(my_gbm) 

perf_gbm_test <- h2o.performance(my_gbm, newdata = ensData1) 

pred_gbm <- h2o.predict(my_gbm, newdata = test[,1:5]) 

h2o.mae(pred_gbm) 

plot(testSwi_h2o$Swi,pred$Swi,col = 'black',pch=1,cex=1,type = "p",xlab = "Actual",ylab = 

"Predicted") 

cbind(pred_gbm,test$Sw) 

View(test$Swi) 

View(pred_gbm) 

h2o.varimp_plot(my_gbm) 

 

# Train & Cross-validate a RF 

my_rf <- h2o.randomForest(x = x, 

                          y = y,  

                          training_frame = train,  

                          ntrees = 30,  

                          model_id = "rf_def", 

                          nfolds = nfolds,  

                          fold_assignment = "Modulo", 

                          keep_cross_validation_predictions = TRUE, 

                          seed = 1) 

# Eval perf 

perf_rf_trainSw <- h2o.performance(rf) 

perf_rf_testSw <- h2o.performance(rf, newdata = testSw) 

pred1_rfSw <- h2o.predict(rf, newdata = testSw[,1:5]) 

pred2_rfSw <- h2o.predict(rf, newdata = testSw[,1:5]) 

h2o.varimp_plot(rf) 

plot(rf) 

 

# Train and cross validate a GLM 

my_glm <- h2o.glm(x = x,  

                  y = y,  

                  training_frame = train,  

                  family = "gaussian", 

                  model_id = "glm_def", 

                  nfolds = nfolds,  

                  standardize = TRUE, 

                  fold_assignment = "Modulo", 

                  keep_cross_validation_predictions = TRUE, 

                  seed = 1) 

 

# Eval perf 
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perf_glm_train <- h2o.performance(my_glm) 

perf_glm_test <- h2o.performance(my_glm, newdata = test) 

pred_glm <- h2o.predict(my_glm, newdata = test[,1:5]) 

pred1_glm <- h2o.predict(my_glm, newdata = ensData1[,1:5]) 

plot(testSw_h2o$Sw,pred$Swi,col = 'black',pch=1,cex=1,type = "p",xlab = "Actual",ylab = 

"Predicted") 

cbind(pred_glm,test$Sw) 

View(pred_glm) 

h2o.varimp_plot(my_glm) 

 

# Train and cross validate a NN 

my_nn <- h2o.deeplearning(x = x, y = y, distribution = "gaussian", 

                        training_frame = train, 

                        nfolds = nfolds, 

                        model_id = "dl_def", 

                        fold_assignment = "Modulo", 

                        hidden = 20, 

                        epsilon = 1e-08, 

                        rate = 0.005, 

                        l2=1e-05, 

                        keep_cross_validation_predictions = TRUE, 

                        seed = 1) 

 

# Eval perf 

perf_dl_train <- h2o.performance(my_dl) 

perf_dl_test <- h2o.performance(my_dl, newdata = test) 

pred_dl <- h2o.predict(my_dl, newdata = test[,1:5]) 

View(pred_dl) 

View(pred2_dl) 

h2o.varimp_plot(my_dl) 

 

# Train a stacked ensemble using the GBM and NN above 

models_ids <- list(my_gbm@model_id, my_nn@model_id) 

SE <- h2o.stackedEnsemble(x = x,  

                             y = y,  

                             training_frame = train, 

                             validation_frame = blenderSwi_h2o,   

                             model_id = "SE_gbm_glm_rf_xrf_dl",  

                             base_models = models_ids, 

                             metalearner_algorithm = "deeplearning", 

                             metalearner_nfolds = nfolds, 

                             seed = 1 

                             ) 

 

# Predict Using the Stacked Model 

pred_SE <- h2o.predict(SE,newdata = test[,1:5]) 

plot(pred_stack,testSw_h2o$Sw) 
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perf_SE_train <- h2o.performance(SE) 

perf_SE_test <- h2o.performance(SE, newdata = ensData1) 

plot(h2o.performance(SE)) 

baselearner_best_rmse_train <- min(h2o.rmse(perf_gbm_train), h2o.rmse(perf_dl_train)) 

baselearner_best_rmse_test <- min(h2o.rmse(perf_gbm_test), h2o.rmse(perf_dl_test)) 

SE_rmse_train <- h2o.rmse(perf_SE_train) 

SE_rmse_test <- h2o.rmse(perf_SE_test) 

 

h2o.shutdown() 

 

Appendix B- 3  Codes for Relative permeability Deep Learning Model 

# Install the packages 

install.packages("h2o") 

install.packages("caretEnsemble") 

 

# Load package 

library(caretEnsemble) 

library(h2o) 

 

# Data import for Krw anmd Kro 

RelPerm_orig=read.table("C:/Users/ovkoe/Documents/WorkingDIR/relpermpredkrw.csv",hea

der=T, sep=",") 

RelPerm_Krw=as.data.frame(RelPerm_orig) 

plot(relperm_krw) 

 

relperm_orig=read.table("C:/Users/ovkoe/Documents/relPermeability/relpermpredkro.csv",h

eader=T, sep=",") 

relperm_kro=as.data.frame(relperm_orig) 

plot(relperm_kro) 

 

# h2o initialisation 

h2o.init(ip = "localhost",port = 54321) 

 

# Data Normalization for both Krw and Kro 

Traindlw = RelPerm_Krw[1:106,] 

Testdlw = RelPerm_Krw[107:118,] 

valdlw = RelPerm_Krw[119:137,] 

 

Traindlo = RelPerm_Kro[1:106,] 

Testdlo = RelPerm_Kro[107:118,] 

valdlo = RelPerm_Kro[119:137,] 
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MaxValue <- apply(relperm_krw,2,max) 

MinValue <- apply(relperm_krw,2,min) 

traindlw_df <- as.data.frame(scale(traindlw,center = MinValue,scale = MaxValue-MinValue)) 

traindlw_h2o <- as.h2o(traindlw_df,destination_frame = "traindlw_h2o") 

 

Maxvalue <- apply(relperm_kro,2,max) 

Minvalue <- apply(relperm_kro,2,min) 

traindlo_df <- as.data.frame(scale(traindlo,center = Minvalue,scale = Maxvalue-Minvalue)) 

traindlo_h2o <- as.h2o(traindlo_df,destination_frame = "traindlo_h2o") 

 

# Defining x and y 

yw = "krw" 

xw = setdiff(colnames(traindlw_h2o),yw) 

 

yo = "kro" 

xo = setdiff(colnames(traindlo_h2o),yo) 

 

# Hyper_parameter tuning with grid search 

hyper_params <- list( 

  activation=c("Rectifier","Tanh","Maxout","RectifierWithDropout"), 

  hidden=list(c(20,20,20,20,20),c(50,50,50,50,50),c(30,30,30,30),c(200,200,200,200,200)), 

  input_dropout_ratio=c(0,0.05), 

  l1=seq(0,1e-4,1e-6), 

  l2=seq(0,1e-4,1e-6) 

) 

 

# Stop once the top 5 models are within 1% of each other (i.e., the windowed average varied 

less than 1%) 

help("h2o.grid") 

search_criteria = list(strategy="RandomDiscrete", stopping_rounds=10,  seed=1234567, 

stopping_metric="AUTO", stopping_tolerance=1e-3) 

dl_random_grid <- h2o.grid( 

  algorithm = "deeplearning", 

  grid_id = "dl_grid", 

  training_frame=traindlw_h2o, 

  validation_frame=valDlw_h2o, 

  x=xw, 

  y=yw, 

epochs=10, 

stopping_tolerance=1e-2, ## stop when logloss does not improve by >=1% for two scoring 

events 

 

# score_validatiion_samples=10000, ## downsample validation set for faster scoring 
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score_duty_cycle=0.025, 

max_w2=10, ## can help improve stability for rectifier 

hyper_params = hyper_params, 

search_criteria = search_criteria) 

summary(dl_random_grid) 

 

library(jsonlite) 

grid <- h2o.getGrid("dl_random_grid",sort_by = "err",decreasing = FALSE) 

 

# Model fitting 

Regularization with l1 and l2 to further solve the problem of overfitting 

modeldlw = h2o.deeplearning(x=xw, 

                           y=yw, 

                           seed = 1234, 

                           training_frame = as.h2o(traindlw_df), 

                           nfolds = 5, 

                           standardize = FALSE,  # since it has already been normalized 

                           stopping_rounds = 5, 

                           epochs = 400, 

                           overwrite_with_best_model = TRUE, 

                           ignore_const_cols = FALSE, 

                           activation = "Rectifier", 

                           hidden = c(100,100), 

                           l2=6e-5, 

                           diagnostics = TRUE, 

                           variable_importances = TRUE, 

                           loss = "Automatic", 

                           distribution = "AUTO", 

                           stopping_metric = "RMSE") 

 

help("h2o.deeplearning") 

plot(as.data.frame(h2o.varimp(modeldlw))) # variable importance of the model 

 

# modeling oil relative permeability 

modeldlo = h2o.deeplearning(x=xo, 

                            y=yo, 

                            seed = 1234, 

                            training_frame = as.h2o(traindlo_df), 

                            nfolds = 5, 

                            # standardize =FALSE 

                            stopping_rounds = 5, 

                            epochs = 400, 

                            overwrite_with_best_model = TRUE, 
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                            ignore_const_cols=FALSE, 

                            activation = "Rectifier", 

                            diagnostics = TRUE, 

                            variable_importances = TRUE, 

                            hidden = c(100,100,100,100), 

                            l2=6e-5, 

                            loss = "Automatic", 

                            distribution = "AUTO", 

                            stopping_metric = "RMSE") 

 

as.data.frame(h2o.varimp(modeldlo)) 

 

# predictions 

predictiondlw = as.data.frame(predict(modeldlw,as.h2o(testdlw_df))) 

predictiondlw_v = as.data.frame(predict(modeldlw,as.h2o(valDlw_df))) 

g=cbind(predictiondlw,testdlw_df$krw) 

View(g) 

h=cbind(predictiondlw_v,valDlw_df$krw) 

View(h) 

h2o.varimp_plot(modeldlo) 

 

predictiondlo = as.data.frame(predict(modeldlo,as.h2o(testdlo_df))) 

predictiondlo_v = as.data.frame(predict(modeldlo,as.h2o(valdlo_df))) 

i=cbind(predictiondlo,testdlo_df$kro) 

View(i) 

j=cbind(predictiondlo_v,valdlo_df$kro) 

View(j) 

predictiondlw$predict 

h2o.sensitivity(modeldlw) 

 

# plotting predicted values vs actual values 

par(mfrow=c(2,2)) 

plot(testdlw_df$krw,predictiondlw$predict,col = 'black',main = 'dnn validation krw', 

     pch=1,cex=1,type = "p",xlab = "Actual",ylab = "Predicted") 

plot(valdlw_dfi$Krw,predictiondlw_v$predict,col = 'black',main = 'dnn test Krw', 

     pch=1,cex=1,type = "p",xlab = "Actual",ylab = "Predicted") 

plot(Testdlo_dfi$Kro,predictiondlo$predict,col = 'black',main = 'dnn validation Kro', 

     pch=1,cex=1,type = "p",xlab = "actual",ylab = "predicted") 

plot(valdlo_dfi$Kro,predictiondlo_v$predict,col = 'black',main = 'dnn test Kro', 

     pch=1,cex=1,type = "p",xlab = "actual",ylab = "predicted") 

 

# MSE determination 

MSEdlw <- sum((predictiondlw$predict-Testdlw_dfi$Krw)^2)/nrow(Testdlw_dfi) 

MSEdlw_v<- sum((predictiondlw_v$predict-valdlw_dfi$Krw)^2)/nrow(valdlw_dfi) 
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MSEdlo <- sum((predictiondlo$predict-Testdlo_dfi$Kro)^2)/nrow(Testdlo_dfi) 

MSEdlo_v<- sum((predictiondlo_v$predict-valdlo_dfi$Kro)^2)/nrow(valdlo_dfi) 

 

h2o.shutdown() 

 

Appendix B- 4 Log, Core and Test Support Vector Regression Model Alongside other 

tested Models 

# Read Original data table 

set.seed(123) 

LCTun=read.table("C:/Users/ovkoe/Documents/WorkingDIR/LCTun_ML.csv",header=T, 

sep=",") 

# Convert to data frame  

LCTun=as.data.frame(LCTun) 

 

# Install/load Packages 

install.packages("caret") 

install.packages("h2o") 

install.packages("e1071") 

 

# Load Packages 

library(caret) 

library(e1071) 

library(shiny) 

 

# Create training and testing datasets 

Indw <- sample(1:nrow(LCTun), 120) 

Traink <- LCTun[Indw,] 

Testk <- LCTun[-Indw,] 

dim(Traink) 

 

# Organise the formular names 

allVars <- colnames(LCTun) 

predictorsvars <- allVars[!allVars%in%"wt"] 
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predictorsvars <- paste(predictorsvars,collapse = "+") 

form <- as.formula(paste("wt~", predictorsvars, collapse = "+")) 

 

y <- "wt" 

x <- names(LCTun)[names(LCTun)!=y] 

 

# model fitting using neuralnet function 

neuralnetk <- nnet(wt~.,data = Traink,size = 4, decay=5e-04) 

predictionk <- predict.nnet(neuralnetk,Testk[,-7]) 

View(predictionk) 

 

# Support Vector Machine Regression 

svmk <- svm(wt~.,data=Traink2, cost=1000, gamma=0.0001) 

 

predictionk1 <- predict(svmk,TestK[,-7]) 

predictionk1 <- predict(svmk, TestKval[,-7]) 

 

cbind(predictionk,TestK$wt) 

cbind(predictionk,TestKval$wt) 

 

# Tuning svm model parameter 

svmk_tune <- tune(svm, wt~., data = Traink3, ranges = list(epsilon = seq(0,1,0.1), cost = 1:100) 

) 

plot(svmk_tune) 

print(svmk1_tune) 

# retune if need be 

tuneResult <- tune(svm, wt~., data=Traink, ranges = list(epsilon = 

seq(svmk1_tune$best.model$epsilon-.15, 

                                                          svmk_tune$best.model$epsilon+.15,  

                                                           0.1), 

                                                           cost = seq(2^(log2(svmk1_tune$best.model$cost)-1), 

                                                            2^(log2(svmk1_tune$best.model$cost)+1), 
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 length = 6))) 

# Make plot 

plot(Testk$wt, predictionk,col="dark green", pch=4, ylim=c(0,1000), xlim=c(0,1000), 

xlab="actual perm (mD)", ylab="svm perm (mD)") 

abline(0,1, col="brown") 

sqrt(mean(prediction-Testk$wt)^2) 

error <- testPhi$core-predictPhi 

svrPredRMSE <- sqrt(mean(predictPhi-testPhi$core)^2) 

# Make SVM interface using the Shiny Package 

# Define UI for application that draws a histogram 

ui <- fluidPage( 

   # Application title 

   titlePanel("Well Test SVM Model"), 

   # Sidebar with a slider input for number of bins 

   sidebarLayout( 

      sidebarPanel( 

  sliderInput("kcore", 

 "Core Permeability (mD):", 

 min = 1, 

 max = 1000, 

 value = 50, step = 1), 

      sliderInput("klog", 

 "Log Permeability (mD):", 

 min = 1, 

 max = 1000, 

 value = 50, step = 1), 

  sliderInput("kcore^1/2", 

  "Square Root Core Permeability (mD):", 

  min = 1, 
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               max = 60, 

               value = 20, step = 1), 

   sliderInput("klog^1/2", 

               "Square Root Log Permeability (mD):", 

               min = 1, 

               max = 60, 

               value = 2, step = 1), 

   sliderInput("kcore^2", 

               "Core Permeability Squared (mD):", 

               min = 1, 

               max = 1000000, 

               value = 1000, step = 100), 

   sliderInput("klog^2", 

               "Log Permeability Squared (mD):", 

               min = 1, 

               max = 1000000, 

               value = 1000, step = 1000)), 

      # Show a plot of the generated distribution 

      mainPanel( 

         tableOutput("Plot") 

      ) 

   ) 

) 

 

# Define server logic required to draw a histogram 

server <- function(input, output) { 

    

   output$distPlot <- renderTable({ 

     LCTun3=read.table("C:/Users/ovkoe/Documents/WorkingDIR/LCTun_ML3.csv",header=T, 

sep=",") 

     LCTun3=as.data.frame(LCTun3) 

     Indw3<- sample(1:nrow(LCTun3), 85) 
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     Traink3 <- LCTun3[Indw3,] 

     TestK3 <- LCTun3[-Indw3,] 

     TestK3val <- Traink3[1:10,] 

      

     y <- "wt" 

     x3 <- names(LCTun3)[names(LCTun3)!=y] 

      

     svmk3 <- svm(wt~.,data=Traink3, cost=28, gamma=0.01, epsilon=0.6) 

     New_kcore <- data.frame(kcore=input$kcore) 

     New_klog <- data.frame(klog=input$klog) 

     New_kcore^1/2 <- data.frame(kcore^1/2=input$kcore^1/2) 

     New_klog^1/2 <- data.frame(klog^1/2=input$klog^1/2) 

     predictionk3 <- predict(svmk3, TestK3[,-7]) 

     predictionk3 

   }) 

} 

 

# Run the application  

shinyApp(ui = ui, server = server) 

 

 

# Other models also tried 

# Initialize H2O Package 

h2o.init() 

 

# Train & Cross-validate a GBM 

k_gbm <- h2o.gbm(x = x,  

                  y = y,  

                  training_frame = as.h2o(Traink),  

                  distribution = "gaussian", 

                  model_id = "gbm_def", 

                  max_depth = 7, 
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 learn_rate = 1, 

 nfolds = 10,  

 fold_assignment = "Modulo", 

 keep_cross_validation_predictions = TRUE, 

 seed = 1) 

# Eval perf 

perf_gbm_traink <- h2o.performance(k_gbm) 

perf_gbm_testk <- h2o.performance(k_gbm, newdata = as.h2o(Testk)) 

pred_gbm <- h2o.predict(k_gbm, newdata =as.h2o(Testk[,-7])) 

h2o.rmsle(perf_gbm_Testk) 

cbind(pred_gbm,Testk$wt) 

plot(Testk$wt,pred_gbm,col = 'black',pch=1,cex=1,type = "p",xlab = "Actual",ylab = "Predicted") 

h2o.varimp_plot(k_gbm) 

# Train & Cross-validate a RF 

k_rf <- h2o.randomForest(x = x, 

 y = y,  

 training_frame = as.h2o(Traink),  

 ntrees = 50,  

 model_id = "rf_def", 

 nfolds = 5,  

 fold_assignment = "Modulo", 

 keep_cross_validation_predictions = TRUE, 

 seed = 1) 

# Eval perf 

perf_rf_traink <- h2o.performance(k_rf) 

perf_rf_testk <- h2o.performance(k_rf, newdata = as.h2o(Testk)) 

pred_rfk <- h2o.predict(k_rf, newdata = as.h2o(Testk[,-7])) 

h2o.varimp_plot(k_rf) 

# Train & Cross-validate a extremely-randomized RF 
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k_xrf <- h2o.randomForest(x = x, 

                           y = y,  

                           training_frame = as.h2o(Traink),  

                           model_id = "xrf_def", 

                           ntrees = 50, 

                           histogram_type = "Random", 

                           nfolds = 5,  

                           fold_assignment = "Modulo", 

                           keep_cross_validation_predictions = TRUE, 

                           seed = 1) 

# Eval perf 

perf_xrf_trainsw1 <- h2o.performance(k_xrf) 

perf_xrf_testsw1 <- h2o.performance(k_xrf, newdata = as.h2o(Testk)) 

pred_xrfsw1 <- h2o.predict(k_xrf, newdata = as.h2o(Testk[,-7])) 

 

# Train and cross validate a GLM 

k_glm <- h2o.glm(x = x,  

                  y = y,  

                  training_frame = as.h2o(Traink),  

                  family = "gaussian", 

                  model_id = "glm_def", 

                  nfolds = 5,  

                  standardize = TRUE, 

                  fold_assignment = "Modulo", 

                  keep_cross_validation_predictions = TRUE, 

                  seed = 1) 

 

# Eval perf 

perf_glm_traink <- h2o.performance(k_glm) 

perf_glm_testk <- h2o.performance(k_glm, newdata = as.h2o(Testk)) 

pred_glmk <- h2o.predict(k_glm, newdata = as.h2o(Testk[,-7])) 

View(pred_glmk) 
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h2o.varimp_plot(k_glm) 

 

# Train and cross validate a deep learning 

k_dl <- h2o.deeplearning(x = x, y = y,  

                          distribution = "gaussian", 

                          training_frame = as.h2o(Traink), 

                          nfolds = 10, 

                          model_id = "dl_def", 

                          fold_assignment = "Modulo", 

                          hidden = 10, 

                          epsilon = 1e-05, 

                          rate = 0.005, 

                          l2=1e-08, 

                          keep_cross_validation_predictions = TRUE, 

                          seed = 1) 

# Evaluate Perf 

perf_dl_traink <- h2o.performance(k_dl) 

perf_dl_testk <- h2o.performance(k_dl, newdata = as.h2o(Testk)) 

pred_dlk <- h2o.predict(k_dl, newdata = as.h2o(Testk[,-7])) 

View(pred_dlk) 

cbind(pred_dlk,TestK1$wt) 

h2o.varimp_plot(k_dl) 

 

# Train a stacked ensemble  

models_ids <- list(k_gbm@model_id, k_dl@model_id, k_rf@model_id, k_glm@model_id) 

k_SE <- h2o.stackedEnsemble(x = x,  

                             y = y,  

                             training_frame = as.h2o(Traink), 

                             model_id = "SE_gbm_rf_dl",  

                             base_models = models_ids, 

                             metalearner_algorithm = "deeplearning", 

                             metalearner_nfolds = nfolds, 
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                             seed = 1 

) 

h2o.shutdown() 

 

Appendix C- 1  Log, Core and Test permeability data  

core log core^2 Log^2 sqrt(core) sqrt(log) wt 

2.00 19.86 4.00 394.59 1.41 4.46 4.70 

45.00 272.50 2025.00 74258.16 6.71 16.51 6.40 

81.00 89.86 6561.00 8074.82 9.00 9.48 31.00 

0.16 1.02 0.03 1.03 0.40 1.01 104.00 

16.00 82.30 256.00 6773.29 4.00 9.07 0.23 

52.00 48.86 2704.00 2387.30 7.21 6.99 94.31 

4.80 32.78 23.04 1074.53 2.19 5.73 211.10 

947.00 56.71 896809.00 3216.02 30.77 7.53 100.02 

0.21 11.90 0.04 141.61 0.46 3.45 10.00 

0.22 4.09 0.05 16.73 0.47 2.02 6.20 

0.69 2.75 0.48 7.56 0.83 1.66 6.90 

121.00 44.09 14641.00 1943.93 11.00 6.64 35.50 

2.34 100.04 5.48 10007.52 1.53 10.00 61.70 

1.60 52.68 2.56 2774.85 1.26 7.26 51.50 

47.00 47.63 2209.28 2268.97 6.86 6.90 26.30 

0.03 0.02 0.00 0.00 0.17 0.14 14.60 

1.39 6.94 1.92 48.17 1.18 2.63 33.50 

0.03 1.40 0.00 1.96 0.17 1.18 114.00 

14.34 12.78 205.72 163.40 3.79 3.58 2.00 

6.09 1.99 37.08 3.97 2.47 1.41 3.30 

34.41 55.34 1184.19 3062.90 5.87 7.44 5.60 

70.12 48.86 4916.25 2387.20 8.37 6.99 8.40 

24.66 9.53 608.26 90.81 4.97 3.09 56.30 

7.06 16.26 49.79 264.29 2.66 4.03 30.70 
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96.74 58.11 9358.43 3376.79 9.84 7.62 78.20 

1.10 8.82 1.20 77.86 1.05 2.97 8.40 

1.06 5.38 1.12 28.90 1.03 2.32 185.10 

20.09 95.87 403.77 9191.05 4.48 9.79 78.80 

101.98 48.86 10400.12 2387.20 10.10 6.99 5.10 

27.65 51.38 764.41 2639.93 5.26 7.17 19.60 

25.11 54.00 630.26 2915.76 5.01 7.35 94.80 

3.74 16.81 14.02 282.43 1.93 4.10 1474.00 

251.08 70.23 63040.16 4931.75 15.85 8.38 14.60 

259.37 106.54 67272.28 11351.20 16.10 10.32 115.80 

368.44 51.38 135747.30 2639.93 19.19 7.17 37.60 

1.55 5.86 2.41 34.40 1.25 2.42 4.40 

0.81 7.84 0.65 61.47 0.90 2.80 11.10 

0.81 8.16 0.65 66.56 0.90 2.86 13.80 

0.52 8.49 0.27 72.02 0.72 2.91 13.80 

0.06 8.82 0.00 77.86 0.24 2.97 13.10 

20.41 33.71 416.73 1136.40 4.52 5.81 9.90 

22.61 39.69 511.39 1575.30 4.76 6.30 3.50 

18.84 51.38 354.87 2639.93 4.34 7.17 111.60 

65.66 65.48 4310.84 4287.69 8.10 8.09 383.70 

1114.20 152.47 1241432.73 23248.05 33.38 12.35 511.30 

1758.00 200.93 3090564.00 40373.11 41.93 14.17 124.12 

154.00 190.43 23716.00 36262.37 12.41 13.80 60.94 

0.12 6.66 0.01 44.34 0.35 2.58 15.48 

12.00 133.14 144.00 17725.57 3.46 11.54 44.69 

9678.00 380.83 93663684.00 145031.87 98.38 19.51 142.17 

664.00 219.40 440896.00 48134.30 25.77 14.81 158.29 

45.00 135.78 2025.00 18436.29 6.71 11.65 214.24 

21.00 24.53 441.00 601.79 4.58 4.95 381.00 

12.00 19.76 144.00 390.48 3.46 4.45 7.51 
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2.90 12.78 8.41 163.40 1.70 3.58 12.99 

1.90 10.67 3.61 113.77 1.38 3.27 14.05 

0.21 7.23 0.04 52.29 0.46 2.69 15.48 

0.01 0.06 0.00 0.00 0.10 0.24 11.90 

0.19 3.05 0.04 9.32 0.44 1.75 17.24 

0.08 2.76 0.01 7.60 0.28 1.66 18.84 

0.21 0.49 0.04 0.24 0.46 0.70 12.34 

0.23 4.92 0.05 24.20 0.48 2.22 19.85 

0.31 6.12 0.10 37.47 0.56 2.47 14.32 

7.00 7.84 49.00 61.47 2.65 2.80 38.85 

0.18 2.62 0.03 6.84 0.42 1.62 31.32 

0.17 2.48 0.03 6.15 0.41 1.58 40.87 

1.50 7.23 2.25 52.29 1.22 2.69 37.85 

3.10 7.84 9.61 61.47 1.76 2.80 40.97 

4.70 7.53 22.09 56.72 2.17 2.74 35.78 

5.30 5.62 28.09 31.55 2.30 2.37 46.75 

4.00 5.62 16.00 31.55 2.00 2.37 39.92 

0.23 5.14 0.05 26.46 0.48 2.27 57.21 

1.20 6.66 1.44 44.34 1.10 2.58 48.31 

0.28 3.05 0.08 9.32 0.53 1.75 6.93 

0.19 2.48 0.04 6.15 0.44 1.58 4.00 

0.30 2.35 0.09 5.53 0.55 1.53 2.98 

2.80 9.53 7.84 90.81 1.67 3.09 7.24 

3.70 8.49 13.69 72.02 1.92 2.91 8.84 

6.90 9.17 47.61 84.12 2.63 3.03 5.74 

5.90 10.67 34.81 113.77 2.43 3.27 9.86 

16.00 16.81 256.00 282.43 4.00 4.10 42.22 

7.90 7.53 62.41 56.72 2.81 2.74 37.31 

3.90 11.07 15.21 122.47 1.97 3.33 42.71 

1.90 9.90 3.61 97.97 1.38 3.15 38.26 
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8.10 8.49 65.61 72.02 2.85 2.91 33.28 

12.00 8.49 144.00 72.02 3.46 2.91 36.17 

4.20 9.90 17.64 97.97 2.05 3.15 38.60 

4.50 12.78 20.25 163.40 2.12 3.58 34.42 

1065.00 208.17 1134225.00 43335.00 32.63 14.43 78.97 

133.00 70.23 17689.00 4931.75 11.53 8.38 107.02 

268.00 62.45 71824.00 3900.37 16.37 7.90 0.81 

15.00 30.99 225.00 960.25 3.87 5.57 126.78 

4.62 18.54 21.34 343.56 2.15 4.31 0.38 

5.80 41.85 33.64 1751.38 2.41 6.47 20.37 
 

0.00 0.00 0.00 0.00 0.00 0.73 

3.27 50.11 10.69 2510.78 1.81 7.08 0.06 

120.00 87.93 14400.00 7731.09 10.95 9.38 15.65 

1.33 2.23 1.77 4.96 1.15 1.49 31.60 

0.02 2.62 0.00 6.84 0.14 1.62 18.20 
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Appendix D- 2  Journal paper on real time relative permeability prediction using deep 

learning 

 

Real-Time Relative Permeability Prediction Using Deep Learning 
O.D.Arigbe, M.B.Oyeneyin, I.Arana, M.D.Ghazi 

School of Engineering, Sir Ian Wood Building, Robert Gordon University, Aberdeen, United Kingdom. 

Abstract 

A review of the existing two and three phase relative permeability correlations shows a lot of 

pitfalls and restrictions imposed by (a) their assumptions (b) generalization ability and (c) 

difficulty with updating in real time for different reservoirs systems. These increase the 

uncertainty in its prediction which is crucial owing to the fact that relative permeability is useful 

for predicting future reservoir performance, effective mobility, ultimate recovery, injectivity 

among others. Laboratory experiments can be time consuming, complex, expensive and done with 

core samples which in some circumstances may be difficult or impossible to obtain.  

Deep Neural Networks (DNNs) with their special capability to regularize, generalize and update 

easily with new data has been used to predict oil-water relative permeability. The details have 

been presented in this paper. In addition to common parameters influencing relative 

permeability, Baker and Wyllie parameter combinations were used as input to the network after 

comparing with other models such as Stones, Corey, Parker, Honapour using Corey and Leverett-

Lewis experimental data. The DNN automatically used the best cross validation result (in a 5-fold 

cross validation) for its training until convergence by means of Nesterov accelerated gradient 

descent which also minimizes the cost function. 

Predictions of non-wetting and wetting phase relative permeability gave good match with field 

data obtained for both validation and test sets. This technique could be integrated into reservoir 

simulation studies, save cost, optimize the number of laboratory experiments and further 

demonstrates machine learning as a promising technique for real time reservoir parameters 

prediction. 

Keywords 

Deep Neural Networks Relative Permeability Training Validation Testing 

Introduction  

Relative permeability is the most important property of porous media to carry out reservoir 

prognosis in a multiphase situation (Delshad and Pope 1989; Yuqi and Dacun 2004) and therefore 

needs to be as accurate and readily accessible as possible. Theoretically, it is the ratio of effective 

and absolute permeability. It is useful for the determination of reservoir productivity, effective 

mobility, wettability, fluid injection for EOR, late-life depressurization, gas condensate depletion 

with aquifer influx, injectivity, gas trapping, free water surface, residual fluid saturations, 

temporary gas storage amongst others (Fig. 1). It is well known that a significant variation in 

relative permeability data can have a huge impact on a macroscopic scale.  
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The oil and gas industry have a need for easily available and reliable relative permeability data, 

expense reduction on experiments and a more general model for the parameter judging by the 

pitfalls pointed out by several researchers after testing the existing two and three phase relative 

permeability models. Such workers like Fayers-Matthews (1984) and Juanes et al. (2006) after 

testing non-wetting relative permeability interpolation models such as Baker and Stone’s I and II, 

against Saraf et al. (1982), Schneider and Owens (1970), Saraf and Fatt (1967) and Corey et al. 

(1956) experimental data, presented the same conclusion that they give similar results for high 

oil saturations but are different as it tends towards residual oil saturation. Manjnath and 

Honarpour (1984) concluded that corey gives higher values for non-wetting phase relative 

permeability after comparing against Donaldson and Dean data. 

Based on the assumption that water and gas relative permeability depends only on their 

saturation and not on that of other phases, Delshad and Pope (1989) concluded after a 

comparative study of 7 relative permeability models that Baker and Pope performed better but 

also stated the need for better models. Siddiqui et al. (1999) found Wyllie-Gardner and Honarpour 

to yield consistently better results at experimental condition after testing 10 relative permeability 

models. Al-Fattah (2009) found Honarpour regression model to be the best after comparing with 

5 other models and also developed his own regression model. Since the coefficients of these 

regression models are not generalized, they are not suitable for real time applications.  

Furthermore, for wetting phase relative permeability in consolidated media, Li and Horne (2006) 

showed that the Purcell model best fits the experimental data in the cases studied by them 

provided the measured capillary pressure curve had the same residual saturation as the relative 

permeability curve which is sometimes not the case. Saraf and McCaffery (1985) could not 

recommend a best model due to scarcity of three phase relative permeability data. The different 

relative permeability correlations have limitations and assumptions which no doubt have 

implications thus increasing the uncertainty in reservoir simulation studies hence the need for a 

more generalized model. 

Therefore, the purpose of this study is to implement a Deep Neural Networks model for the 

prediction of relative permeability accounting for reservoir depletion, saturation and phase 

changes with time. Guler et al. (1999) developed several neural network models for relative 

permeability considering different parameters that affects the property and selected the best 

model to make predictions for the test set while Al-Fattah (2010) also used a Generalized 

Regression Neural Network to predict relative permeability. Issues of better prediction for out of 

sample datasets (better generalization) and them requiring far more neurons (and hence an 

increased computational time) to achieve better results as Deep Learning models. Again most of 

the reviewed empirical models are static but Deep Neural Networks (with its advanced features) 

if appropriately tuned can capture the transients faster and more accurately throughout the 

reservoir life while also getting better as more data becomes available with time. Training can be 

done offline and the trained networks are suitable for on-board generation of descent relative 

permeability profiles as their computation requires a modest CPU effort hence not a concern to 

real time application. 
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Fig. 1 Schematic of oil-water relative permeability curve 
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Table 1 Assumptions and application of the commonly used two and three phase relative permeability correlations  

MODEL CORRELATION PHYSICS ASSUMPTIONS APPLICATION 
WINDOW 

Corey et al. 

(1956) 𝐾𝑟𝑜 = (
𝑆𝑜 − 𝑆𝑜𝑟

1 − 𝑆𝑜𝑟
)

2+3𝜆
𝜆

                

𝐾𝑟𝑔 = (
1 − 𝑆𝑜

1 − 𝑆𝑜𝑟
)

2

[1 − (
𝑆𝑜 − 𝑆𝑜𝑟

1 − 𝑆𝑜𝑟
)]

2+𝜆
𝜆

 

An extension of Purcell 

(1941) and Burdine (1953) 

which is based on the mean 

hydraulic radius concept of 

Kozeny-Carman (bundle of 

capillaries model) for each 

pore size in a rock with 

large variety of pores and 

tortuosity expressed in 

terms of fluid saturation. 

𝐾𝑟𝑜 ∝ oil pore area and 

saturation of water and 

gas phases 

Relative permeability of 

wetting and non-wetting 

phase independent of 

saturation of other 

phases. 

Requires a single suite of 

𝐾𝑟𝑔/𝐾𝑟𝑜 data at constant 𝑆𝑤 

to calculate 𝐾𝑟𝑔 𝑎𝑛𝑑 𝐾𝑟𝑜 for 

all saturations 

Not flexible to force end 

points of isoperms to match 

measured data. 

Applies only to well-sorted 

homogenous rocks. 

Wyllie (1951) 
𝐾𝑟𝑤 = (

𝑆𝑤 − 𝑆𝑤𝑐

1 − 𝑆𝑤𝑐
)

4

 

𝐾𝑟𝑔 =
𝑆𝑔

2[(1 − 𝑆𝑤𝑐)2 − (𝑆𝑤 + 𝑆𝑜 − 𝑆𝑤𝑐)2]

(1 − 𝑆𝑤𝑐)4  

𝐾𝑟𝑜 =
𝑆𝑜

3(2𝑆𝑤 + 𝑆𝑜 − 2𝑆𝑤𝑐)

(1 − 𝑆𝑤𝑐)4  

Based on bundle of 

capillaries cut and rejoined 

along their axis with 

related entrapment of the 

wetting phase. 

Considers irreducible 

water as part of the rock 

matrix. 

Applied when water 

saturation is at irreducible 

level. 

Honarpour et al. 

(1982) 

Water wet 

𝐾𝑟𝑤 = 0.035388 (
𝑆𝑤 − 𝑆𝑤𝑐

1 − 𝑆𝑤𝑐 − 𝑆𝑜𝑟𝑤
)

− 0.0108074 (
𝑆𝑤 − 𝑆𝑜𝑟𝑤

1 − 𝑆𝑤𝑐 − 𝑆𝑜𝑟𝑤
)

2.9

+ 0.56556(𝑆𝑤)3.6(𝑆𝑤 − 𝑆𝑤𝑐) 

Any wettability 

𝐾𝑟𝑜 = 0.76067 [
(

𝑆𝑜
1 − 𝑆𝑤𝑐

⁄ ) − 𝑆𝑜𝑟

1 − 𝑆𝑜𝑟𝑤
]

1.8

[
𝑆𝑜 − 𝑆𝑜𝑟𝑤

1 − 𝑆𝑤𝑐 − 𝑆𝑜𝑟𝑤
]

2.0

+ 2.6318∅(1 − 𝑆𝑜𝑟𝑤)(𝑆𝑜 − 𝑆𝑜𝑟𝑤) 

Based on proposed 

empirical relationships 

describing experimentally 

determined permeabilities. 

Assumes normally 

distributed variables 

New constant will have to 

be developed for other 

areas to have a good fit. 
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𝐾𝑟𝑔 = 1.1072 (
𝑆𝑔 − 𝑆𝑔𝑟

1 − 𝑆𝑤𝑐
)

2

𝐾𝑟𝑔𝑜 + 2.7794𝑆𝑜𝑟𝑔 (
𝑆𝑔 − 𝑆𝑔𝑟

1 − 𝑆𝑤𝑐
) 𝐾𝑟𝑔𝑟𝑜 

Parker et al. 

(1987) 

 

𝐾𝑟𝑜 = (𝑆𝑡̅ − 𝑆𝑤̅)1 2⁄ [(1 − 𝑆𝑤̅
1 𝑚⁄

)
𝑚

− (1 − 𝑆𝑡̅
1 𝑚⁄

)
𝑚

]
2

 

Based on relative 

permeability, saturation-

fluid pressure functional 

relationships with a flow 

channel distribution model 

in two or three phase flow 

subject to monotonic 

saturation path and to 

estimate effective mean 

fluid conducting pore 

dimensions. 

 

 

Wettability takes the 

water > oil > gas 

sequence. 

Irreducible fluid 

saturation is 

independent of fluid 

properties or saturation 

history 

No Gas/water contact 

occurs in the three phase 

region until the level 

where oil exists as 

discontinuous bolbs or 

pendular rings 

Limited to cases where a 

satisfactory fit to the two-

phase data is provided by 

the fitting equations 𝑚 =

1 − 1/𝑛 

Baker (1988) 
𝐾𝑟𝑜 =

(𝑆𝑤 − 𝑆𝑤𝑐)𝐾𝑟𝑜𝑤 + (𝑆𝑔 − 𝑆𝑔𝑟)𝐾𝑟𝑜𝑔

(𝑆𝑤 − 𝑆𝑤𝑐) + (𝑆𝑔 − 𝑆𝑔𝑟)
 

𝐾𝑟𝑤 =
(𝑆𝑜 − 𝑆𝑜𝑟)𝐾𝑟𝑤𝑜 + (𝑆𝑔 − 𝑆𝑔𝑟)𝐾𝑟𝑤𝑔

(𝑆𝑜 − 𝑆𝑜𝑟) + (𝑆𝑔 − 𝑆𝑔𝑟)
 

𝐾𝑟𝑔 =
(𝑆𝑜 − 𝑆𝑜𝑟)𝐾𝑟𝑔𝑜 + (𝑆𝑤 − 𝑆𝑤𝑐)𝐾𝑟𝑔𝑤

(𝑆𝑜 − 𝑆𝑜𝑟) + (𝑆𝑤 − 𝑆𝑤𝑐)
 

As the saturation of a phase 

tends to zero, that of the 

other two-phase will 

dominate. 

 

The end points of the 

three phase relative 

permeability isoperms 

coincide with the two-

phase relative 

permeability data. 

 

Weighting factors (𝑆𝑤 −

𝑆𝑤𝑐) and (𝑆𝑔 − 𝑆𝑔𝑟) must be 

both positive 

Frode (2005) 
𝐾𝑟𝑜𝑤 = 𝐾𝑟𝑜

𝑥
(1 − 𝑆𝑤𝑛)𝐿𝑜

𝑤

(1 − 𝑆𝑤𝑛)𝐿𝑜
𝑤

+ 𝐸𝑜
𝑤𝑆𝑤𝑛

𝑇𝑜
𝑤 

𝐾𝑟𝑤 = 𝐾𝑟𝑤
𝑜

𝑆𝑤𝑛
𝐿𝑤

𝑜

𝑆𝑤𝑛
𝐿𝑤

𝑜

+ 𝐸𝑤
𝑜 𝑆𝑤𝑛

𝑇𝑤
𝑜  

𝑆𝑤𝑛 =
𝑆𝑤 − 𝑆𝑤𝑖

1 − 𝑆𝑤𝑖 − 𝑆𝑜𝑟𝑤
 

Based on the mean 

hydraulic radius concept of 

Kozeny-Carman (bundle of 

capillaries model) 

Assumes that the whole 

spectrum of the relative 

permeability curve can 

be captured with the 

𝐿, 𝐸, 𝑇 parameters. 

It exhibits enough flexibility 

to reconcile the entire 

spectrum of experimental 

data. 
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Methodology 

The most commonly available factors influencing relative permeability such as porosity, ∅, 

viscosity, µ, permeability, 𝑘, saturation, 𝑠, together with Baker and Wyllie parameter 

combinations were used as inputs for the network. Baker gave correlation coefficients of 0.96 

and 0.86 while Wyllie has correlation coefficients of 0.91 and 0.89 for Corey and Leverett-Lewis 

datasets respectively (Table 2). There were a total of 12 input parameters fed into the network 

as shown in Table 3 after testing the sensitivity of several parameter combinations. 

Ten (10) sets of water-oil relative permeability data with 132 data points from a North Sea field 

with four-fifths used as training set and one-fifth as validation set. Another set of water-oil 

relative permeability data from a separate field were used as the testing set after data wrangling 

and normalization. A seed value was set to ensure the repeatability of the model. An optimised 

number of hidden layers was used to reduce the need for feature engineering. The best cross 

validation result in a 5-fold arrangement was automatically used to train the DNN models until 

convergence using Nesterov accelerated gradient descent (which minimize their cost function). 

The Rectifier Linear Units (ReLUs) were used in the DNN modelling to increase the nonlinearity 

of the model, significantly reduce the difficulty in learning, improve accuracy and can accept 

noise (Equation 1). This allows for effective training of the network on large and complex 

datasets making it helpful for real time applications compared to the commonly used sigmoid 

function which is difficult to train at some point. 

 𝑓(𝑥) = max(0, 𝑥 + 𝑌)  (1) 

Where  𝑌~ℵ(0, 𝜎(𝑥)) is the Gaussian noise applied to the ReLUs. 

Separate models was constructed for wetting and non-wetting phases as have also been found to 

improve predictions (Guler et al. 1999). They were then validated and tested to check the 

generalization and stability of the models for out of training sample applications. 
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Table 2 Comparison of relative permeability models (vertical) with different datasets 

(horizontal) using correlation coefficient (Modified after Baker 1988)  

DATA  COREY  LEVERETT 
AND LEWIS  

REID  SNELL  SARAF 
ET AL  

HOSAIN  GUCK 
ERT  

STONE I  0.97  0.76  0.90  0.57  0.82  0.85  0.48  

STONE 11  0.77  0.75  0.87  0.75  0.68  0.33  0.50  

AZIZ AND 
SETARRI  

0.8  0.75  0.95  0.75  0.74  0.9  0.48  

COREY  0.88  0.83  0.89  0.48  0.50  0.74  0.6  

BAKER  0.96  0.86  0.88  0.58  0.9  0.84  0.57  

NAAR AND 
WYGAL  

0.74  0.67  0.78  0.50  0.55  0.54  0.50  

PARKER  0.85  0.73  0.88  0.56  0.87  0.93  0.52  

LAND  0.93  0.8  0.89  0.50  0.66  0.74  0.55  

WYLLIE  0.91  0.89  -  -  -  -  -  

 

The developed Deep Neural Networks model could further be applied to predict other 

experimental data carried out based on Buckley-Leverett (1942) frontal advance theory (Fig. 2) 

and Welge (1952) method for average water saturation behind the water front using the 

saturation history to make predictions of relative permeability as a function of time. 
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Fig. 2 Water fractional flow curve with its derivative for the field considered. 

Deep Neural Networks 

Deep Neural Networks (sometimes refererred to as stacked neural network) is a feed-forward, 

artificial neural network with several layers of hidden units between its inputs and outputs. One 

hundred hidden layers with twelve neurons each (100, 12) were used in this work. The ability of 

the model to transfer to a new context and not over-fit to a specific context (generalization) was 

addressed using cross validation which is described in detail below. All networks were trained 

until convergence with Nesterov accelerated gradient descent which also minimizes the cost 

function. In addition, both 𝝀𝟏 and 𝝀𝟐 regularization (Equation 2) were used to add stability and 

improve the generalization of the model. This regularization ability was further improved by 

implementing dropout. A copy of the global models parameters on its local data is trained at each 

computed node with multi-threading asynchronously and periodically contributes to the global 

model through averaging across the network. 

Mathematically, 

 
𝐽(𝜃) =

1

2
∑(𝜃𝑇𝑥(𝑖) − 𝑦(𝑖))

2
+

𝑛

𝑖=1

𝜆 ∑ 𝜃𝑗
2

𝑝

𝑗=1

 
 (2) 

Where 𝒙 are inputs, 𝜽 are parameters, 𝝀 is a measure of complexity by introducing a penalty for 

complicated and large parameters represented as 𝒍𝟏 or 𝒍𝟐 (preferred to 𝒍𝟎 for convexity reasons). 

They are well suited for modelling systems with complex relationships between input and output 

(Burke, 1992; Hubick, 1992) which is what is obtainable in natural earth systems. In such cases 
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with no prior knowledge of the nature of non-linearity, traditional regression analysis is not 

adequate (Gardner and Dorling, 1998).  It has been successfully applied to real time speech 

recognition, computer vision, optimal space craft landing etc. 

 

 

Fig. 3 Deep Neural Network model architecture showing input, hidden and output layers (Lee et 

al. 2017) 

Cross Validation  

Overfitting which is the single major problem of prediction when independent datasets is used 

was reduced through cross validation by estimating out of sample error rate for the predictive 

functions built to ensure generalisation. Other issues like variable selection, choice of prediction 

function and parameters and comparison of different predictors were also addressed. A 5-fold 

cross validation technique was used to split the data set into training and test set, build a model 

on the training set, evaluate on the test set and then repeat and average the errors estimated. A 

weight decay was chosen to improve the generalization of the model by suppressing any 

irrelevant component of the weight vector while solving the learning problem with the smallest 

vector. This also suppresses some of the effects of static noise on the target if chosen correctly 

and increase the level of confidence in the prediction. 

Results and Discussion  

Deep neural networks model have been validated using separate out of sample datasets not used 

for the training. The good agreement between experimental data and DNN’s model predictions 

indicates that the complex, transient, non-linear behaviour of reservoir fluids can be effectively 

modelled as their saturation and phase changes with time. 

Figs. 4, 5 and 6 give a comparison between actual experimental values and model predictions 

using neural networks without cross validation, neural networks with cross validation and the 

deep neural networks. The objective here was to see how Deep Learning out performs ordinary 

networks on new data. These cross plots show the extent of agreement between the laboratory 

and predicted values. For the testing set drawn from a different field from the training set, the 

Deep Neural Networks for both the wetting and non-wetting phase relative permeability (Fig. 6 

b&d) gives very close values to the perfect correlation line in all data points compared to the 

other models.  Fig. 4 a&c representing Neural Networks without cross validation, gave an RMS 

value of 0.2484 and 0.0767 while Neural net with cross validation gave an RMS of 0.0624 and 

0.0765 (Fig. 5 a&c). The Deep Neural Net gave an RMS value of 0.2517 and 0.065 (Fig. 6 a&c) for 
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both wetting and non-wetting relative permeability. It is clear that all the models did well for the 

validation set although the deep neural networks performed better than the other two models. 

The different models were then shown new data from a separate field to see how they performed. 

For the test set (which is an out of sample dataset) obtained from a different field, the RMS for 

neural network without cross validation is 0.9996 and 0.8483 (Fig. 4 b&d), 0.2295 and 0.8022 

with cross validation (Fig. 5 b&d) while DNNs gave 0.0759 and 0.15 (Fig. 6 b&d) for wetting and 

non- wetting relative permeability respectively.  

 

 

Fig. 4. Actual vs predicted value for neural networks without cross validation (cross validation 

not considered as part of the model formulation) with (a) wetting phase relative permeability 

for validation set (b) wetting phase relative permeability for test set (c) non-wetting relative 

permeability for validation set (d) non-wetting relative permeability for the test set.  
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Fig. 5 Actual vs predicted value for neural networks with cross validation technique used for its 

model formulation and it improved prediction ability of the network with (a) wetting phase 

relative permeability for validation set (b) wetting phase relative permeability for test set (c) 

non wetting relative permeability for validation set (d) non-wetting relative permeability for the 

test set. 
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Fig. 6 Actual vs predicted value for Deep Neural Networks model with (a) wetting phase relative 

permeability for validation set (b) wetting phase relative permeability for test set (c) non 

wetting relative permeability for validation set (d) non-wetting relative permeability for the test 

set.  

The deep learning model used the fourth cross validation model which happen to be the best for 

the wetting phase with a correlation coefficient of about 97% (Table 3) and the lowest training 

error of 0.0014 while the second cross validation model was used for the non-wetting phase 

relative permeability having 96% correlation coefficient and the lowest training error value of 

0.030 (Table 4).  

Table 3 Accuracy of the Deep Learning model for the wetting phase with cross validation for the 

five folds.  
mean sd 5-Fold Cross Validation Results 

1 2 3 4 5 

mae 0.0489 0.0068 0.0558 0.0477 0.0612 0.0330 0.0468 

mrd 0.0052 0.0022 0.0053 0.0047 0.0108 0.0014 0.0038 

mse 0.0052 0.0022 0.0053 0.0047 0.0108 0.0014 0.0038 

r2 0.9259 0.0186 0.9121 0.9086 0.9018 0.9745 0.9325 

rd 0.0052 0.0022 0.0053 0.0047 0.0108 0.0014 0.0038 

rmse 0.0689 0.0150 0.0728 0.0684 0.1037 0.0380 0.0615 

rmsle 0.0541 0.0130 0.0509 0.0558 0.0854 0.0277 0.0509 
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Table 4 Accuracy of the Deep Learning model for the non-wetting phase with cross validation for 

the five folds.  
mean sd 5-Fold Cross Validation Results 

1 2 3 4 5 

mae 0.0470 0.0109 0.0633 0.0395 0.0593 0.0583 0.0521 

mrd 0.0052 0.0019 0.0065 0.0038 0.0089 0.0075 0.0060 

mse 0.0052 0.0019 0.0065 0.0038 0.0089 0.0079 0.0060 

r2 0.9214 0.0217 0.8800 0.9636 0.9099 0.9043 0.9492 

rd 0.0052 0.0019 0.0065 0.0038 0.0089 0.0065 0.0060 

rmse 0.0690 0.0153 0.0805 0.0619 0.0941 0.0705 0.0774 

rmsle 0.0489 0.0090 0.0641 0.0466 0.0578 0.0541 0.0492 

 

Figs. 7 and 8 display the trend comparing the different models using the standard relationship 

between saturation and relative permeability. The Deep Learning model clearly out performs the 

other models giving better predictions for both the wetting and non-wetting phases. 

Measurement error which causes input values to differ if the same example is presented to the 

network more than once is evident in the data. This limits the accuracy of generalization 

irrespective of the volume of the training set. The Deep Neural Networks model deeply 

understands the fundamental pattern of the data thus able to give reasonable predictions than 

ordinary networks and empirical models (Figs. 9 and 10). The curves show that significant 

changes in the saturation of other phases has large effect on the wetting phase ability to flow as 

observed from the less flattening of the water relative permeability curve and vice versa for the 

flattened curve. Although this flattening behaviour is usual in the secondary drainage and 

imbibition cycles but mainly in the wetting phase when flow is mainly through small pore 

networks. Again, the curve flattening of the oil relative permeability curve could from experience 

be from brine sensitivity and high rates causing particle movements resulting to formation 

damage. 
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Fig. 7 Experimental and predicted relative permeability models using neural network with and 

without cross validation and deep neural networks on the validation set. The neural network 

model with cross validation (cv) partitioned the dataset into 5-fold and then trained and tested 

the model using the different folds.  

 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

R
el

at
iv

e 
Pe

rm
ea

b
ili

ty
 (

p
ct

)

Water saturation (pct)

Actual_Krw

nnet_Krw

Actual_Kro

nnet_Kro

nnet+cv_Krw

nnet+cv_Kro

dnn_Krw

dnn_Kro



265 
 

 

Fig. 8 Experimental (actual) and predicted relative permeability models using neural network 

(both with and without cross validation) and Deep Neural Networks on the out of sample test 

set (Stafjord reservoir). Cross validation (cv) involved in the network helped to improve its 

accuracy for out of sample datasets. 

 

 

Figs. 9 and 10 compares the Deep Neural Network model with commonly used empirical relative 

permeability models like Baker, Wyllie, Honarpour, Stones, Corey, Parker. Despite the fact that 

some of these models where developed using lots of datasets way more than the amount used 

for training the Deep Neural Networks, it still out performed them showing that it is more able 

to capture the transients and eddies in real time scenarios due to its ability to regularize and 

generalize using its robust parameters as discussed earlier.  
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Fig. 9 Comparison of Wyllie, Corey, Parker, Stone, Baker, Honarpour, Deep Neural Networks for 

the Brent reservoir, North Sea. The DNN gave better prediction than the existing models for this 

validation set. Corey’s , 𝜆, taken to be 2 and Parker’s 𝑛 parameter  

 

Fig. 10 Comparison of Wyllie, Corey, Baker, Honarpour, Deep Neural Networks models for the 

Stratjford reservoir, NorthSea.  
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Figs. 11 and 12 corroborates the earlier observation that the Deep Learning model predicts better 

compared to most of the relative permeability models used in reservoir modelling software. It is 

important to note here that the empirical models (Figs. 9&10) have a problem of generalization 

especially as every reservoir is unique. Again, the assumptions associated with their formulation 

might not be practically true in all cases but this reservoir uniqueness or generalization is 

captured by the Deep Learning model bearing in mind that it will perform even better as more 

real time data is added to the training set. 

Fig. 11 Comparison of Deep Neural Networks and Baker with the measured wetting and non-

wetting relative permeability models for the validation set (Brent reservoir).  
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Fig. 12 Comparison of Deep Neural Networks and Baker with the wetting and non-wetting phase 

relative permeability models with for the test sets (Stratjford reservoir). Baker was used since it 

performed best among the models compared. 

Fig. 13 and 14 describe the relative importance (sensitivity) of the variables used for the wetting 

and non-wetting Deep Learning relative permeability models. The wetting phase model was 

more sensitive to its saturation and relatively less sensitive to that of the non-wetting phase 

while the non-wetting phase model was very sensitive to both its saturation and that of the 

wetting phase. Both models were also more sensitive to their own viscosities than the other. 

These models seem to obey the basic physics underlying relative permeability modelling. The 

least important variable still contributed above the median mark although in general, all 

variables show greater sensitivity in the non-wetting model than in the wetting relative 

permeability model. Table 5 shows the performance of the different variables combinations for 

both the wetting and non-wetting phase model.  
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Fig. 13. Sensitivity analysis of individual variables used for building the wetting phase Deep 

Learning relative permeability model. 

 

Fig. 14. Sensitivity analysis of individual variable used for building the non-wetting phase Deep 

Learning relative permeability model. 
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Table 5 Sensitivity analysis showing the importance of the different to both water and oil 

relative permeabilities 

Cases Input Parameters Functional Links 
(From Baker and 

Wyllie) 

Model Metric 

(RMSE, fraction) 

𝑲𝒓𝒘 𝑲𝒓𝒐 

1 𝑆𝑤, 𝑆𝑜 0.1204 0.1532 

2 𝑆𝑤, 𝑆𝑜, 𝑆𝑤𝑖 0.1201 0.1057 

3 𝑆𝑤 , 𝑆𝑜, 𝑆𝑤𝑖, 𝑆𝑜𝑟 0.1153 0.0712 

4 𝑆𝑤 , 𝑆𝑜, 𝑆𝑤𝑖, 𝑆𝑜𝑟, 𝑘 0.0906 0.0698 

5 𝑆𝑤 , 𝑆𝑜, 𝑆𝑤𝑖, 𝑆𝑜𝑟, 𝑘, 𝑝ℎ𝑖 0.0705 0.0671 

6 𝑆𝑤 , 𝑆𝑜, 𝑆𝑤𝑖 , 𝑆𝑜𝑟, 𝑘, 𝑝ℎ𝑖, 𝜇𝑜 0.0616 0.0691 

7 𝑆𝑤, 𝑆𝑜, 𝑆𝑤𝑖 , 𝑆𝑜𝑟, 𝑘, 𝑝ℎ𝑖, 𝜇𝑜, 𝜇𝑤  0.0481 0.0681 

8 𝑆𝑤, 𝑆𝑜, 𝑆𝑤𝑖 , 𝑆𝑜𝑟, 𝑘, 𝑝ℎ𝑖, 𝜇𝑜, 𝜇𝑤  (𝑆𝑤 − 𝑆𝑤𝑐) 0.0463 0.0667 

9 𝑆𝑤, 𝑆𝑜, 𝑆𝑤𝑖 , 𝑆𝑜𝑟, 𝑘, 𝑝ℎ𝑖, 𝜇𝑜, 𝜇𝑤  (𝑆𝑤 − 𝑆𝑤𝑐), (𝑆𝑜 − 𝑆𝑜𝑟) 0.0449 0.0652 

10 𝑆𝑤, 𝑆𝑜, 𝑆𝑤𝑖 , 𝑆𝑜𝑟, 𝑘, 𝑝ℎ𝑖, 𝜇𝑜, 𝜇𝑤  (𝑆𝑤 − 𝑆𝑤𝑐), (𝑆𝑜

− 𝑆𝑜𝑟), (1 − 𝑆𝑤𝑐)

0.0508 0.0732 

11 𝑆𝑤, 𝑆𝑜, 𝑆𝑤𝑖 , 𝑆𝑜𝑟, 𝑘, 𝑝ℎ𝑖, 𝜇𝑜, 𝜇𝑤  (𝑆𝑤 − 𝑆𝑤𝑐), (𝑆𝑜

− 𝑆𝑜𝑟), (1

− 𝑆𝑤𝑐), (𝜇𝑜 𝜇𝑤⁄ )

0.0380 0.0619 

Conclusion 

A Deep Neural Network methodology has been formulated for wetting and non-wetting phase 

relative permeability predictions taking into account phase and saturation changes hence its 

capability for real time applications. This work has the following conclusions: 

1. Deep Neural Network has shown to be a good predictive and prescriptive tool for relative

permeability than ordinary networks. Its ability to generalize and regularize helped to stabilize

and reduce the main problem of all predictive tools which is over fitting.

2. Different results were obtained from different relative permeability models for the same

reservoir with some of the models giving better predictions at lower saturations but performs

poorly at higher saturations and vice versa hence lots of uncertainty. Therefore, it is needful for

practitioners to know the limitations of any correlation used for the prediction of wetting and

non-wetting phase relative permeability.

3. In an industry where big data is now available, Deep Learning can provide the platform to

systematically forecast reservoir fluid and rock properties in order to drastically optimize the

cost and time needed for laboratory experiments. Even with the amount of data used, the power
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of the Deep Neural Networks is evident in that it gave reasonable predictions which will 

dramatically improve if more data were available. 

Nomenclature 

𝐾𝑟𝑜= 𝑜𝑖𝑙 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦  

𝐾𝑟𝑤= 𝑤𝑎𝑡𝑒𝑟 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦  

𝑆𝑤= 𝑤𝑎𝑡𝑒𝑟 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛  

𝑆𝑤𝑐= 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑤𝑎𝑡𝑒𝑟 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛  

𝑆𝑜= 𝑜𝑖𝑙 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛  

𝑐𝑣= 𝑐𝑟𝑜𝑠𝑠 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛  

𝑣𝑎𝑙= 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡  

𝑑𝑛𝑛= 𝑑𝑒𝑒𝑝 𝑛𝑒𝑢𝑟𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘  

𝜎 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛  

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  
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