
LIU, B. 2020. State switching in multi-stable systems: control and optimisation. Robert Gordon University [online], 
PhD thesis. Available from: https://openair.rgu.ac.uk 

State switching in multi-stable systems: control 
and optimisation. 

LIU, B. 

2020 

This document was downloaded from 
https://openair.rgu.ac.uk 

The author of this thesis retains the right to be identified as such on any occasion in which content from this 
thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any 
original images only – re-use of any third-party content must still be cleared with the original copyright holder. 



1 
 

 
 
 
 
 
 
 
 
 
 
 

State Switching in Multistable Systems: 
Control and Optimisation  

 
 
 
 
 
 
 

BOYING LIU 
 
 
  

A thesis submitted in partial fulfilment of the 

requirement of the 

Robert Gordon University 

for the degree of Doctor of Philosophy 

(School of Engineering) 

 
 
 

June 2020 

 



2 
 

 
 
 
 
 
 
 
 
State Switching in Multistable Systems: 

Control and Optimisation  
 
 
 
 
 

BOYING LIU 

Supervisor Team: 

Principal Supervisor: Dr Wai-Keung Fung 

Second Supervisor: Yang Liu 

 

 

School of Engineering, Robert Gordon University, 

The Sir Ian Wood Building, Riverside East, 

Garthdee Road, AB10 7GJ, 

Aberdeen, 

United Kingdom. 

 



i 
 

DECLARATION 
 
I declare that this report, except where otherwise state, is based on my own 

work. To the best of my knowledge and belief, this report contains no material 

previously published or written by another person, except where due 

reference has been made.  



ii 
 

Acknowledgements 
 
I am grateful to my supervisor, Dr Wai-Keung Fung, for his sincere and 

selfless help. He gave me lots of help and advice through all the stages of my 

PhD study. I am deeply grateful of his constant encouragement and guidance 

during the writing of this thesis. He spent much time on read each draft of 

the thesis and gave me inspiring suggestions. Without his help, I cannot finish 

this thesis. 

 

I would like to thank my supervisor, Dr Yang Liu for his guidance and help. 

He provided me the opportunity of the PhD study. Thank him for his 

invaluable suggestions on the academic studies and writing.  

 

I would also like to thanks Carnegie Trust for their funding. They also provide 

me the chance to network with other PhD students. I get lots of invaluable 

experience and suggestions on the PhD study from them. 

 

I want to thank all the staff in School of Engineering and library at Robert 

Gordon University. They gave me lots of invaluable suggestions on how to 

write a PhD thesis. Moreover, they provide a comfortable environment for my 

PhD study. 

 

Thank my family and friends for their help, support and encouragement. 

Thank them for listening to me when I encounter difficulties and helping me 

out of the difficulties.  

 

 

 

 

 

 

 

 

 



iii 
 

Abstract 
 
 
This thesis studies state switching in multistable systems so that they can 

switch from inefficient operating states to efficient one for performance 

enhancement in real life engineering systems.  Multistable systems have 

more than one stable state under a set of parameters and the process of 

switching from an undesired state to a desired state is achieved by the 

proposed PD-like controller.  It exploits the difference of the displacement 

and velocity between the undesired and the desired stable conditions for 

feedback in state switching. Three test systems are used for investigating the 

performance of PD-like controller namely the Duffing oscillator, which is a 

typical smooth multistable system; the non-smooth soft impact oscillator; 

and the soft impact oscillator with a drift.   

 

A randomised triangular subdivision algorithm is proposed to reconstruct the 

basins of attraction of the target multistable systems in order to identify the 

desired state for switching. Due to the limited capacity of physical actuators, 

behaviours of the constrained PD-like controller are investigated using 

extensive simulation on the test systems. Moreover, optimisation of the 

controller based on multiple performance objectives can further improve 

system performance. Two performance objectives namely maximum peak of 

control input and switching duration will be adopted in optimising the 

proposed PD-like controller. The first objective will be minimised in order to 

avoid output limit and reduce energy consumption in the actuator while the 

second objective will be minimised to shorten the time required for state 

switching. These two performance objectives will be considered 

independently in performance optimisation using particle swarm optimisation 

(PSO). Since these two objectives are conflicting with each other, both 

objectives will be minimised simultaneously in multiobjective optimisation of 

the performance of the PD-like controller using Non-dominated Sorting 

Genetic Algorithms-II (NSGA-II). A trade-off in performance enhancement is 

achieved through selecting control parameters from the Pareto optimal set. 
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1.  Introduction  
 

1.1 Project Overview 
 

Multistability is a common phenomenon found in areas such as biology [1], 

electronics [2] and mechanics [3]. It is a phenomenon of nonlinear systems 

showing more than one coexisting stable states, also known as attractors, 

given by a set of parameters. For example, in nature, the living nervous 

system [1], and the turbulence in liquid-He-4 [3] are examples of multistable 

systems. Each attractor has its own basin of attraction. The multistability of 

a system can be revealed by its basins of attraction, which is defined as the 

set of initial states converging to the same stable attractor at a steady rate 

[5]. Therefore, the final state of the system depends on its initial conditions 

[6]. From the basins of attraction, the number of the coexisting states and 

the structure of each basin can be revealed.  

 

Multistability can also be observed in various engineering applications. For 

example, with the development of microelectronics technology, portable 

electronic devices and wireless Internet of Things (IoTs) sensors have 

become ubiquitous. Most of these devices are powered by batteries. However, 

due to the lifespan of the batteries, it is costly of replacing them when these 

devices are used in remote or hazardous environments. In order to overcome 

the cost of replacing batteries, the concept of energy harvesting system is 

proposed. Energy harvesting systems harvest energy to electrical power from 

ambient environment. Wu et al. have proposed an energy harvesting system 

which can convert the vibration energy into electrical power [7]. Figure 1.1 

shows the methodical model of this systems.  

 

 

 

 

 

 

 



2 
 

  

 

 

 

 

 

 

 

 
 
The oscillator is connected to a frame (with mass of 𝑚ଶ) with a linear spring 

(of stiffness 𝑘ଶ) and a viscous damper (with damping coefficient of 𝑑ଶ). There 

is a coil at the bottom of the oscillator. Above the coil there is a magnetic 

mass (𝑚ଵ) which is connected to the oscillator with a linear spring (of stiffness 

𝑘ଵ) and a viscous damper (with damping coefficient of 𝑑ଵ). The working 

principle of this harvesting system is as follows: when the frame is excited by 

a harmonic force 𝑍cos (Ω𝜏), the oscillator and the magnetic mass will move 

with displacements 𝑦(𝜏)  and 𝑥(𝜏)  respectively, where 𝜏  is the non-

dimensional time. Then, a current 𝑐(𝜏) is observed in the harvesting circuit 

due to electromagnetic induction. In their research, the oscillator has 

multistable states with some set of system parameters. Moreover, the state 

with large amplitude of response and high-energy dynamics can harvest more 

energy from ambient vibrations. Therefore, the state with larger amplitude 

and high-energy dynamics is desired in this energy harvesting application. 

 

Another engineering example of multistable systems is a vibro-impact 

capsule system designed by Liu et al. for rectilinear motion in complex 

environments [8]. This system can move without external excited force i.e. 

it can move on its own. Figure 1.2 shows the model of the system. An internal 

mass 𝑚ଵ is connected to a capsule with mass  𝑚ଶ by a linear spring with 

stiffness of 𝑘ଵ and a viscous damper with damping coefficient of 𝑐. The mass 

is harmonically driven by an external force 𝑃ௗ cos(Ω𝑡). There is a weightless 

plate which is connected to the capsule with a linear spring with stiffness of 

𝑘ଶ. When the relative displacement 𝑋ଵ between the mass and the capsule 

exceeds the gap (𝐺) between the mass and the plate, the capsule will be 

Figure 1.1 Energy harvesting system [7] 
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subjected a force from the internal mass. If the force generated by the 

internal mass is larger than the friction force between the capsule and the 

environment, the motion of the capsule 𝑋ଶ will occur. In their research, the 

capsule system has co-existing states with some set of system parameters. 

Moreover, in different states, the capsule may move forward or backward or 

keep still. Therefore, based on different locomotion requirement of the 

capsule system, the dynamics of the system can be controlled by a 

multistable controller. 

 

 

 

 

 

 

 

 

In addition, percussive drilling is a drilling method using the impact of a 

hammering bit of heavy cutting [4]. This drilling method can be used in rock 

or stiff roil. The rock and stiff roil is loosened by lifting and dropping the heavy 

cutting or hammering bit. The schematics of percussive drilling is shown in 

Figure 1.3. The mass 𝑚 represents the heavy cutting or hammering bit. The 

spring with stiffness of 𝑘, damper with damping coefficient of 𝑐 and friction 

force 𝑃  emulate the mechanical properties the rock or roil. The gap between 

the mass and the slider represent the distance between the bit and the rock. 

The mass is driven by an external sinusoidal force 𝑃ௗ cos(Ω𝑡 + 𝜑). When the 

displacement 𝑋 of the mass exceeds the gap, impact occurs. If the acting 

force exceeds the friction force, drilling progression is observed. Wiercigroch 

et al. found that the percussive drilling system has co-existing states with 

some sets of system parameter [9]. In different states, the drilling rate are 

different. In order to increase the efficiency of drilling the state with high 

drilling rate is preferred. 

 

 

 

 

Figure 1.2 Vibro-impact capsule system [8] 
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Figure 1.3 Percussive drilling system [9] 

 

 

 

 

 

 

 

 

 

 

 

Due to the multistability nature and its high sensitivity to initial conditions as 

well as external noise observed in most dynamical systems, control of 

multistable systems is challenging. Since multiple stable states coexist in 

multistable systems, usually one of them is preferred for a specific application. 

For example, on one hand, the state with a large amplitude of oscillations is 

needed to gather more energy from the ocean waves in wave energy 

converter (WEC), which is a common type of vibrational energy harvester [7]; 

the larger the amplitude of the vibration, the greater the amount of energy 

harvested. On the other hand, the state with small amplitude of oscillations 

is preferred in oil well drilling in order to reduce vibrations in it. If the 

amplitude of vibration of an oil drill is large, its expected lifetime is reduced 

and the energy input for drilling is also increased [10].   

 

Basins of attraction of a multistable system reveal coexisting states in the 

system. Figure 1.4 shows the basins of attraction with complex structure of 

a multistable system and there are three coexisting states (highlighted in red, 

blue and green colours respectively) in it. Under the effect of a small and 

unwanted external noise, the state of the system may be perturbed and the 

system is switched to another stable state. Various methods have been 

proposed for control of multistable systems. For example, switching the 

system using a feedforward control procedure [11-12], steering it by applying 

a short pulse [13-14] and destroying the undesired attractors by using a 

pseudo-periodic force [15-16] can switch the multistable system to a desired 

state. However, these methods have limitations. For instance, the destruction 
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of attractors may change system properties and behaviours completely, 

including the basin of attraction’s structure, in turn making it more complex 

and difficult to control. Moreover, if there is an unwanted external noise 

injected to the system, it may switch back to the undesired state due to its 

high sensitivity to noise and disturbance. Therefore, in this thesis, a new 

multistable state switching controller, called PD-like control, is proposed. This 

controller switches the system to the desired state based on the difference 

between the current and desired trajectories as feedback. This controller can 

maintain the original basin of attraction and maintain the system in a desired 

state under the effect of external disturbances. Due to the limitations or 

requirements of an application, such as the limited capacity of actuators and 

the system designer’s priorities, multistable systems are required to switch 

to the desired state as promptly as possible in order to reduce the 

consumption of energy, the performance of the controller can be evaluated 

in different aspects such as peak of control input and switching duration. The 

PD-like controller is optimised by particle swarm optimisation (PSO) [17] with 

different objectives independently. However, some of them are conflicting 

with each other. Therefore, the PD-like controller is then optimised with 

multiple objectives for controller design trade-off. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1.4 The complex structure of the basins of attraction with three coexist state 
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In this thesis, a novel method called Randomised Triangular Subdivision is 

proposed to quickly approximate basins of attraction of a multistable system. 

During the process of basins of attraction identification, the trajectory of each 

states can be observed. Moreover, with a small change of the system 

parameters, the structure of the basins of attraction will be changed. Figure 

1.5 shows the basins of attraction of a soft impact oscillator and there are 

two coexisting states with different amplitudes of oscillations in the output 

response. In addition, due to the complex or occasionally fractal structure of 

its basins of attraction, a multistable system is very sensitive to external noise. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.5 The basins of attraction of a soft impact oscillator. Small windows show the 
amplitudes of output responses in the two coexisting states. 
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1.2 Aim and Objectives  

1.2.1 Aim 
 

The aim of this thesis is to develop a novel controller which can switch the 

behaviour of systems from the undesired state to its desired equivalent, 

maintain it in the same state under the effect of unwanted external noise and 

enhance the performance of the controller based on different constraints 

(including actuator limits) and requirements of various applications. 

1.2.2 Objectives 
 

In order to achieve the above-mentioned aim, this thesis will investigate the 

following objectives: 

 

1. To propose a fast method to extract knowledge of basins of attraction 

of a multistable system. 

2. To design a simple controller to switch a multistable system from the 

undesired state to the desired state. 

3. To enhance the performance of the controller with single objectives 

independently. 

4. To enhance the performance of the controller with multiple objectives 

simultaneously. 

5. To investigate the performance of the controller by numerical 

simulation on test systems. 

 

1.3 Three Test Systems 
 

Three nonlinear systems - the Duffing oscillator [18-21], the soft impact 

oscillator [22-27] and the soft impact oscillator with a drift [28-31], will be 

employed for evaluating the performance of the proposed methods in this 

thesis. Both the Duffing and soft impact oscillators are simple one degree of 

freedom systems and they are representative smooth and non-smooth 

systems respectively. Moreover, they are typically multistable. The soft 
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impact oscillator with a drift can model the basic mechanism of engineering 

systems such as rotor, gearbox and percussive drilling system.  

1.3.1 Duffing Oscillator 
 

A Duffing oscillator is realised by an electro-magnetised vibrating beam when 

a harmonic driving force is applied on it [21]. Figure 1.6 shows the schematics 

of a Duffing oscillator which includes two magnets to prevent the beam 

becoming too close to one of them. The mathematical model of the oscillator 

is shown below [18]: 

 
�̈� + 𝛿�̇� + 𝛽𝑥 + 𝛼𝑥ଷ = 𝐹𝑐𝑜𝑠𝜔𝑡  

 
where 𝑥 is the displacement of the beam, 𝛿 is the damping ratio of the beam, 

𝛽 is the stiffness ratio of the beam, 𝛼 is the cubic stiffness parameter of the 

beam, 𝐹 is the amplitude of the harmonic driving force, 𝜔 is the frequency of 

the harmonic driving force and 𝑡 is the time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

1.3.2 Soft impact oscillator 
 

Figure 1.7 shows the model of a soft impact oscillator and a mass [23]. They 

are connected via a linear spring with stiffness of 𝑘ଶ and a viscous damper 

with damping coefficient of 𝑐.  The soft impact oscillator operates when a 

Figure 1.6 Schematics of Duffing oscillator [21] 

(1.1) 
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harmonic force 𝑎 sin Ω𝑡 is applied to the exterior frame and the mass will move. 

Subsequently, if the displacement exceeds the gap 𝑔 between the mass and 

the second spring 𝑘ଵ, an impact will occur, thus changing the movement of 

the mass. The mathematical model of the soft impact oscillator is shown 

below [23]: 

  

�̈� =  𝛤 𝑠𝑖𝑛 (𝜔𝜏)  − 2𝜉�̇� − 𝑥 − 𝛽(𝑥 − 𝑒)𝐻(𝑥 − 𝑒)  
 
This is a non-dimensional equation of the soft impact oscillator model. 

Moreover, the equations below show how the dimensional parameters of the 

soft impact oscillator are changed to non-dimensional parameters. 

 

x =
y

x
, τ = ω୬t, β =

kଶ

kଵ
, ω =

Ω

ω୬
  

ξ =
c

2mω୬
, Γ =

a

x
, e =

g

x
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where x  and ω୬  are two reference parameters for the non-dimensional 

formulae. x is the reference distance and x > 0. ω୬ is the natural frequency 

and ω୬ = ඥkଵ/m. Moreover, x  is the non-dimensional displacement of the 

mass, τ is the non-dimensional time, β is the stiffness ratio of the two springs, 

ω is the frequency ratio of the system, ξ is the damping ratio of the system, 

Γ is the non-dimensional amplitude of the harmonic driving force and g is the 

Figure 1.7 Schematics of soft impact oscillator [23] 

(1.2) 

(1.3) 
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gap between the mass and the second spring with stiffness of 𝑘ଶ. H(.) is the 

Heaviside step function. 

1.3.3 Soft impact oscillator with a drift 
 

The soft impact oscillator with a drift has a single mass and two plates which 

are connected by a linear spring and a viscous damper, as shown in Figure 

1.8. It provides a simplified model for percussive drilling systems. The 

behaviours of this system can be divided into three modes. The first mode 

concerns no contact between the mass and the plates. After the application 

of a harmonic force, the mass and top plate will not move if the displacement 

of mass does not exceed the gap between them. This is followed by the 

second mode called contact without progression. This can be observed if the 

displacement of mass exceeds the gap but its acting force does not exceed 

the critical value of friction force and thus the mass and top plate will move 

together but the bottom plate will not.  When the displacement of mass 

exceeds the gap and displacement of the top plate and the acting force is 

larger than the friction, the mass, top plate and bottom plate will move 

together and the system exhibits a behaviour in the third mode called contact 

with progression. Based on its behaviours, the system can be described as a 

set of piecewise functions, with the Heaviside step function H (.) used to 

determine the phase of the systems. The system model is shown as follows 

[28]: 

�̇� = 𝑦 
 

�̇� = 𝑎𝑐𝑜𝑠(𝜔𝜏 + 𝜑) + 𝑏 − 𝑃ଵ𝑃ଶ(1 − 𝑃ଷ)(2𝜉𝑦 + 𝑧 − 𝑣) − 𝑃ଵ𝑃ଷ 
 

�̇� = 𝑃ଵ𝑦 − (1 − 𝑃ଵ)(𝑧 − 𝑣) 2𝜉⁄  
 

�̇� = 𝑃ଵ𝑃ଷ𝑃ସ[𝑦 + (𝑧 − 𝑣 − 1) 2𝜉⁄ ] 
 
The non-dimensional variables and parameters are as follows: 

 

𝜏 = 𝛺𝑡, 𝑥 =
𝑘

𝑃௫
𝑋, 𝑦 =

𝑑𝑥

𝑑𝜏
=

𝑘

𝛺𝑃௫
�̇�, 𝑧 =

𝑘

𝑃௫
𝑋௧ 

 

𝑣 =
𝑘

𝑃௫
𝑋 , 𝜔 =

𝛺

𝛺
, 𝑎 =

𝑃ௗ

𝑃௫
, 𝑏 =

𝑃௦

𝑃௫
, 𝑑 =

𝑃

𝑃௫
 

 

(1.4) 

(1.5) 



11 
 

Figure 1.8 Schematics of soft impact oscillator with a drift [28] 

 𝛺 = ඨ
𝑘

𝑚
, 𝜉 =

𝑐

2𝑚𝛺
, 𝑔 =

𝑘

𝑃௫
𝐺 

 
 
where 𝑥, 𝑧, 𝑣 stand for the non-dimensional displacement of the mass, top 

and bottom plate respectively, 𝑦 is the non-dimensional velocity of mass, 𝜏 is 

the non-dimensional time, 𝜔 is the frequency ratio, 𝜉 is the damping ratio, 𝑔 

is the non-dimensional gap between the mass and top slider, 𝑎 is the non-

dimensional amplitude of harmonic part of external force, 𝑏  is the non-

dimensional static part of external force, 𝜑 is the phase shift and 𝐻 stands for 

the Heaviside step function. 

 

𝑃ଵ = 𝐻(𝑥 − 𝑧 − 𝑔) 
 

𝑃ଶ = 𝐻(2𝜉�̇� + 𝑧 − 𝑣) 
 

𝑃ଷ = 𝐻(2𝜉�̇� + 𝑧 − 𝑣 − 1) 
 

𝑃ସ = 𝐻(�̇�) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1.6) 
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1.4 Contributions of the thesis 
 

The contributions of this study are shown below: 

 

● A Randomised Triangular Subdivision method is proposed to quickly 

approximate the basins of attraction of multistable dynamical systems. 

This method’s performance has been compared with the traditional 

brute force algorithm method.  With the same number of initial 

conditions under consideration, the proposed method can accurately 

identify the basins of attraction and capture the geometrical and 

topological features of the basins of attraction. 

 

● A PD-like controller is proposed for controlling state switching in 

multistable systems. The PD-like controller can switch the system from 

an undesired to the desired state without changing the parameters and 

destroying the original basins of attraction of the system. This feedback 

controller exploits the difference between the current and desired 

trajectories for state switching. This controller does not require 

knowledge of the plant’s nonlinearity.  

 

● The PD-like control is optimised by global optimisation methods to 

meet the requirements of the decision maker or the resource 

constraints. Constrained PD-like control reduces the required actuator 

power by limiting the strength of the control input in sacrifice of long 

switching duration. Moreover, the performance of the PD-like controller 

is respectively optimised by Particle Swarm Optimisation and 

Nondominated Sorting Genetic Algorithms-II (NSGA-II) based on 

different performance metrices independently and simultaneously. 

Performance metrics under consideration in this thesis are maximum 

peak of control input and switching duration in order to reduce the 

energy consumption and save the time used in state switching. 
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1.5. Thesis Organisation 
 

The rest of the thesis is organised as follows. Chapter two proposes a fast 

method of approximating the basins of attraction through the proposed 

Randomised Triangular Subdivision method. It utilises Delaunay triangulation 

to quickly explore the dynamic systems’ basins of attraction. This method’s 

performance is investigated with multistable systems with different numbers 

of coexisting stable states. Chapter three propses a new multistable PD-like 

controller for state switching and its performance is investigated using the 

three test systems outlined in section 1.3. Chapter four investigates the effect 

of constrained control input on the behaviours of the proposed PD-like 

controller. Chapter five shows the sensitivity of PD-like control through an 

analysis of the maximum peak of external control input and the switching 

durations under different control parameters. In chapter six, the performance 

of the PD-like controller is enhanced by particle swarm optimisation with two 

independent objectives. Chapter seven shows how the performance of the 

PD-like controller is optimised under multiple conflicting objectives using Non-

dominated Sorting Genetic Algorithms-II (NSGA-II). At last, chapter eight 

concludes this thesis and offers recommendations for future study. 
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Chapter 2 Reconstruction of Basins of 
Attraction 
 
This chapter proposes a novel and fast method to estimate the basins of 

attraction of multistable systems. From the basins of attraction of a given 

multistable system, the number of coexisting states and the structure of each 

basin can be observed and the trajectories of the states can be found during 

the process of basins of attraction identification.  

 

2.1 Introduction 
 

Dynamic responses and stable states of a system are dependent on its 

parameters and initial conditions. The system with different initial conditions 

will converge to different stable states and the stable states are called 

attractors [5]. In a multistable system, there is more than one stable state 

under the same set of system parameters and the regions which partition the 

initial conditions converging to the same state is called basin of attraction 

[32-34]. Most controllers for switching states in multistable system require 

knowledge of the basins of attraction for the trajectory of different states and 

the features of different basins. Therefore, it is important to identify the 

basins of attraction of multistable systems for switching to favourable state 

in different applications. Furthermore, each basin of attraction is associated 

with a state trajectory and thus the trajectories of coexisting states of the 

system can be recovered during the process of identification of  basins of 

attraction.  

 

2.2 Traditional Method to Identify Basins of Attraction 
 

The traditional method for identification of basins of attraction of nonlinear 

systems is through the brute force algorithm. This method involves checking 

the state of each point or initial condition in the relevant regions of the initial 

condition space, and is computationally intensive. The pseudo code of brute 

force algorithm is shown below: 
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1. Discretise the initial condition space. 

2. Raster Scan: for each possible set of initial conditions, simulate the 

system and identify the converged state.  

3. Assign colour to each converged state for easy visualisation. 

 

The disadvantages of this method are: 

 

1. It is computationally intensive for basins of attraction generation at 

high resolution. Since the system at initial conditions which are close 

to each other often converge to the same state. It is arguably a waste 

of time to check the state of every individual point in initial condition 

space within the same region 

 

2. Boundary between different basins or separatrix is usually highly 

nonlinear and the basins of attraction are usually highly fragmented. 

It is difficult to extract geometrical and topological features of basins 

of attraction with great details using raster scan at low resolution. 

 

2.3 The Proposed Method 
 

A new method, called Randomised Triangular Subdivision, is proposed which 

applies the Delaunay Triangulation [35-36] to quickly explore the initial 

condition space for approximating the basins of attraction of a multistable 

system. The initial condition space is then covered by triangles. Triangles are 

employed in initial space coverage because they are the simplex shape which 

can cover all 2D spaces. The proposed method adopts a randomised approach 

to randomly select the first generation of initial conditions which can maintain 

diversity of initial conditions and are as uniformly distributed as possible to 

cover the most of the area (more than 90%) of the region of interest. The 

proposed method then subdivides triangles, which have at least one vertex 

in a different state or at least one initial condition converged to a different 

state, into three smaller triangles for enhancing the level of details in the 

basins of attraction. This facilitates fast estimation of the boundary or 
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separatrix between different basins of attraction. The mathematical definition 

of triangulation in n-dimensional space is shown below: 

 

 

Definition 2.1: 

A triangulation of a finite point set 𝑃 ⊂ ℝ is a collection 𝒯 of triangles, such 

that 

(1) 𝑐𝑜𝑛𝑣(𝑃) = ⋃்∈𝒯𝑇; 

(2) 𝑃 = ⋃்∈𝒯𝑉(𝑇); and  

(3) For every distinct pair 𝑇, 𝑈 ∈ 𝒯 the intersection 𝑇 ∩ 𝑈 is either a common 

vertex, or a common edge, or empty. [37] 

 
where, 𝑉(𝑇) is the set of vertices of a triangle 𝑇. 𝑐𝑜𝑛𝑣(𝑃) is the convex hull of 

the set 𝑃. Convex hull of a set 𝑃 is the smallest convex set that include all 

points in the set 𝑃 [37]. The definition of a convex set is shown below: 

 
Definition 2.2: 

A set 𝑃 ⊂ ℝ is convex if and only if ∑ 𝜆𝑎

ୀଵ ∈ 𝑃, for all 𝑛 ∈ ℕ, 𝑎ଵ, … , 𝑎 ∈ 𝑃, and 

𝜆ଵ, … , 𝜆 ≥ 0 𝑤𝑖𝑡ℎ ∑ 𝜆

ୀଵ = 1 [37] 

 

The Delaunay Triangulation method triangulates a n-dimensional space with 

several discrete points and there is no point in the circumcircle of any triangle. 

The Delaunay Triangulation is used for estimating the basins of attraction 

because when a new point is inserted, it only affects the triangles which are 

in the vicinity of this point and it will not affect the triangles which are far 

from that point [38-40] and thus the triangulation is locally updated. No re-

triangulation on the whole new point set is required in each subdivision step. 

Two efficient algorithms are commonly used for finding the Delaunay 

Triangulation of a given point set. One of them is called Flip Algorithm [41-

47] and the other is Incremental Construction [41-42, 48-52]. 

 

2.3.1 Lawson Flip Algorithms 
 

The process of Lawson flip is shown below: 
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Figure 2.1 (a) Delaunay triangulation (b) Non-Delaunay triangulation 

(1) Triangulate the set of points P randomly. 

 

(2) Check the subtriangulation by 4 points which are in the convex position. 

Subtriangulation refers to the triangulation of a subset of points. If the 

subtriangulation is not Delaunay (i.e. a point is in the circumcircle of a 

triangle as shown in Figure 2.1(b)), switch the subtriangulation to the 

Delaunay triangulation (no point is in the circumcircle of a triangle as 

shown in Figure 2.1(a)). This operation is called a flip operation. 

 

(3) Repeat step (2) until the triangulation of P is a Delaunay triangulation. 

Moreover, this will need at most 𝑂(𝑛ଶ) flips, where n is the number of the 

points in the set P 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3.2 Incremental Construction 
 

The process of incremental construction is shown below: 

 

(1) Build a triangle with three artificial points and this triangle contains all the 

points in the set P. 

(2) Inserting the points in the set P one after another. Assuming R points are 

inserted, and a new point s will be inserted. Find the triangle ∆= ∆(𝑝, 𝑞, 𝑟) 

contains the point s in 𝒟𝒯(𝑅), where 𝒟𝒯(𝑅) is the Delaunay Triangulation 

of 𝑅 ⊆ 𝑃 and 𝑝, 𝑞, 𝑟 are the vertices of the triangle ∆. This triangle is then 

switched to three triangles by connecting the point s with the vertices 

𝑝, 𝑞, 𝑟. Figure 2.2 shows the triangulation 𝒯 of 𝑅 ∪ {𝑠}. 

(a) (b) 



18 
 

(3) Replace 𝒯 by 𝒟𝒯(𝑅 ∪ {𝑠}) through a Lawson flip (Step 2 shown in Section 

2.3.1) as shown in Figure 2.3. 

(4) Repeat step (2) and (3) until the triangulation of P is a Delaunay 

Triangulation. Then delete the extra points and their incident edges. This 

algorithm needs at most 𝑂(𝑛 𝑙𝑜𝑔 𝑛) flips to be implemented. 

 
Compared with Lawson Flip Algorithms, Incremental Construction has a lower 

computation complexity [41]. Therefore, Incremental Construction is adopted 

for Delaunay triangulation in this algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.4 Randomised Triangular Subdivision  
 

The first step of the randomised triangular subdivision method is to apply the 

Delaunay Triangulation on a set of initial conditions to divide the chosen 

region of interest to several triangles.  Then, the vertices of each triangle are 

checked: If all three vertices of a triangle are in the same state, i.e. the initial 

conditions denoted by the three vertices converge to the same stable state, 

it is assumed that all the points (initial conditions) in the triangle are in the 

Figure 2.2 Step 2 of incremental construction 

Figure 2.3 Step 3 of incremental construction 
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same state. If at least one of the vertices is in a different state to the other 

vertices then the state of the centroid point will be checked. The following 

paragraphs describe in details the process by which this method 

approximates the basins of attraction of a multistable system. 

 

The proposed Randomised Triangular Subdivision algorithm is presented as 

follows: 

 

1. A set of points (initial conditions) in a given region of interest in the 

initial condition space of the multistable system are randomly selected. 

The distribution of these initial conditions is checked: if they are too 

crowded in small regions in the initial condition space, they should be 

re-selected until the distribution of the initial conditions can cover the 

region as thoroughly as possible (over 90% of the region of interest in 

initial condition space). 

 

2. A convex hull based on these selected initial conditions is constructed, 

and triangulated using Delaunay Triangulation. Then the states of the 

vertices of each triangle are checked. For each triangle, if the vertices 

of the triangle are in the same state, the method will process according 

to step 3. If at least one vertex of the triangle is in a different state 

compared to the other two vertices, the method will process according 

to step 5. Two different threshold values 𝑝 and 𝑞 of triangular area are 

selected based on the area of the convex hull. 𝑝 and 𝑞 are measured 

on the percentage of area of the whole initial condition space. 𝑝 is the 

threshold value of the area of the triangles whose vertices are in the 

same state. 𝑞 is the threshold value of the area of the triangles who 

has at least one vertex is in a different state compared to the other 

two vertices. With smaller 𝑝 and 𝑞, the boundaries between different 

states are smoother and have higher level of details. For a triangle with 

three vertices in the same state, if the area of this triangle is smaller 

than 𝑝 the process will stop. For a triangle with at least one vertex in 

a different state compared to the other two vertices and if the area of 

this triangle is smaller than 𝑞 the process will stop. This step is depicted 

in the red dashed box in Figure 2.4. 
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3. For each triangle, check its area. If the area of the triangle is smaller 

than  𝑝 the vertices of the triangle are recorded. If the area of the 

triangle is larger than 𝑝 the state of its centroid point is checked. If the 

state of the centroid point of the triangle is in the same state as its 

vertices, the method will process according to step 4. If the centroid 

point of the triangle is in a different state compared to its vertices then 

the method will process according to step 5. This step is depicted in 

the purple dashed box in Figure 2.4. 

 

4. If the area of the triangle is smaller than or equal to 𝑝 then record the 

vertices of the triangle. Otherwise, check the state of its centroid point. 

If the state of the centroid point of the triangle is in the same state as 

its vertices then record this centroid point. If the centroid point of the 

triangle is in a different state compared with its vertices then the 

method will process according to step 5. This step is depicted in the 

purple dashed box in Figure 2.4. 

 

5. Triangulate the triangle based on the vertices and centroid of the 

triangle. Check the area of the new triangle. If it is smaller than or 

equal to 𝑞 then record the vertices of the new triangle. Otherwise, 

check the state of the triangle’s vertices. If all three vertices of the 

triangle are in the same state, the method will process according to 

step 3. If at least one vertex of the triangle is in a different state 

compared to the other two vertices repeat step 5. If the areas of all 

the triangles, which have at least one vertex is in a different state, are 

less than 𝑞 then the method will process according to step 6. This step 

is depicted in the blue dashed box in Figure 2.4. 

 

6. Check the state of each initial condition in the set that consists of 

randomly selected initial conditions in step 1 and the newly added ones 

by subdivision in steps 3, 4 and 5. Then triangulate the convex hull 

based on all the augmented initial conditions set. For each triangle, if 

all the three vertices are in the same state assume that all the points 

in this triangle are in the same state. If one vertex is in a different 

state compared with the other two vertices then assume all the points 
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Figure 2.4 Flowchart of the randomised triangular subdivision. Red dashed block shows step 
2, purple block shows step 3 and 4, blue dashed block shows step 5 and orange dashed 
block shows step 6. 

in this triangle are in the same state as the two vertices that are in the 

same state. If all three points are in different states then check the 

state of the centroid point of the triangle and assume that all the points 

in this triangle are in the same state as the centroid point. Figure 2.5 

shows the triangle with different conditions of its vertices. This step is 

depicted in the orange dashed box in Figure 2.4. 
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2.5 Numerical Simulation 
 

In order to demonstrate the effectiveness of the proposed method, two 

multistable systems are studied, namely: Duffing oscillator and soft impact 

oscillator, in simulation.  

 

2.5.1 Duffing Oscillator with Two Coexisting Stable States 
 

The section below provides a detailed description of the process of estimating 

the basins of attraction of the Duffing oscillator. 

 

Firstly, the parameters of the Duffing oscillator are set as: 𝑘 = 0.9, 𝛤 = 1.9 and 

𝜔 = 1.2. The Duffing oscillator has two co-existing states under this set of 

system parameters [62]. Moreover, the region of interest in the initial 

condition space is selected from -5 to 5 in the x-axis (displacement) and y-

axis (velocity). 50 initial conditions are randomly selected in this region.  

Several tests have been conducted for finding the suitable number of initial 

conditions. If the number of the initial condition is too small, the detail of the 

basins of attraction may be lost. If the number of the initial conditions is too 

large, the computing complexity will increase drastically. The area of the 

One vertex is in a different state compared 
with the other two vertices then assume all the 
points in this triangle are in the same state as 
the two vertices that are in the same state 

All three points are in different states then 
check the state of the centroid point of the 
triangle and assume that all the points in this 
triangle are in the same state as the centroid 

All of the three vertices are in the same state 
assume that all the points in this triangle are 
in the same state with the vertices 

Figure 2.5 Different conditions of a triangle in Delaunay Triangulation of Initial Condition 
Space. 
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convex hull which is created by these 50 initial conditions is 95.1207, which 

is 95.1207% of the selected region. Moreover, the area threshold values p 

and q are 0.095 and 0.0095 respectively, which are 0.1% and 0.01% of the 

area of the convex hull respectively. Therefore, these 50 initial conditions are 

used for the first iteration of the simulation. The distribution of these initial 

conditions is shown in Figure 2.6. 

 

Secondly, the convex hull of the 50 selected initial conditions is triangulated 

using the Delaunay Triangulation, as illustrated in Figure 2.7 and 90 triangles 

are generated as counted by the developed MATLAB code. Next, the states of 

the vertices of each triangle are checked. There are 40 triangles with all three 

vertices in the same states (as shown in Figure 2.8) while the remaining 50 

triangles have at least one vertex that is in a different state compared to the 

others (as shown in Figure 2.9). Steps 4 and 5 were repeated until the area 

of the triangle is smaller than 0.01 times of the initial convex hull area or all 

three vertices of the triangle are in the same state. The subdivision process 

ends with a total of 1224 points, which provides the new set of initial 

conditions for resultant Delaunay Triangulation. 

 

Thirdly, the state of the new set of initial conditions is checked and the convex 

hull is triangulated using the Delaunay Triangulation based on the new set of 

initial conditions. The convex hull is subdivided into 2438 triangles and there 

are two stable states under this set of system parameters. Moreover, as 

shown is Figure 2.10, 607 points (initial conditions) converge to the first 

stable state (red dots) and 617 points converge to the other state (blue dots). 

In order to identify the basins of attraction, for each triangle, if all three 

vertices are in the same state, fill the triangle with the same colour as the 

vertices. If two vertices are in the same state and the remaining vertex is in 

a different state, fill the triangle with the same colour as the two points which 

are in the same state. Therefore, there are 1216 triangles that belong to the 

first state (filled in red colour) and 1222 triangles that belong to the second 

state (filled in blue colour). The basins of attraction estimated by this method 

are shown in Figure 2.11 below. 
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Figure 2.6 Random samples of the initial conditions 
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Figure 2.7 Triangulating the convex by using Delaunay Triangulation based on these 
50 initial conditions  
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Figure 2.8 The triangles with vertices that are all in the same state. The colour of the point 
shows the vertex located in which state. Needs rewriting for clarity 
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Figure 2.9 Triangles which have at least one vertex that is in a different state compared with 
the others. The colour of the point shows the vertex located in which state. Needs rewriting 
for clarity 
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Figure 2.10 Distribution of the augmented set of initial conditions. The colour of the point 
shows the initial condition converge to which state. 

Figure 2.11 Basins of attraction estimated using the random triangular subdivision with 1224 
initial conditions. 
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Figure 2.12 High Resolution Basins of attraction of Duffing Oscillator (1001*1001) 

In order to check the accuracy of the basins of attraction estimated by the 

proposed randomised triangular subdivision method, a high resolution basins 

of attraction of the Duffing oscillation under the same set of parameters is 

identified by traditional brute force algorithm. High resolution basins of 

attraction are shown in Figure 2.12. The resolution of these basins of 

attraction is 1001*1001. These basins of attraction estimated by the brute 

force algorithm, which act as a ground truth, is compared with that estimated 

by the randomised triangular subdivision method. The features of both basins 

of attraction are similar by observation. Then, the similarity between these 

two basins of attractions is calculated. The main method for doing so involves 

checking each point in the high-resolution basin of attraction to see if they 

are in the same state in the basins of attraction which were estimated using 

the proposed randomised triangular subdivision. A comparison shows that the 

similarity between these two basins of attraction is 97.04%. Figure 2.13 

shows the basins of attraction with the resolution of 35*35 using the brute 

force method with a similarity of 94.95% with the ground truth. Figure 2.16-

2.23 show a comparison of the basins of attraction estimated by the 

randomised triangular subdivision method and the brute force algorithm. 
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Another trial of identification the basins of attraction using the randomised 

triangular subdivision method is conducted in order to investigate the 

evolution of basins of attraction through subdivision of the proposed method. 

The distribution of these 50 initial conditions and the state of each initial 

condition are shown in Figure 2.15. 36 initial conditions converge to the first 

state (red points) and the other 14 initial conditions converge to the second 

state (blue points). The area of the initial convex hull is 95.0287 and the 

threshold values of the area p and q are 0.95 and 0.095 respectively, which 

correspond to 1% and 0.1% of the area of the convex hull respectively. 

  

50 points are randomly selected for the first generation and the convex hull 

is divided into 91 triangles which is shown in Figure 2.14. After checking the 

state of the vertices of each triangle, 52 triangles are passed to the next step 

and 52 centroid points of triangles are selected for the second generation. 

Each of these 52 triangles is subdivided into smaller triangles based on its 

vertices and centroid points. Figure 2.16 shows the convex hull after the first 

subdivision. Figure 2.17 shows the distribution of the points in the second 

Figure 2.13 Basins of attraction estimated by the brute force algorithm with resolution 35*35 
(1225 initial conditions) 
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generation which includes the first 50 initial conditions and the 52 centroid 

points (102 initial conditions). The colour of the point shows which state that 

point (initial condition) converge to. Figure 2.18 shows the basins of 

attraction estimates based on these points in the second generation. 

Additional 3 iterations are required before the area of the triangle is smaller 

than 0.095 or all three vertices of the triangle reach the same state. Moreover, 

133, 196 and 49 centroid points are selected in the next 3 generations 

respectively. Figures 2.20, 2.24 and 2.28 show the changing of the convex 

hull after each subdivision. Figures 2.21, 2.25 and 2.29 show the distribution 

of the points in each generation. Figures 2.18, 2.22, 2.26, 2.30 show the 

evolution of the basins of attraction during the subdivision process.  

 

In Figure 2.18 there are 102 points and the convex hull was divided into 195 

triangles. Moreover, 122 triangles belong to the first state (filled in red colour), 

while 73 triangles belong to the second state (filled in blue colour). As 

compared with Figure 2.12, the major geometrical and topological features 

of the basins of attraction in Figure 2.18 are captured. It should be noted that 

the boundary or separatrix between the two basins of attraction is not smooth. 

In Figure 2.22, there are 235 points and the convex hull is divided into 461 

triangles and 282 triangles belong to the first state (filled in red colour) while 

179 triangles belong to the second state (filled in blue colour). In Figure 2.26, 

there are 431 points and the convex hull is divided into 853 triangles. 480 

triangles belong to the first state (filled in red colour) and 373 triangles belong 

to the second state (filled in blue colour). In Figure 2.30, there are 480 points 

and the convex hull is divided into 951 triangles in which 532 triangles belong 

to the first state (filled in red colour) and 419 triangles belong to the second 

state (filled in blue colour). By comparing Figures 2.18, 2.22, 2.26, 2.30, 

major geometrical and topological features of the basins of attraction are 

easily observed across the evolution of the basins of attraction identification. 

The number of points near the boundary between the two states increases. 

The triangles which are farther away from the boundary do not change much 

but the triangles which are near to the boundary are divided into small 

triangles. Therefore, from Figures 2.18, 2.22, 2.26, 2.30, the boundary 

between two states becomes smoother and smoother through the subdivision 

process.  
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Figures 2.19, 2.23, 2.27, 2.31 show the basins of attraction estimated by the 

brute force algorithm with the resolutions 10*10, 15*15, 21*21 and 22*22, 

which are in almost the same resolution as those in Figures 2.18, 2.22, 2.26, 

2.30 respectively. The proposed method is able to identify the major 

geometrical and topological features of basins of attraction at low resolution.  

 

Moreover, a comparison will be made between the basins of attraction 

estimated by the proposed randomised triangular subdivision method and the 

brute force algorithm at different resolutions. Firstly, the basins of attraction 

estimated by the randomised triangular subdivision method provide more 

details about the features of the basins of attraction. Comparison of Figure 

2.18 with Figure 2.19 and Figure 2.22 with Figure 2.23 show that they have 

a similar number of initial conditions. However, in the right part of Figures 

2.18 and 2.19 the blue region is divided into two parts by the red region but 

in Figures 2.22 and 2.23 the red region is ignored.  

 

Secondly, comparisons of Figure 2.26 with Figure 2.27 and Figure 2.30 with 

Figure 2.31 respectively show that they have a similar number of initial 

conditions but the basins of attraction estimated by the randomised triangular 

subdivision gives a smoother boundary between the two states. This is 

because the randomised triangular subdivision method can be adaptive to the 

geometrical and topological features of the basins of attraction so that more 

initial conditions are used to estimate the boundary between the two states. 

The yellow dashed block shows in Figures 2.30 and 2.31 show that, the basins 

of attraction estimated by the randomised triangular subdivision gives more 

details than the traditional brute force method.  

 

Thirdly, Tables 2.1 and 2.2 show the similarity between Figures 2.18, 2.19, 

2.22, 2.23, 2.26, 2.27, 2.30, 2.31 and Figure 2.12 and computation time for 

basins of attraction estimated using MATLAB running on a PC with quad core 

3.60 GHz CPU and 32 G RAM. According to the tables, the similarity of the 

basins of attraction estimated by the randomised triangular subdivision 

method is, in general, higher than that given by the brute force algorithm. 

Moreover, when the number of initial conditions increases, the similarity of 

the basins of attraction estimated by the two methods also increases, but the 
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increase speed is reduced. Moreover, there are fewer differences between the 

basins of attraction produced by these two methods. In addition, the 

computation time of the proposed method is slightly higher than that of the 

traditional brute force method at similar resolution. The proposed method is 

able to produce estimates of basins of attraction with higher accuracy and 

smoothness in sacrifice of slightly longer computation time.  

 

Table 2.1 Similarity and time costs of the basins of attraction estimated by the random 
triangular subdivision 

Number of initial conditions Similarity Time Costs (seconds) 
102 90.07% 40.70 
235 91.59% 105.23 
431 93.73% 169.28 
480 93.92% 180.45 

 
Table 2.2 Similarity and time costs of the basins of attraction estimated by the brute force 
algorithm 

Number of initial conditions Similarity Time Costs (seconds) 
10*10 (100) 83.76% 35.26 
15*15 (225) 89.14% 91.39 
21*21 (441) 91.11% 133.78 
22*22 (484) 91.14% 139.97 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.14 Triangulating the convex by using Delaunay Triangulation based on 50 initial 
conditions 
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Figure 2.15 Random sample of the initial conditions. The colour of the points shows the initial 
condition converge to which state. 
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Figure 2.16 Triangles in the convex after first subdivision 
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Figure 2.18 Basins of attraction estimated using random triangular subdivision with 102 
initial conditions in the second generation 

Figure 2.17 Distribution of the 102 initial conditions in the second generation. The colour of 
the points shows the initial condition converge to which state. 
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Figure 2.19 Basins of attraction estimated using the brute force algorithm with resolution 
10*10 (100 initial conditions) 
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Figure 2.20 Triangles in the convex after second subdivision 
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Figure 2.22 Basins of attraction estimated using random triangular subdivision with 235 
initial conditions in the third generation 

Figure 2.21 Distribution of the 235 initial conditions in the third generation. The colour of the 
points shows the initial condition converge to which state. 
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Figure 2.23 Basins of attraction estimated using the brute force algorithm with resolution 
15*15 (225 initial conditions) 
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Figure 2.24 Triangles in the convex after third subdivision 
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Figure 2.26 Basins of attraction estimated using the random triangular subdivision with 431 
initial conditions in the fourth generation 

Figure 2.25 Distribution of the 431 initial conditions in the fourth generation. The colour of 
the points shows the initial condition converge to which state. 
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Figure 2.27 Basins of attraction estimated using the brute force algorithm with resolution 
21*21 (441 initial conditions) 
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Figure 2.28 Triangles in the convex after fourth subdivision 
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 Figure 2.30 Basins of attraction estimated using random triangular subdivision with 480 
initial conditions in the fifth generation 

Figure 2.29 Distribution of the 480 initial conditions in the fifth generation. The colour of the 
points shows the initial condition converge to which state. 
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Figure 2.31 Basins of attraction estimated using the brute force algorithm with resolution 
22*22 (484 initial conditions) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.5.2 Soft impact oscillator with Two Coexist Stable State 
 

In order to investigate the robustness of the proposed method for different 

systems, the basins of attraction of the soft impact oscillator is estimated. 

The system parameters are selected as follows, 𝜉 = 0.01, 𝛽 = 29, 𝑔 = 1.26, 𝛤 =

1.0385 and 𝜔 = 0.686. The region of interest in the initial condition space is 

selected from -4 to 4 for the x-axis (displacement) and from -6 to 6 for the 

y-axis (velocity). The basins of attractions at high resolution (501*501) is 

provided in Figure 2.32. There are two co-existing stable states in the system 

with this given set of parameters [66]. Comparing with the investigation in 

Section 2.5.1, these basins of attraction is more complex than those of the 

Duffing oscillator.  

 

In order to estimate the basins of attraction of the soft impact oscillator under 

this set of parameters by the proposed method, 50 initial conditions are 

randomly selected as the first generation in this study. The distribution of 

these 50 initial conditions and the state of each initial condition are shown in 
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Figure 2.33. 34 initial conditions converge to the first state (red points) and 

the other 16 initial conditions converge to the second state (blue points). The 

area of the convex hull which is built based on these initial conditions is 

91.3936 which is 95.20% of the selected region. Therefore, the threshold 

values of the triangular area p and q are 0.0914 and 0.0457 which are 0.1% 

and 0.05% of the area of the convex hull respectively.  

 

At first the convex hull is divided into 88 triangles based on these 50 initial 

conditions which is shown in 2.34. After one iteration, 72 new points are 

added to the set of the initial conditions and the convex hull is divided into 

232 triangles. 158 triangles belong to the first state (filled in red colour) and 

74 triangles belong to the second state (filled in blue colour). Figure 2.35 

shows the basins of attraction estimated based on these 122 initial conditions. 

Comparing with Figure 2.32, the geometrical and topological features of the 

boundary between the two stable states are observed. However, the 

boundary is not smooth. Moreover, for the complex part of the basin of 

attraction (in dashed box in Figure 2.35), Figure 2.35 does not show much 

details between these two states. There are three more iterations before the 

stopping conditions are met. During the second iteration, 176 points are 

added to the set of initial conditions and the convex hull is divided into 584 

triangles. 373 triangles belong to the first state and 211 triangles belong to 

the second state. During the third iteration, 320 points are added to the set 

of initial conditions and the convex hull is divided into 1224 triangles. 733 

triangles belong to the first state and 491 triangles belong to the second state. 

In the last iteration, 275 points are added to the set of initial conditions and 

the convex hull is divided into 1774 triangles. 1069 triangles belong to the 

first state and 705 triangles belong to the second state. The evolution of the 

basins of attraction is shown from Figures 2.35, 2.37, 2.39, to 2.41. The 

geometrical and topological features of the basins of attraction of the soft 

impact oscillator can be identified easily with small number of initial 

conditions. When the number of initial conditions increases, more detail in 

the basins of attraction is revealed and the boundary between the two states 

becomes smoother.  

To compare with the basins of attraction estimated by the traditional brute 

force method, four levels of resolution were studied namely 11*11, 17*17, 
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25*25 and 30*30 which are similar to the numbers of initial conditions in 

Figures 2.35, 2.37, 2.39, 2.41 respectively. These basins of attraction are 

shown in Figures 2.36, 2.38, 2.40, 2.42 respectively. Comparing the basins 

of attraction estimated by the two methods, at low resolution such as Figure 

2.35 and Figure 2.36, the basins of attraction estimated by the proposed 

method show more details than that by the traditional method. At high 

resolution such as Figures 2.41 and 2.42, similar to the low resolution cases, 

the basins of attraction estimated by the proposed state shows more detail 

than that by the traditional method. Moreover, the boundary or separatrix 

between the two states in Figure 2.41 is smoother than that in Figure 2.42. 

The similarities between Figures 2.35-2.42 and Figure 2.32 and time costs 

for basins of attraction estimated are shown in Tables 2.3 and 2.4. From 

Tables 2.3 and 2.4, similar to the Duffing oscillator case in Section 2.5.1, the 

similarities of the basin of attraction estimated by the proposed method are 

higher than that by the traditional method under similar numbers of the initial 

conditions.  The higher the number of initial conditions, the higher the 

similarity but the increase rate of the similarity decreases. Furthermore, the 

difference of the similarity between these two methods is reduced. Since the 

basins of attraction of soft impact oscillator is more complex than that of 

Duffing Oscillator, the similarity in this study is lower than those in Duffing 

Oscillator with similar number of initial conditions. In addition, the proposed 

method is able to produce estimates of basins of attraction with higher 

accuracy and smoothness in sacrifice of slightly longer computation time.  
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Table 2.3 Similarity and time costs of the basins of attraction estimated by the randomised 
triangular subdivision method 

Number of initial conditions Similarity Time Costs (seconds) 
122 74.50% 134.19 
298 77.11% 319.46 
618 79.59% 696.91 
893 80.55% 996.17 

 

 
 
Table 2.4 Similarity and time costs of the basins of attraction estimated by the brute force 
algorithm 

Number of initial conditions Similarity Time Costs(seconds) 
11*11 (121) 70.78% 116.66 
17*17 (289) 73.78% 271.84 
25*25 (625) 76.50% 601.135 
30*30 (900) 79.16% 847.366 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.32 Basins of attraction of the soft impact oscillator with the system parameters: 
𝜉 = 0.01, 𝛽 = 29, 𝑔 = 1.26, 𝛤 = 1.0385 and 𝜔 = 0.686 
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Figure 2.33 Random sample of the initial conditions. The colour of the points shows the initial 
condition converge to which state. 

Figure 2.34 Triangulating the convex by using Delaunay Triangulation base on these 50 
initial conditions 
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Figure 2.35 Basins of attraction estimated by the randomised triangular subdivision method 
with 122 initial conditions 
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Figure 2.36 Basins of attraction estimated by the brute force algorithm with resolution 11*11 
(121 initial conditions) 
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Figure 2.37 Basins of attraction estimated by the randomised triangular subdivision with 298 
initial conditions 

Figure 2.38 Basins of attraction estimated by the brute force algorithm with resolution 17*17 
(289 initial conditions) 
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Figure 2.39 Basins of attraction estimated by the randomised triangular subdivision method 
with 618 initial conditions 

Figure 2.40 Basins of attraction estimated by the brute force algorithm with resolution 25*25 
(625 initial conditions) 
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Figure 2.41 Basins of attraction estimated by the randomised triangular subdivision method 
with 893 initial conditions 

Figure 2.42 Basins of attraction estimated by the brute force algorithm with resolution 30*30 
(900 initial conditions) 
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2.5.3 Soft impact oscillator with Three Stable State 
 

Another set of system parameters of soft impact oscillator is selected for 

testing with  𝜉 = 0.01, 𝛽 = 29, 𝑔 = 1.26, 𝛤 = 0.4547 and 𝜔 = 0.806. The region of 

interest in the initial condition space is selected from -2 to 2 for both the x-

axis (displacement) and y-axis (velocity). The high resolution (501*501) 

basins of attraction are shown in Figure 2.43. Under this set of parameters, 

there are 3 co-existing stable states in the system [66]. Moreover, the basins 

of attraction are more complex than those in the last two cases. The basins 

of attraction of these three states are highly scattered and intermeshed.  

 

50 initial conditions are randomly selected as the first generation in this 

region using the proposed method. Then the state of these 50 initial 

conditions are checked. 20 points converge to the first state (red points), 24 

points converge to the second state (blue points) and 6 points converge to 

the third state (green points). Figure 2.44 shows the distribution of these 

points and the state of each initial condition. The area of the convex hull built 

by these 50 initial conditions is 15.2 which is 95% of the selected region. 

Therefore, the threshold values p and q of the area are 0.076 and 0.0076 

which are 0.5% and 0.05% of the area of the convex hull respectively. Using 

the Delaunay Triangulation, the convex hull is divided into 90 triangles based 

on these 50 initial conditions. There are 4 iterations before the area of the 

triangle is smaller than 0.0076 or all three vertices of the triangle are in the 

same state. In the second generation, 88 points are added to the set of initial 

conditions. There are 138 initial conditions and the convex hull is divided into 

266 triangles. 113 triangles belong to the first state (filled in red colour), 109 

triangles belong to the second state (filled in blue colour) and 44 triangles 

belong to the third state (filled in green colour). Comparing with the high 

resolution basins of attraction cases, the geometrical and topological features 

of the first state (red region) and the second state (blue region) can be 

observed but the boundary between these two state is not smooth. Moreover, 

since the first state and the third state (green region) are intermeshed, these 

basins of attraction do not show the detail of boundary between the first state 

and third state.  
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Figure 2.46 shows the basins of attractions of the second generation. In total, 

five iterations were run before stopping conditions were met. Figures 2.48, 

2.50, 2.55 show the basins of attraction of the last three generations. In the 

third iteration, there are 381 initial conditions and the convex hull is divided 

into 752 triangles. 317 triangles belong to the first state, 308 triangles belong 

to the second state and 127 triangles belong to the third state. In the fourth 

iteration 860 initial conditions are added and the convex hull is divided into 

1710 triangles. 776 triangles belong to first state, 690 triangles belong to the 

second state and 244 triangles belong to the third state. In the fifth iteration, 

there are 1493 initial conditions and the convex hull is divided into 2976 

triangles. 1359 triangles belong to the first state, 1178 triangles belong to 

the second state and 439 triangles belong to the third state. By comparing 

Figures 2.46, 2.48, 2.50, and 2.52, the boundary between the first state and 

the second state become smoother and there are more details between the 

first state and the third state.  Moreover, the geometrical and topological 

features of each state become more similar to the features of each state in 

Figure 2.43.   

 

Figure 2.47, 2.49, 2.51, and 2.53 show the basins of attraction estimated by 

the traditional method with the resolutions of 12*12, 20*20, 29*29 and 

39*39 which are similar to the number of initial conditions in Figures 2.46, 

2.48, 2.50, and 2.52 respectively. Comparing the basins of attraction 

estimated by both methods, at low resolutions such as Figure 2.48 and Figure 

2.49, the basins of attraction estimated by the proposed method show more 

detail than the one estimated by the traditional method. When the resolution 

increases, the basins of attractions estimated by both methods provide more 

details. Tables 2.5 and 2.6 show time costs for basins of attraction estimated 

and the similarity between the basins of attraction built by the two methods 

and Figure 2.43. According to these two tables, like the last two cases 

presented in Sections 2.5.1 and 2.5.2, the basins of attraction estimated by 

the proposed mothed have a higher similarity than that by the traditional 

method. However, by comparing with the results in the last two subsections, 

the similarity is lower even more initial conditions are used in every iteration 

because the basins of attraction in this case is more complex than those of 

the other two systems. Similarly, the computation time of the proposed 
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method is slightly higher than that of the traditional brute force method at 

similar resolution.  

 

Table 2.5 Similarity and the time costs of the basins of attraction estimated by the random 
triangular subdivision 

Number of initial conditions Similarity Time Costs (seconds) 
138 50.65% 161.68 
381 57.59% 424.86 
860 61.99% 876.01 
1493 65.02% 1578.10 

 

Table 2.6 Similarity and the time costs of the basins of attraction estimated by the brute force 
algorithm 

Number of initial conditions Similarity Time Costs (seconds) 
12*12 (144) 47.08% 150.12 
20*20 (400) 55.63% 387.54 
29*29 (841) 60.80% 774.95 
39*39 (1521) 64.09% 1407.07 

 
 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.43 The basins of attraction of the soft impact oscillator with the system parameters:
𝜉 = 0.01, 𝛽 = 29, 𝑔 = 1.26, 𝛤 = 0.4547 and 𝜔 = 0.806 
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Figure 2.44 Random sample of the initial conditions. The colour of the points shows the initial 
condition coverage to which state. 

Figure 2.45 Triangulating the convex by using Delaunay Triangulation base on these 50 
initial conditions 
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Figure 2.46 Basins of attraction estimated by the random triangular subdivision with 138 
initial conditions 

Figure 2.47 Basins of attraction estimated by the brute force algorithm with resolution 12*12 
(144 initial conditions) 
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Figure 2.48 Basins of attraction estimated by the random triangular subdivision with 381 
initial conditions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.49 Basins of attraction estimated by the brute force algorithm with resolution 20*20 
(400 initial conditions) 
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Figure 2.50 Basins of attraction estimated by the random triangular subdivision with 860 
initial conditions 

Figure 2.51 Basins of attraction estimated by the brute force algorithm with resolution 29*29 
(841 initial conditions) 
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Figure 2.52 Basins of attraction estimated by the random triangular subdivision with 1493 
initial conditions 

Figure 2.53 Basins of attraction estimated by the brute force algorithm with resolution 39*39 
(1521 initial conditions) 
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2.6 Summary 
 

In this chapter, a method for estimating the basin of attraction of multistable 

system called Randomised Triangular Subdivision was proposed and it is 

based on Delaunay Triangulation. Moreover, performance of the randomised 

triangular subdivision was investigated on two test systems namely Duffing 

oscillator and soft impact oscillator with different number of coexisting states 

respectively. Comparing with the traditional brute force algorithm, with the 

same number of initial conditions, the random triangular subdivision method 

can estimate the basins of attraction with better accuracy and can capture 

geometrical and topological features at low resolution in sacrifice of slightly 

longer computation time. 
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Chapter 3 Multistable State Switching using 
PD-like Control 
 

This chapter proposes a PD-like controller to switch multistable systems from 

undesired state to desired state. The proposed method has been applied on 

three multistable systems namely, the Duffing oscillator, the soft impact 

oscillator and the soft impact oscillator with a drift, for performance 

evaluation. 

3.1 Introduction 
 

Multistable control switches a system from an undesired state to its desired 

state. This in turn can increases efficiency of the system. For example, a state 

with small amplitude oscillation can increase the lifespan of drill strings due 

to vibration reduction, which decreases maintenance costs and enhances 

productivity [8]. On the contrary, a large amplitude motion can generate 

more power, and thus improve the efficiency in a vibrational energy 

harvesting system [7]. 

3.1.1 Multistable State Switching Control Algorithms 
 

In order to switch states in multistable systems, several methods have been 

proposed in literature. For example, state switching in the system using a 

feedforward control procedure [11-12] and steering it by applying a short 

pulse [13-14, 53-60] were reported in literature. These two methods are easy 

to apply and the knowledge of the dynamic system are not required. However, 

these methods have limitations. For instance, if there is an unwanted external 

noise injected to the system, it may switch back to the undesired state due 

to its high sensitivity to noise and disturbance.  

 

A method was proposed for multistable control by applying a short pulse [53-

60]. The state of the system is dependent on the initial conditions of the 

system. The principle of the method is as follow: when a short pulse is applied 

to a multistable system and the system can be seen as switch off for a short 

period of time. Then the system will switch on again from another initial 
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conditions which belong to the basins of attraction of another attractor, i.e. 

the effect of the short pulse is equivalent to changing of initial conditions. 

Due to the short duration of the pulse, the parameters of the system will not 

change, i.e. the structure of the basins of attractor will remain unaltered. 

When the controller is applied on the system, it only effects the displacement 

of the system. If the variation of the displacement is large, the system is 

switched from one state to another. Otherwise, the system returns to the 

original state. Therefore, if the structure of the basins of attraction is complex, 

it is difficult to determine the level of the control input. Moreover, if there is 

external noise after control, the system may switch back to the undesired 

state due to its high sensitivity to its initial condition.  

 

More methods were proposed for state switching by changing overall system 

dynamics. For example, destroying the undesired attractors by using a 

pseudo-periodic force can switch the multistable system to a desired state 

[15-16]; destroying the undesired attractor by adding a harmonic 

perturbation can also drive the system to the neighbouring desired attractor 

[61-63] and using a harmonic modulation to switch the system from 

multistable system to a monostable system [64-65]. These methods control 

the system by destroying the undesired attractor and the basin of the desired 

attractor is usually enlarged. However, the destruction of attractors may 

change system properties, including the basin of attraction’s structure, in turn 

making it more complex and difficult to control.  Another method for 

multistable control is through destroying the undesired attractor. The 

coexisting attractor can be destroyed by a parameter modulation with the 

suitable frequency and amplitude. Pisarchik found that, with different control 

amplitude of the modulation, the number of the coexisting attractor is 

different [62]. Moreover, for each coexisting attractor, it has its own 

relaxation oscillation frequency. If the control frequency of the modulation is 

close to the relaxation oscillation frequency of the undesired attractor, the 

attractor will lose its stability because the modulation and relaxation 

oscillation get in resonance and the response of the system become stronger. 

This control method can destroy the undesired attractors without changing 

the observed phenomenon of the desired attractor. However, this method is 

not suitable for all dynamic systems. It is because for some systems, with a 
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small changing in system parameter, the structure of the basins of attraction 

will become more complicated. Therefore, it is important for a control law to 

maintain the original basin of attraction and maintain the system in a desired 

state under the effect of external disturbances.  

 

A new control law called the intermittent control of coexisting attractors, was 

proposed by Liu et al. [66]. This is based on the ‘act-and-wait’ concept and 

the feedback controller switches on during the acting period and switches off 

when waiting [67-73]. The principle of this controller is to perturb the 

undesired attractor by an impulsive force and drive the system to the desired 

trajectory. Similarly, a displacement error between the current and desired 

trajectories will be set. If it is smaller than the threshold error the controller 

will switch on, and, otherwise the controller will turn off. The intermittent 

control law can switch a multistable system from the current state to a desired 

state without changing the system’s parameters, although this requires 

knowledge of the plant’s nonlinear model, which is sometimes difficult to 

obtain accurately. Therefore, a new PD-like control law is proposed in this 

thesis to control the system without prior knowledge of the plant’s nonlinear 

model and without changing the system’s original basin of attraction. 

3.1.2 The proposed PD-like Control 
 

Consider a multistable system with the following dynamic model,  

 
�̈� = 𝑓(𝑥, �̇�) + 𝑝(𝑡) + 𝑢(𝑡) 

 
�̈�ௗ = 𝑓 (𝑥ௗ , �̇�ௗ) + 𝑝(𝑡) 

 
where 𝑥, �̇� and 𝑥ௗ , �̇�ௗ  are the displacement and velocity of the current and 

desired states of the system respectively. 𝑓(𝑥, �̇�)  and 𝑓 (𝑥ௗ , �̇�ௗ)  are the 

nonlinear functions of the current and desired states respectively. For the 

proposed PD-like controller, the exact nonlinear models of the plants 𝑓(𝑥, �̇�) 

and 𝑓 (𝑥ௗ , �̇�ௗ) are not required.   𝑝(𝑡) is the harmonic excitation applied to the 

model and 𝑢(𝑡) is the function for external control input.  

 

The proposed PD-like control law is defined as follows: 

𝑢(𝑡) = −𝑘𝑒ଵ − 𝑘ௗ𝑒ଶ 

(3.1) 

(3.2) 
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where 𝑘 and 𝑘ௗ  are the positive gains of the controller. 𝑒ଵ and 𝑒ଶ are the 

displacement and velocity differences between the current and desired 

trajectories which are defined as follows: 

𝑒ଵ = 𝑥 − 𝑥ௗ  

𝑒ଶ = �̇� − �̇�ௗ  

According to the principle of the proposed control law, the system will be 

driven from the current state to the desired state by exploiting the difference 

between the current and desired trajectories. The trajectory of the system 

will subsequently keep to the desired path, i.e. 𝑒ଵ and 𝑒ଶ converge to zeros 

and the external control force 𝑢(𝑡) is equal to zero. The system’s basin of 

attraction will not be affected by the applied control because the system 

parameters will not be changed after control. If the system is under the effect 

of external noise and the current state does not follow the trajectory of the 

desired state, the controller will switch on automatically and drive the system 

back to the desired state. Furthermore, only the current and desired 

trajectories are used to steer the dynamical system and thus knowledge of 

the plant’s nonlinearity is not required. However, this controller has some 

limitations. For example, sometimes, the trajectories of the state cannot be 

observed. This limitation can be overcome by estimating the trajectory of the 

state with the output response of the system and a nonlinear observer [74]. 

Moreover, the controller will switch on automatically when the system meets 

noise. However, the system can be driven back to the desired state by itself 

if the noise is small and the controller does not need to switch on. In order to 

overcome this limitation, the critical value of the noise level should be set for 

automatic activation of the proposed controller. If the noise level is larger 

than that critical value, the controller will switch on. Otherwise, the controller 

will not switch on and the system will follow the current trajectory on its own. 

3.2 Numerical Simulation 
 

The basins of attraction are estimated by the randomised triangular 

subdivision method described in Chapter 2 and which the system’s 

trajectories can be observed during the process. The current state can be 

switched to the desired state by applying the proposed PD-like controller. The 

state switching function of the proposed controller is testedin the three test 

(3.3) 
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systems, namely Duffing oscillator, soft impact oscillator and soft impact 

oscillator with a drift. 

3.2.1 Duffing Oscillator 
 

Figure 3.1 shows the Duffing oscillator’s basin of attraction with parameters 

𝑘 = 0.9, 𝛤 = 1.9 and 𝜔 = 1.2. There are two coexisting attractors under this set 

of system parameters. Figures 3.2 and 3.3 show the trajectories of the two 

coexisting attractors respectively. Both are period-1 response with small (red 

region in Figures 3.1 and 3.2) and large (blue region in Figures 3.1 and 3.3) 

amplitude respectively of the system. Figures 3.4 and 3.5 show respectively 

the displacement and velocity responses of the Duffing oscillator when the 

PD-like controller is applied to the system at 105.77 seconds with the 

arbitrarily chosen control parameters 𝑘 = 1 and 𝑘ௗ = 1. The controller with 

this set of control parameters can switch the system from current state to 

desired state successfully. The maximum peak of the external control force 

is equal to 1.6730 and after approximately 15 seconds the system is switched 

to the desired state. When the system converges to the other state, the 

control input 𝑢(𝑡) becomes 0, as shown in Figure 3.6. 
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Figure 3.1 Basin of attraction of the Duffing oscillator with system parameters: 𝑘 = 0.9, 𝛤 =
1.9 and 𝜔 = 1.2 
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Figure 3.2 State trajectory of the co-existing attractor 1 on the phase plane 
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Figure 3.3 State trajectory of the co-existing attractor 2 on the phase plane 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3.4 Response of displacement as a function in time 
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Figure 3.5 Response of velocity as a function in time 

Figure 3.6 The applied control force as a function in time 
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3.2.2 Soft impact oscillator 
 

There are two coexisting stable states in the soft impact oscillator under the 

set of chosen parameters: 𝜉 = 0.01, 𝛽 = 29,𝑔 = 1.26, 𝛤 = 1.0385 and 𝜔 = 0.686. 

Figure 3.7 shows the system’s basin of attraction and Figures 3.8 and 3.9 

show the two states’ trajectories respectively. One stable state is a period-1 

response with one impact response (blue region in Figures 3.7 and 3.8) while 

the other is a period-2 with two impact responses (red region in Figures 3.7 

and 3.9). Moreover, the first and second states have small and large 

amplitudes respectively. The x axis indicates the displacement of the mass 

and the y axis shows its velocity in Figures 3.7 - 3.9. Moreover, Figures 3.10 

and 3.11 show the two states’ performances as functions in time. The 

controller’s objective is to switch the system from the period-1 with one 

impact response to the period-2 with two impacts response. The arbitrarily 

chosen control parameters are 𝑘 = 1 and 𝑘ௗ = 1 which can switch the system 

from current state to the desired state successfully. Figure 3.12 shows the 

simulation result of applying the controller on the soft impact oscillator at 

94.64 seconds. The system then completed switching from period-1 with one 

impact response to the period-2 with two impact responses at 116.83 seconds. 

The external control force’s maximum peak is 3.1575. Moreover, the external 

control input  𝑢(𝑡) becomes 0 when the system is driven to the other state. 
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Figure 3.7 The basins of attraction of the soft impact oscillator with the system parameters: 
𝜉 = 0.01, 𝛽 = 29, 𝑔 = 1.26, 𝛤 = 1.0385 and 𝜔 = 0.686 

Figure 3.8 State trajectory of the co-existing attractor 1 on the phase plane 
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Figure 3.9 State trajectory of the co-existing attractor 2 on the phase plane 
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Figure 3.10 Displacement of the mass as a function in time 
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Figure 3.11 Velocity of the mass as a function in time 
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Figure 3.12 The applied control force as a function in time 
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3.2.3 Soft impact oscillator with a Drift 
 

When the soft impact oscillator with a drift is under this set of parameters of 

 𝑎 = 0.3, 𝑏 = 0.2 , 𝜔 = 1 , 𝑔 = 0.02 , 𝜉 = 0.1 and 𝜑 = 𝜋/2 , it has two coexisting 

states [28]. Figure 3.13 shows the basin of attraction and two coexisting 

attractors are observed. The trajectories of the multistable states are 

illustrated in Figures 3.14 and 3.15 with the x-axis showing the relative 

displacement between the mass and bottom plates and the y-axis showing 

the velocity of the mass. One trajectory exhibits a period-2 response (blue 

area) and the other exhibits a period-1 response (red area) as shown in 

Figure 3.13.  Figure 3.16 illustrates the trajectory as a result of the 

displacement of mass (blue line) and bottom plates (red line) as a function of 

time under the effect of the proposed controller. At first, the mass moves but 

keeping the bottom plate static. Then, after approximately 252.37 seconds, 

the controller is applied. The control parameters are arbitrarily chosen as 𝑘 =

1 and 𝑘ௗ = 1. The controller can switch the system from current state to the 

desired state under this set of control parameters successfully. Within 16 

seconds the system switches to the desired state in which the mass moves 

with the bottom plate. Moreover, this soft impact oscillator with a drift is a 

simplified model of percussive drilling. No drilling progression is observed 

before applying the proposed controller as the mass moves but the bottom 

slider does not. This simulates the case when the drill bit stays in the same 

position. On the other hand, drill bit progresses as the mass moves with the 

bottom slider after the proposed controller is applied to switch to the desired 

state. The maximum peak of the external control force is 2.0829. Moreover, 

the external control force becomes 0 after the system switches to the desired 

state as shown in Figure 3.17.  
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Figure 3.13 The basins of attraction of the soft impact oscillator with a drift with the system 
parameters: 𝑎 = 0.3, 𝑏 = 0.2, 𝜔 = 1, 𝑔 = 0.02, 𝜉 = 0.1 and 𝜑 = 𝜋/2 
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Figure 3.14 State trajectory of the co-existing attractor 1 on the phase plane 
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Figure 3.15 State trajectory of the co-existing attractor 1 on the phase plane 
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Figure 3.16 Displacement of mass (blue line) and bottom plate (red line) as a function in 
time 
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3.3 Summary 
 
In this section, a new multistable state switching controller called the PD-like 

controller, was proposed. It is an extension of the intermittent control and 

exploits the difference of the displacements between current and desired 

states for state switching. This method was tested on the Duffing and soft 

impact oscillators, which are smooth and non-smooth systems respectively. 

Moreover, the controller was also applied on the soft impact oscillator with a 

drift to demonstrate the effectiveness of the proposed controller in 

complicated systems. According to the results presented in this chapter, the 

PD-like controller is capable of switching a multistable system from its current, 

undesired state to the desired state. However, occasionally the controller 

requires a sequence of large spikes in actuator output (control input) for state 

switching, which is sometimes impossible for an actuator to provide and it is 

harmful to the actuator for prolonged operation. Therefore, in the next 

chapter, the constrained PD-like controller will be proposed to limit the control 

input’s strength. 
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Figure 3.17 The applied control force as a function of time 
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Chapter 4 Constrained PD-like Control 
 

This chapter presents a constrained PD-like controller for limited actuator 

output. It is applied on the three test systems namely: the Duffing oscillator, 

the soft impact oscillator and the soft impact oscillator with a drift (described 

in Section 1.3) for performance evaluation. In addition, the performance of 

the constrained PD-like control will be compared with that of the 

unconstrained counterpart presented in Chapter 3. 

4.1 Introduction 

4.1.1 Constrained Control of Multistable Systems 
 

In practice, control systems are subjected to various constraints. For example, 

physical actuators have limited output capacity and they may not be able to 

generate the required control input to switch states in multistable systems. 

Sometimes, controllers suggest a series of huge spiky control input for state 

switching which cannot be achieved by existing actuators. It is also harmful 

to the actuators for continuous and prolonged generation of output going 

back and forth between two extremes according to the spiky control input 

determined by the proposed PD-like controller. Therefore, it is useful to bound 

the control input based on the capacity of the actuator and this chapter will 

compare the performance of both the unconstrained (Chapter 3) and 

constrained PD-like controllers in state switching of multistable systems [66]. 

4.1.2 Constrained PD-like Control 
 

The PD-like controller is capable of switching a multistable system to the 

desired state without any constraint on the magnitude of the control input.  

Sometimes, actuators cannot provide unlimited power to generate the control 

input required by the controller to switch state in the multistable plant.  The 

constrained PD-like controller is proposed to limit the control input magnitude 

as shown below: 

 

𝑢(𝑡) =  ൜
−𝑘𝑒ଵ − 𝑘ௗ𝑒ଶ           |𝑢| < 𝑢௫ 

𝑠𝑖𝑔𝑛(𝑢) ∙ 𝑢௫        |𝑢| ≥ 𝑢௫
  (4.1) 
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where 𝑠𝑖𝑔𝑛(𝑢)  is the sign of the control input 𝑢  and 𝑢௫  is the maximum 

control input supported by the actuator. 

 

According to the principle of constrained PD-like control law, if the external 

control force is smaller than  𝑢௫ the system can be immediately driven from 

the current state to the desired state using the proposed PD-like controller 

described in Chapter 3. If the external control force magnitude exceeds 𝑢௫, 

it will be constrained to ±𝑢௫ until the control force is smaller than 𝑢௫.  

4.2 Numerical Simulation 
 

In this section, the constrained PD-like controller will be applied to the three 

test systems namely Duffing oscillator, soft impact oscillator and soft impact 

oscillator with a drift, in order to compare its performance with that of the 

unconstrained PD-like controller. 

4.2.1 Duffing Oscillator 
 

The performance of the constrained PD-like control on the Duffing oscillator 

is shown in Figures 4.1 and 4.2. The blue line in Figure 4.1 depicts the control 

input generated by the unconstrained PD-like controller. Assume the actuator 

can provide limited power to drive the system and the bound of the external 

control force is set as 𝑢௫ = 0.3, which is about 20% of the maximum peak 

of the PD-like control’s external force (1.67). Both the unconstrained and 

constrained controllers adopt the same controller gains  𝑘 , 𝑘ௗ  and both 

controllers are switched at the same time. 

 

According to the simulation results illustrated in Figures 4.1 and 4.2, the 

constrained PD-like control is capable of switching the Duffing oscillator to 

the desired state by limiting the control force to 0.3. The switching duration 

of the constrained PD-like controller is about 22 seconds, while its 

unconstrained counterpart only takes 15 seconds for successful state 

switching. Moreover, the control input has two more peaks than that 

generated by the unconstrained PD-like controller. In Figures 4.2 and 4.3, 

when the system is subject to an unconstrained input force, the velocity 
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experiences a large jump and the system can be immediately switched to the 

desired state. Figures 4.4 and 4.5 show when the system is subject to a 

constrained input force, the process of driving the system to the desired state 

is divided into several stages, with incremental changes in the velocity across 

consecutive stages. The system is driven from current state to an 

intermediate state then to the desired state. Moreover, the external control 

force generated by the constrained PD-like controller is smoother than that 

by the unconstrained PD-like controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

90 100 110 120 130 140 150

time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

u(
t)

Figure 4.1 Control inputs to Duffing oscillator using constrained PD-like controller (black line) 
and unconstrained PD-like controller 
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Figure 4.2 Trajectory of the system state when the constrained PD-like controller was applied

Figure 4.3 The system is driven from the current state 𝑠ଵ to the desired state 𝑠ଶ directly by 
using the unconstrained PD-like controller  

𝑠ଵ 

𝑠ଶ 
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Figure 4.4 Trajectory of the system state when the unconstrained PD-like controller was 
applied 

Figure 4.5 The system is driven from current state 𝑠ଵ to the desired state 𝑠ଶ through a 
transient state 𝑠ଵ

ᇱ by using the constrained PD-like controller. 

𝑠ଵ 

𝑠ଶ 

𝑠ଵ
ᇱ 
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4.2.2 Soft impact oscillator 
 

Assume the controller is constrained by the maximum output of the actuator 

and the constrained PD-like controller is applied on the soft impact oscillator 

with a bounded control input 𝑢௫ = 0.6, which is approximately 20% of the 

maximum peak of the PD-like control’s external force (3.16). The constrained 

controller has the same control parameters as the unconstrained PD-like 

controller and both are applied to the system at the same time. 

 

The black line in Figure 4.6 shows the constrained PD-like controller’s external 

control input, while Figure 4.7 shows the system’s trajectory following the 

application of the constrained PD-like control which is capable of switching 

the soft impact oscillator to the desired state with the bounded control input 

of 𝑢௫ = 0.6. The blue line in Figure 4.6 depicts the control input generated 

by the unconstrained controller. The switching duration of the constrained 

controller is about 31 seconds while the switching duration of the 

unconstrained PD-like controller is about 22 seconds. There are eleven peaks 

and troughs in the control input, compared to seven peaks in the 

unconstrained PD-like controller. The results in Figures 4.7 and 4.8 reveal 

that the velocity changes of both the soft impact oscillator and unconstrained 

PD-like controller are faster than that of the constrained PD-like controller.  
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Figure 4.6 Control inputs to soft impact oscillator using constrained PD-like controller (black 
line) and unconstrained PD-like controller (blue line) 
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Figure 4.7 Trajectory of the system state when the constrained PD-like controller was applied 
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4.2.3 Soft impact oscillator with a Drift 
 

The constrained PD-like controller is applied on the soft impach oscillator with 

a drift with the performance shown below with Figures 4.9 and 4.10 

illustrating the control input and state trajectory respectively. The blue line 

in Figure 4.9 depicts the control input generated by the unconstrained PD-

like controller. Assume the actuator can only provide limited output and the 

maximum control input is set as 𝑢௫ = 0.4, which is 20% of the PD-like 

control’s peak external force (2.08). According to Figures 4.9 and 4.11, the 

constrained PD-like controller is capable of switching the system to the 

desired state within the bound of 𝑢௫ = 0.4 . The constrained PD-like 

controller and its unconstrained counterpart have the same control 

parameters and were applied at the same time instants. There are five peaks 

in control input and the switching duration is approximately 16 seconds. The 

blue line in Figure 4.9 reveals that the unconstrained PD-like controller’s input 

also has five peaks, the maximum of which is 2.08, and the switching duration 

is about 15 seconds. In addition, simulation results show that the control 
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Figure 4.8 Trajectory of the system state when the PD-like controller was applied 
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input’s maximum peak is limited while the switching duration increases. 

Moreover, the unconstrained controller’s system was subject to a larger 

impulsive force. Figures 4.10 and 4.11 show that the respective trajectories 

of the unconstrained PD-like and constrained PD-like controllers are similar 

but the resulting velocity of the former is larger. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.9 Control inputs to soft impact oscillator with a drift using constrained PD-like 
controller (black line) and unconstrained PD-like controller. 

Figure 4.10 Trajectory of the system state when the constrained PD-like controller was 
applied 
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4.3 Summary 
 

In this chapter the constrained PD-like control was proposed to limit the 

strength of the control input. Numerical simulation results on the systems 

namely Duffing oscillator, soft impact oscillator and soft impact oscillator with 

a drift demonstrated that the constrained PD-like control can switch the 

systems from current, undesired state to the desired state successfully. 

According to the results shown in this chapter, the strength of the control 

input is within the defined bounds while the switching duration of the 

controller increases. Moreover, if the control input is large enough the system 

will be driven to the desired state immediately. Otherwise, the system will be 

switched to desired state through a few intermediate stages. Performance of 

the proposed PD-like controller will be optimised in Chapters 6 and 7. 

Figure 4.11 Trajectory of the system state when the constrained PD-like controller was 
applied 
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Chapter 5: Sensitivity Analysis of Parameters 
of PD-like Controller  
 

In the previous chapter, the constrained PD-like controller is proposed to limit 

the strength of the control input. Its performance is dependent on the control 

parameters such as positive control gains 𝑘 , 𝑘ௗ  and the switching time. 

Hence, identifying the most appropriate set of control parameters can help to 

optimise the PD-like controllers’ performance. In this chapter, more sets of 

control parameters are employed to investigate the performances of the 

controller using the three test systems, namely Duffing oscillator, soft impact 

oscillator and soft impact oscillator with a drift, described in Section 1.3. 

5.1 Numerical Simulation 

5.1.1 Duffing Oscillator 
 
Two different sets of control parameters are used to investigate the 

performance of the controller applied on the Duffing oscillator. The 

performance of the controller is described by two indices namely the 

maximum peak of external control force and the switching duration and these 

two indices can be calculated by the developed MATLAB code. The maximum 

peak of external control force is the absolute maximum value of the external 

control input. Assume the controller is switched off when the distance 

between the current trajectory and the desired trajectory is small than 10ିସ. 

The switching duration is defined as the time instant when the controller is 

switched off minus the time instant when the controller is switched on. 

Figures 5.1 and 5.2 show respectively the displacement response of Duffing 

oscillator and the control input of the controller with the first set of control 

parameters 𝑘 = 1, 𝑘ௗ = 1 and the controller is switched on at 𝑡 = 1 second. 

The maximum peak of the external control force is 1.76 and the switching 

duration is 15.15 seconds. Figures 5.3 and 5.4 show respectively the 

controller with the second set of control parameters 𝑘 = 1, 𝑘ௗ = 1 and the 

controller is switched on at 𝑡 = 1.8  seconds. The maximum peak of the 

external control force is 1.13 and the switching duration is 14.24 seconds. 

From these two tests, with a small change of one control parameter namely 

switched on time, the performance of the controller can be changed 
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significantly. Therefore, in this chapter the performance of the controller is 

investigated under different set of the control parameters. Moreover, the 

performance of the controller in terms of maximum peak of external control 

force and switching duration of each test are recorded. 
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Figure 5.1 The applied control force as a function in time with the control parameters 𝑘 = 1, 
𝑘ௗ = 1 and the controller is switched on at 𝑡 = 1 second when PD-like controller applied on 
the Duffing oscillator 

Figure 5.2 Displacement of the mass as a function in time with the control parameters 𝑘 = 1, 
𝑘ௗ = 1 and the controller is switched on at 𝑡 = 1 second when PD-like controller applied on the 
Duffing oscillator 
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Figure 5.3 The applied control force as a function in time with the control parameters 𝑘 = 1, 
𝑘ௗ = 1 and the controller is switched on at 𝑡 = 1.8 seconds when PD-like controller applied on 
the Duffing oscillator 

Figure 5.4 Displacement of the mass as a function in time with the control parameters 𝑘 =

1, 𝑘ௗ = 1 and the controller is switched on at 𝑡 = 1.8 seconds when PD-like controller applied 
on the Duffing oscillator 
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Figures 5.5 and 5.6 show the maximum peak of nondimensional control force 

and switching duration of the Duffing oscillator with different 𝑘, 𝑘ௗ, and the 

controller is switched on at 1.05 seconds.  In Figure 5.5, the maximum peak 

of control force ranges from 0.27 to 16.73 with 𝑘 and 𝑘ௗ varying from 0 to 

10. With the increasing 𝑘  and 𝑘ௗ , the maximum peak of control force 

increases. In Figure 5.6, the switching duration ranges from 2.87 seconds to 

139.88 seconds. The switching duration decreases with increasing 𝑘ௗ. The 

switching duration is long when both 𝑘 and 𝑘ௗ are less than 1 or 𝑘 is small 

and 𝑘ௗ is large. The switching duration is short when 𝑘 is approximately 5.5 

and 𝑘ௗ  is around 8.5.  

 

Figures 5.7 and 5.8 show the maximum peak of control force and switching 

duration with different switching times, and the control parameters are set 

as 𝑘 = 1 and 𝑘ௗ = 1. In Figure 5.7, the maximum peak of control force varies 

from 1.01 to 1.91 with the switch on time ranging from 0 seconds to 5.24 

seconds (one period of the system response). Figure 5.7 illustrates that there 

are two periods of the maximum peak of control force when the switching 

time of the controller varies from 0 seconds to 5.24 seconds. In one of the 

periods, the maximum peak of control force varies as the switching time is 

increased. Similarly, the switching duration periodically varies with increasing 

the switch on time. Moreover, the switching duration varies from 14.24 

seconds to 15.35 seconds only. 
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Figure 5.5 The simulation result of applying the PD-like controller on Duffing oscillator 
with different 𝑘 and 𝑘ௗ. The colour bars show the magnitude of the maximum peak of 
control force 

Figure 5.6 The simulation result of applying the PD-like controller on Duffing oscillator 
with different 𝑘 and 𝑘ௗ. The colour bars show the magnitude of switching duration. 
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Figure 5.7 The maximum peak of control force when the PD-like controller is applied on 
Duffing oscillator with different switch on time. 

Figure 5.8 The switching duration when the PD-like controller is applied on the Duffing 
oscillator with different switching time. 
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5.1.2 Soft impact oscillator 
 

Figures 5.9 and 5.10 show the maximum peak of nondimensional control 

force and switching duration of the soft impact oscillator with different 𝑘 and 

𝑘ௗ. The controller is switched on at 3.05 seconds, and both 𝑘 and 𝑘ௗ increase 

from 0 to 10. The maximum peak of control force and switching duration 

varies from 1.12 to 32.08, and from 3.01 seconds to 143.35 seconds, 

respectively. The maximum peak of the control force is defined as 0 if the 

controller cannot drive the system to the desired state. As depicted in Figure 

5.9, the controller cannot drive the system to the desired state when 𝑘ௗ is 

small. Moreover, the maximum peak of control force is large when 𝑘 is small 

and 𝑘ௗ is large. When both 𝑘 and 𝑘ௗ are small, the maximum peak of control 

force decreases. The switching duration is the smallest when  𝑘  is around 

5.8 and 𝑘ௗ is around 8.5. The switching duration is long when 𝑘 is small. 

Figures 5.11 and 5.12 depict the maximum peak of control force and 

switching duration with increasing switch on time respectively. The switch on 

time varies from 0 seconds to 9.16 seconds and the control parameters are 

set at 𝑘 = 1 and 𝑘ௗ = 1. The maximum peak of control force varies from 2.18 

to 5.85, and the switching duration ranges from 17.65 seconds to 24.36 

seconds. Moreover, the fluctuations of both maximum peak of control force 

and switching duration are irregular. 
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Figure 5.9 The simulation result of apply the PD controller on soft impact oscillator with 
different 𝑘 and 𝑘ௗ. The colour bars show the magnitude of the maximum peak of control 
force 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.10 The simulation result of applying the PD-like controller on soft impact oscillator 
with different 𝑘 and 𝑘ௗ. The colour bars show the magnitude of switching duration. 
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Figure 5.11 The maximum peak of control force when the PD-like controller is applied on 
soft impact oscillator with different switching time. 

Figure 5.12 The switching duration when the PD-like controller is applied on soft impact 
oscillator with different switching time. 
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Based on Figures 5.9 and 5.10, three sets of control parameters are selected. 

In all of the three tests, the controller is switched on at 𝑡 = 3.05 seconds. 

Figures 5.13 and 14 show the displacement response of the soft impact 

oscillator and the external control force of the controller with the first set of 

controller parameters: 𝑘 = 3 and 𝑘ௗ = 3. The maximum peak of the external 

control force is 5.02 and the switching duration is 6.45 seconds. Figures 5.15 

and 16 show respectively the displacement response of the soft impact 

oscillator and the external control force of the controller with the first set of 

controller parameters: 𝑘 = 7.8  and 𝑘ௗ = 4.6 . The maximum peak of the 

external control force is 5.07 and the switching duration is 4.69 seconds. 

Figures 5.17 and 18 show the displacement response of the soft impact 

oscillator and the external control force of the controller with the first set of 

controller parameters: 𝑘 = 9  and 𝑘ௗ = 8.8 . The maximum peak of the 

external control force is 14.39 and the switching duration is 6.63 seconds. 

The performance of the controller can be described by the maximum peak of 

the external control force and the switching duration. Therefore, by 

comparing these three tests, with different sets of the control parameters, 

the performance of the controller may be similar in both aspect of the 

performance or it may be similar in only one aspect of the performance. Then 

based on Figures 5.11 and 12, another two sets of control parameters are 

selected. For both sets, 𝑘 = 1 and 𝑘ௗ = 1. Figures 5.19 and 20 show the 

displacement response of the soft impact oscillator and the external control 

force of the controller and the controlled is switched at 2.11 seconds. The 

maximum peak of the external control force is 5.47 and the switching 

duration is 24.36 seconds. Figures 5.21 and 22 show the displacement 

response of the soft impact oscillator and the external control force of the 

controller and the controller is switched on at 4.85 seconds. The maximum 

peak of the external control force is 2.25 and the switching duration is 17.65 

seconds. Comparing these two tests, with the same 𝑘 and 𝑘ௗ , when the 

switch on time changes, the performance of the controller also changes. 

Therefore, according to these five tests, the performance of the controller is 

complicated based on variations of 𝑘, 𝑘ௗ and the switch on time. 
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Figure 5.13 The applied control force as a function in time with the control parameters 𝑘 =

3, 𝑘ௗ = 3 and the controller is switched on at 𝑡 = 3.05 seconds when PD-like controller applied 
on the soft impact oscillator 

Figure 5.14 Displacement of the mass as a function in time with the control parameters 𝑘 =

3, 𝑘ௗ = 3 and the controller is switched on at 𝑡 = 3.05 seconds when PD-like controller applied 
on the soft impact oscillator 
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Figure 5.15 The applied control force as a function in time with the control parameters 𝑘 =

7.8, 𝑘ௗ = 4.6 and the controller is switched on at 𝑡 = 3.05 seconds when PD-like controller 
applied on the soft impact oscillator 

Figure 5.16 Displacement of the mass as a function in time with the control parameters 𝑘 =

7.8, 𝑘ௗ = 4.6 and the controller is switched on at 𝑡 = 3.05 seconds when PD-like controller 
applied on the soft impact oscillator 
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Figure 5.17 The applied control force as a function in time with the control parameters 𝑘 = 9, 
𝑘ௗ = 8.8 and the controller is switched on at 𝑡 = 3.05 seconds when PD-like controller applied on 
the soft impact oscillator 

Figure 5.18 Displacement of the mass as a function in time with the control parameters 𝑘 =

9, 𝑘ௗ = 8.8 and the controller is switched on at 𝑡 = 3.05 seconds when PD-like controller 
applied on the soft impact oscillator 
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Figure 5.19 The applied control force as a function in time with the control parameters 𝑘 =

1, 𝑘ௗ = 1 and the controller is switched on at 𝑡 = 2.11 seconds when PD-like controller applied 
on the soft impact oscillator 

Figure 5.20 Displacement of the mass as a function in time with the control parameters 
𝑘 = 1, 𝑘ௗ = 1 and the controller is switched on at 𝑡 = 2.11 seconds when PD-like controller 
applied on the soft impact oscillator 
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Figure 5.21 The applied control force as a function in time with the control parameters 𝑘 =

1, 𝑘ௗ = 1 and the controller is switched on at 𝑡 = 4.85 seconds when PD-like controller 
applied on the soft impact oscillator 

Figure 5.22 Displacement of the mass as a function in time with the control parameters 
𝑘 = 1, 𝑘ௗ = 1 and the controller is switched on at 𝑡 = 4.85 seconds when PD-like controller 
applied on the soft impact oscillator 
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5.1.3 Soft impact oscillator with a Drift 
 

Figures 5.23 and 5.24 present respectively the maximum peak of 

nondimensional control force and switching duration of the soft impact 

oscillator with a drift, with different sets of 𝑘 and 𝑘ௗ. 𝑘 and 𝑘ௗ range from 0 

to 10, and the controller is applied at 1.05 seconds. The maximum peak of 

control force varies from 1.04 to 20.83. The larger the 𝑘 and 𝑘ௗ, the higher 

the maximum peak of control force. The switching duration ranges from 2.04 

seconds to 157.11 seconds. The switching duration appears minimum when 

𝑘 is around 9.4 and 𝑘ௗ is round 5.2. The switching duration is long when 𝑘 

is large or 𝑘ௗ is small. Figures 5.25 and 5.26 show the maximum peak of 

control force and switching duration, with increasing switch on times. The 

switch on time varies from 0 seconds to 6.28 seconds (for one period), and 

the control parameters are set as 𝑘 = 1 and 𝑘ௗ = 1. The maximum peak of 

control force and switching duration varies from 0.39 to 2.11 and from 10.45 

seconds to 16.14 seconds respectively. The maximum peak of control force 

varies smoothly with the switch on time. However, the switching duration 

varies irregularly with the switching time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.23 The simulation result of apply the PD-like controller on soft impact oscillator with 
a drift with different 𝑘 and 𝑘ௗ. The colour bars show the magnitude of the maximum peak of 
control force 
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Figure 5.24 The simulation result when the PD-like controller is applied on soft impact 
oscillator with a drift with different 𝑘 and 𝑘ௗ. The colour bars show the magnitude of 
switching duration. 
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Figure 5.25 The maximum peak of control force when the PD-like controller is applied on 
soft impact oscillator with a drift with different switching time. 

Switch on time (s) 
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5.2 Summary 
 
Overall, both the maximum peak of control force and the switching duration 

in multistable state switching control are sensitive to the positive control 

gains 𝑘, 𝑘ௗ and switch on time. Therefore, the choice of appropriate control 

parameters can minimise the maximum peak of control force and switching 

duration through optimisation algorithms. 
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Figure 5.26 The switching duration of when PD-like controller is applied on soft impact 
oscillator with a drift with different switching time. 
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Chapter 6 Single Objective Optimisation of the 
PD-like Controller 
 

The performance of the proposed PD-like controller is sensitive to the 

parameters, including the gains and switch on time of the controller. 

Therefore, its performance can be improved by carefully selecting its 

parameters using optimisation methods. In this chapter, two objectives 

namely the maximum peak of the external control force and switching 

duration are minimised independently for the proposed PD-like controller. 

Performance optimisation of the proposed PD-like controller is conducted on 

the three test systems namely the Duffing oscillator, the soft impact oscillator 

and the soft impact oscillator with a drift. 

6.1 Introduction 
 

In real-life situations, designers not only want to achieve the goal of the work 

but also want to achieve the goal without unnecessary waste of power and 

time [75]. The discipline of adjusting a process in order to achieve the best 

design is known as optimisation. For example, the PD-like controller can 

switch the multistable system from undesired to desired state. However, the 

designer wants to switch the system to the desired state as soon as possible 

(with minimum switching duration). Different performance metrics are 

defined to quantify the system performance in various aspects for 

performance evaluation of the design. 

 

They can then be transformed into objectives in optimisation problems and 

they can either be minimised or maximised. For example, in order to minimise 

the switching duration of the PD-like controller, the method for determining 

switching duration should be empirically defined or rigorously defined in 

mathematical functions in terms of optimising variables. Similarly, maximum 

peak of control input 𝑢(𝑡) of the PD-like controller is another performance 

metric used to evaluate the energy consumption of the system. Secondly, the 

system variables which affects the system responses of interest should be 

defined. For the PD-like controller, the control gains and the switch on time 

will affect the performance (switching duration and maximum peak of control 
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input) of the controller. Thirdly, constraints involved with the optimising 

variables in the optimisation should also be identified.  Physical constraints in 

system design are modelled as equality or inequality constraints in 

optimisation problems. In the case of optimising the PD-like controller, the 

constraint is related to the output capacity limit of the actuator for state 

switching in a multistable system.  

6.1.1 Single Objective Optimisation 

In general, a single optimisation problem is formulated as follows [76]: 

Definition 6.1: 

Minimise: 𝑜𝑏𝑗(𝑥)  

Subject to: 𝑔(𝑥) ≤ 0,       𝑖 = 1, … , 𝑚  

 ℎ(𝑥) = 0,      𝑗 = 1, … , 𝑤 

 𝑥 = [𝑥ଵ, 𝑥ଶ, … , 𝑥]்  

 𝑥
 ≤ 𝑥 ≤ 𝑥

௨,    𝑘 = 1, 𝑛  

Where 𝑜𝑏𝑗(𝑥) is the objective function to optimise, 𝑔(𝑥) is the 𝑖 −th inequality 

constraint function, 𝑚 is the number of inequality constraint functions, ℎ(𝑥) 

is the 𝑗 − 𝑡ℎ  equality constraint function, 𝑤  is the number of equality 

constraint functions, 𝑥 is the vector of independent optimising variables, 𝑥 is 

the 𝑘-th optimising variable, 𝑛 is the number of the optimising variables, 𝑥
  

and 𝑥
௨ are the lower bound and upper bound of the 𝑘-th optimising variable. 

A maximisation problem can be easily converted into a minimisation problem 

as follows: 

𝑀𝑎𝑥 𝑜𝑏𝑗(𝑥) ≡ 𝑀𝑖𝑛 − 𝑜𝑏𝑗(𝑥) 𝑜𝑟 
1

𝑜𝑏𝑗(𝑥)
 

6.1.2 Single Objective Optimisation Algorithms 
 
There are several methods of solving single objective optimisation problems. 

For example, dynamic programming (DP) solves deterministic optimisation 

problems by dividing them into simple sub-problems or stages [77-83]. 

However, it is not feasible in all instances because some problems which 

cannot be divided into multiple stages. Another kind of methods can be used 

for optimisation is called evolutionary algorithms (EAs). EAs are proposed 

based on the biological evolution and they emulate different natural 

operations such as selection, crossover, mutation and recombination in 

(6.1) 

(6.2) 
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optimal solution searching. Compared with DP, EAs have some advantages 

like self-learning, self-adaptation and they can be applied to solve 

optimisation problems formulated as Definition 6.1. One common method of 

EAs is called Genetic Algorithm (GA) for global optimal solutions and it is 

based on survival of the fittest principle of Darwin’s evolution theory [84]. It 

solves the optimisation problems by using the selection, crossover and 

mutation operators [85-86].  

 

Particle Swarm Optimisation (PSO) algorithm is another popular optimisation 

method and it was proposed by Kennedy and Eberhart based on the 

behaviour found within flocks of birds or schools of fish [87]. The main idea 

of PSO is information sharing between each particle in a population. Each 

particle in PSO represents a candidate solution to a given optimisation 

problem. Similar to Genetic Algorithm (GA), PSO is also an evolutionary 

algorithm which uses the position and movement of each particle to solve 

optimisation problems [88-89]. However, unlike GA, PSO does not require 

genetic operators like crossover and mutation to produce offspring solutions 

for next generation. It solves problems based on the best value of itself and 

its neighbourhood. PSO holds a range of advantages over the GA: firstly, PSO 

is easier to apply with fewer parameters introduced in the algorithm; secondly, 

the memory requirement of PSO is lower than that of GA; and thirdly, PSO 

has greater diversity than GA. With the help of the inertia of the particle 

movement, PSO can keep the diversity of the population.  However, GA keeps 

the diversity by applying different mutation probability which is hard to 

determine. If the mutation probability is too small, GA may be easily trapped 

in a local best solution rather than converging to the global best solution. If 

the mutation probability is too large, the candidate solutions in each 

generation can be said as randomly selected [90].  

 

Ant colony optimisation (ACO) is another common method of optimisation. 

This method is proposed by Dorigo in 1990 [107-108]. The principle of this 

method is based on the behaviour of ant colony. Ants can find the best path 

between their nest and the food. At first, the ants move from their nest to 

the food by different random paths. Before the ants return to the nest, they 

will leave pheromone on the paths which they have passed. The pheromone 
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information on the path will be updated according to the evaporation rate 

after ants return to the nest. The pheromone information updated can be 

calculated as follow [107]: 

𝜏, = (1 − 𝜌)𝜏, +  ∆



ୀଵ

𝜏,
  

∆𝜏,
 = ൝

𝑄

𝐿
  𝑘௧ 𝑎𝑛𝑡 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒 (𝑖, 𝑗)

0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              

 

 
where, 𝜏, is the amount of the pheromone laid on the edge (𝑖, 𝑗), edge (𝑖, 𝑗) 

means the curve between elements 𝑖 and 𝑗, 𝜌 is the evaporation rate, 𝑚 is 

the number of ants, ∆𝜏,
  is the is the amount of the pheromone that the 𝑘௧ 

ant laid on the edge (𝑖, 𝑗), 𝑄 is the constant of the quantity of pheromone and 

𝐿 is the length of the path. Based on these updated pheromone level, the 

probability of an ant follows edge (𝑖,𝑗) can be calculated as follow: 

𝑃, =
൫𝜏,൯

ఈ
(𝜂,)ఉ

∑ (൫𝜏,൯
ఈ

൫𝜂,൯
ఉ

)∈௪ௗ

     𝑖, 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑   

 
where 𝜂, is the desirability of the edge (𝑖, 𝑗), 𝛼 and 𝛽 are the parameters that 

reflects the importance of 𝜏, and 𝜂, respectively. 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 is the set of all 

the possible edges start from the element 𝑖. ℎ is the element not yet visited 

by the 𝑘௧  ant. 𝜏,  and 𝜂,  shows the pheromone level and desirability of 

other possible edges. Then, the pheromone updates will not stop unless all 

ants converge to the same path as the best path.  Comparing with the PSO, 

the PSO is faster and need fewer algorithm parameters to handle than the 

ACO in general. 

 

In this chapter, the proposed PD-like controller will be optimised by the 

Particle Swarm Optimisation algorithm. PSO sees a swarm of particles, which 

are candidate solutions to a given optimisation problem, move iteratively 

through solution space to find an optimised solution through a fitness 

equation [91-106]. The fitness equation is defined based on the objectives 

and constraints formulated as penalty functions of the optimisation problem. 

The equations for solution search in PSO are shown below [90]: 

 
 
 

(6.3) 

(6.4) 
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𝑣(𝑡) =  𝑤𝑣(𝑡 − 1) + 𝑐ଵ𝑟ଵ(𝑝(𝑡 − 1) − 𝑝(𝑡 − 1)) + 𝑐ଶ𝑟ଶ൫𝑝(𝑡 − 1) − 𝑝(𝑡 − 1)൯  

𝑝(𝑡) = 𝑝(𝑡 − 1) + 𝑣(𝑡)  

 
where 𝑝(𝑡) and 𝑝(𝑡 − 1) are the current and previous positions of the 𝑖 -th 

particle. 𝑝 is the local best position of this particle. 𝑝 is the global best 

position of the PSO population. 𝑣(𝑡) and 𝑣(𝑡 − 1) are the current and previous 

velocities of the 𝑖 -th particle. 𝑟ଵ and 𝑟ଶ are random numbers between 0 and 

1 at each iteration. 𝑐ଵ and 𝑐ଶ are two positive acceleration constants acting as 

coefficients of the self-recognition and social components. 𝑤 is the inertia 

factor. The process of PSO can be divided into six steps.  

 

1. The initial position and velocity of each particle is randomly selected. 

2. The particles are evaluated by the fitness function. 

3. The fitness value of each particle’s current position is compared with 

the local best cost (𝑙௦௧). If the value is better than 𝑙௦௧, 𝑙௦௧  will be 

replaced by this value and 𝑝 will be supplanted by the current position.  

4. The local best position is compared to the fitness value of the position 

with the best global cost (𝑔௦௧). If the value is better than 𝑔௦௧ then 

𝑔௦௧ and 𝑝 will be replaced by its fitness value and position.  

5. The updated positions and velocities of all particles are generated using 

equation (6.3).  

6. Steps two to five are repeated until stopping criterion, such as a 

suitable fitness value and maximum number of iterations, is achieved.  

 

6.2 Single Objectives Optimisation for PD-like Controller 
 

In Chapter three, the PD-like controller is proposed to control state switching 

in multistable systems and the strength of the control input is limited by using 

the constrained PD-like controller in Chapter four. Moreover, the performance 

of the PD-like controller is sensitive to the control parameters, and thus the 

controller performance can be optimised in the design process. In this chapter, 

the performance of the proposed PD-like controller is optimised with the help 

of PSO with two single objectives namely: minimising the external control 

force’s maximum peak and switching duration. The external control force is 

(6.5) 
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provided by an actuator and the peak of control input in multistable state 

switching should be minimised so that it does not exceed the output capacity 

limit of the actuator involved in the system. Thus, the actuator will not be 

easily damaged and its lifespan is prolonged with reduced maintenance cost. 

Moreover, if the maximum peak of control input is too large, the whole system 

may be damaged. For example, in percussive drilling system, if the system is 

subjected to a large external force, the drill string may be easily damaged 

and down time occurs. Minimising the switching duration can quickly switch 

the system from its current, undesired state to the desired state. In the case 

of percussive drilling system, if the switching duration is too long, too much 

time and energy will be consumed not on drilling progression but on state 

switching. Three control parameters are considered in state switching 

controller optimisation, namely the controller gains 𝑘, 𝑘ௗ and switch on time. 

The formulation of the optimisation problem is shown below: 

 
Minimise: 𝑜𝑏𝑗(𝑥): 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑒𝑎𝑘 𝑜𝑓 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑓𝑜𝑟𝑐𝑒  𝑚𝑎𝑥|𝑢(𝑡)|  or 

               𝑜𝑏𝑗(𝑥): 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛  𝛥𝑡 = 𝑡ଶ − 𝑡ଵ 

Subject to: ℎ(𝑥): 𝑡ℎ𝑒 𝑛𝑜𝑛 − 𝑙𝑖𝑛𝑒𝑎𝑟 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑚𝑜𝑑𝑒𝑙 𝑜𝑓 𝑎  𝑡𝑒𝑠𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 

                 𝑥: 𝑘, 𝑘ௗ  𝑎𝑛𝑑 𝑠𝑤𝑖𝑡𝑐ℎ 𝑜𝑛 𝑡𝑖𝑚𝑒 𝑡ଵ 𝑡ଵ 

where 𝑡ଵ is the time instant when the controller is switched on and 𝑡ଶ is the 

time instant when the controller is switched off.  

 

The performance of the proposed PD-like controller is optimised with the help 

of the PSO on three test systems namely Duffing oscillator, soft impact 

oscillator and soft impact oscillator with a drift. In these tests, the position of 

the particles represents the three parameters of the controller namely  𝑘 , 𝑘ௗ 

and switch on time 𝑡ଵ. The velocity of the particles represents the variable 

speed of the parameters in optimal solution search. Each test has 10 trials 

and each trial has 50 random particles in initial population and 100 iterations 

are run in optimisation for converging to optimal solution. Several tests have 

been conducted for finding a suitable number of particles in the population 

and number of iterations required for convergence. The numbers of the 

particles and iterations were chosen as 50 and 100 respectively because if 

the number of the particles and iterations are too small, the fitness value may 

trap in a local best position easily. If the number of the particles and iterations 
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are too large, the fitness value will converge to the same global best position 

way before the specified number of iterations. In each test, after 10 trials, 

the fitness values of all 10 trials converge to a similar result and the standard 

deviation of optimised results of 10 trials is small, it is safe to conclude that 

the fitness value has converged to the global best position.  

 

6.2.1 Duffing Oscillator  
 
The performance of the PD-like controller is optimised by PSO when it is 

applied on the Duffing oscillator. The parameters of the system are 𝑘 = 0.9,

𝛤 = 1.9 and 𝜔 = 1.2. The first test, which comprises ten trials, minimises the 

external control force’s maximum peak. Furthermore, each trial has 50 

particles in the population and 100 iterations were run in optimisation. The 

best results are recorded in Table 6.1. The mean value and standard deviation 

of the fitness value, i.e. maximum peak of control input, are calculated to 

observe the result differences between each trial. Figure 6.1 shows the 

change of fitness values against different iterations in a typical trial. The 

fitness value converges to the optimal result in the 44th iteration in this trial. 

From the table, the fitness value of the control input’s maximum peak is 

0.1710 with 𝑘 = 0.0984, 𝑘ௗ=0.1121 and the controller switches at 𝑡=1.61 

seconds. The optimal results obtained in all 10 trials are consistent. 
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Table 6.1 Optimised results of 10 trials on minimizing maximum peak of the external control 
force 

 
𝑘 𝑘ௗ 𝑡ଵ Maximum Peak of the External Control Force 

0.0988 0.1127 1.6112 0.1708 
0.0980 0.1126 1.6117 0.1707 
0.0987 0.1128 1.6112 0.1701 
0.1003 0.1121 1.6116 0.1708 
0.1001 0.1128 1.6118 0.1710 
0.0984 0.1121 1.6111 0.1700 
0.1004 0.1128 1.6118 0.1713 
0.0987 0.1129 1.6114 0.1711 
0.1005 0.1124 1.6114 0.1712 
0.0998 0.1128 1.6118 0.1710 

 
𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 = 0.1709 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 3.44 × 10ିସ 
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Figure 6.1 Fitness value (maximum peak of external control force) vs.  iteration in a typical 
PSO trial. 
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Next, the controller’s switching duration is minimised. Similar to the previous 

case, 10 trials have been run for 100 iterations and each has 50 particles in 

the population.  In each trial, the mean value and standard deviations of the 

minimum switching duration are calculated, with the results recorded in Table 

6.2. The difference between the best solutions are small as indicated by the 

small standard deviation. Figure 6.2 shows the fitness value (switching 

duration) in each iteration in a typical trial. In this trial, the fitness value 

decreases in the first seven iterations and is trapped in a local best position 

from the 8th to 25th iterations. Subsequently, it is trapped in another local 

best position from the 26th to 31st iterations. After the 34th iteration, it 

converges to the global best position. From the table, the minimum switching 

duration is 1.1765 seconds with the control parameters 𝑘=10, 𝑘ௗ=8.2258 

and the controller switches at 𝑡=4.71 seconds. 

 
Table 6.2 Optimised results of 10 trials on minimizing switching duration 

 
𝑘 𝑘ௗ 𝑡ଵ Switching Duration (s) 

10 8.2259 4.7108 1.1765 
10 8.2258 4.7108 1.1765 
10 8.2258 4.7108 1.1765 
9.9577 8.2260 4.7087 1.1778 
10 8.2259 4.7108 1.1765 
10 8.2260 4.7196 1.1777 
10 8.2262 4.7105 1.1781 
10 8.2261 4.7112 1.1781 
10 8.2259 4.7108 1.1765 
10 8.2261 4.7112 1.1781 

 
𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 = 1.1772 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 7.40 × 10ିସ 
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According to the first test, the optimisation parameters for minimising the 

control input’s maximum peak are  𝑘 = 0.0984, 𝑘ௗ=0.1121 and the controller 

switches on at 𝑡=1.61 seconds. As depicted in Figure 6.3, the maximum peak 

of the control input is 0.17 and switching duration is about 134 seconds. In 

the first test on the Duffing oscillator (as shown in Figure 3.6), the maximum 

peak of the control input was decreased by 89.94% while the switching 

duration was increased by 88.81%. Figure 6.4 shows the control input with 

minimum switching duration and the control parameters are 𝑘 =10, 

𝑘ௗ=8.2258 with the controller switching on at 𝑡=4.71 seconds. In addition, 

the maximum peak of the control input is 11.38 and switching duration is 

about 1 second. Compared with the first test on the Duffing oscillator, the 

maximum peak of the control input is increased by 85.30% and the switching 

duration is decreased by 93.33%. According to the optimisation results, the 

two objectives, namely maximum peak of control input and switching 

duration are conflicting with each other and no single set of control 

parameters can optimise them at the same time. Hence, trade-off on 

performance of the proposed controller must be considered in optimisation. 

 

Figure 6.2 Fitness value (switching duration) vs iterations in a typical trial. 
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Figure 6.3 Control input to the Duffing oscillator using the PD-like control law with the 
optimised control parameter 𝑘 = 0.0984, 𝑘ௗ = 0.1121 and the controller switches on 𝑡 = 1.61 
seconds 

Figure 6.4 Control input to the Duffing oscillator using the PD-like control law with the 
optimised control parameter 𝑘 = 10, 𝑘ௗ = 8.2258 and the controller switches on at 𝑡 = 4.71 
seconds 
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6.2.2 Soft impact oscillator 
 

In this section, the PD-like controller is optimised by PSO when it is applied 

to the soft impact oscillator. The system parameters of the soft impact 

oscillator are 𝜉 = 0.01, 𝛽 = 29, 𝑔 = 1.26, 𝛤 = 1.9 and 𝜔 = 0.686. The first test, 

involving 10 trials, that have 50 particles and are run in 100 iterations in each 

trial, is to minimise the maximum peak of the control force. The best results 

of each trial are recorded in Table 6.3.  Moreover, in order to examine the 

different results in each trial the mean value and standard deviation are 

calculated. It can be observed that all trials perform similarly. Figure 6.5 

shows the change of fitness values with iterations run. Figure 6.5 shows that, 

in a typical trial, the fitness value decreases quickly in the first 17 iterations, 

and after 58 iterations it converges to a steady value of the fitness. 

Furthermore, as can be seen in Table 6.3, the fitness value of the maximum 

peak of the control input is 1.2435 with 𝑘 = 0.0003, 𝑘ௗ =0.4677 and the 

controller switches on at 𝑡=4.44 seconds. According to Table 6.3, all 10 trials 

give consistent optimal parameters of the proposed PD-like controller. 

 

Table 6.3 Optimised results of 10 trials on minimizing maximum peak of the external control 
force 

 
𝑘 𝑘ௗ 𝑡ଵ Peak of the External Control Force 

0.0003 0.4677 4.4407 1.2435 
0.0001 0.4677 4.4306 1.2437 
0.0001 0.4678 4.3628 1.2438 
0.0002 0.4678 4.4346 1.2437 
0.0002 0.4677 4.4544 1.2437 
0.0001 0.4677 4.4474 1.2436 
0.0002 0.4678 4.4462 1.2437 
0.0002 0.4677 4.4410 1.2435 
0.0002 0.4677 4.4480 1.2436 
0.0002 0.4678 4.3865 1.2438 

 
𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 = 1.2437 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 1.18 × 10ିସ 
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The goal of the second test, which in this instance incorporates 10 trials each 

with 50 particles and 100 iterations, is to optimise the controller’s switching 

duration. Each trial’s switching duration fitness value is recorded in Table 6.4, 

while the mean value and standard deviation in each test are also calculated. 

All 10 trials are able to produce consistent optimal design of the PD-like 

controller. Figure 6.6 depicts the switching duration fitness value of each 

iteration in a typical trial. In this trial, within the first five iterations, the 

fitness value quickly decreases before stabilising. It then remains in a local 

best position. At the 24th iteration the value decreases again, and after the 

25th iteration it converges to the optimal value. The table shows that the 

minimum switching duration is 1.038 seconds with  control parameters 

𝑘=7.0967, 𝑘ௗ=9.9955 and the controller switches on at 𝑡=3.41 seconds. 
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Figure 6.5 Fitness value (maximum peak of external control force) vs. iteration in a typical 
trial. 
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Table 6.4 Optimised results of 10 trials on switching duration 

 
𝑘 𝑘ௗ 𝑡ଵ Switching Duration (s) 

7.0967 9.9955 3.4133 1.0380 
7.0969 9.9954 3.4133 1.0380 
7.0981 9.9976 3.4133 1.0625 
7.0967 9.9954 3.4133 1.0380 
7.0970 9.9968 3.4133 1.0441 
7.0969 9.9954 3.4133 1.0380 
7.0948 9.9954 3.4133 1.0380 
7.0965 9.9960 3.4133 1.0472 
7.0956 9.9955 3.4133 1.0380 
7.0957 9.9963 3.4133 1.0503 

 
𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 = 1.04321 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 7.76 × 10ିଷ 
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Figure 6.6 Fitness value (switching duration) vs. iterations in a typical trial. 
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According to the previous two tests, the control parameters for minimising 

the maximum peak of the external control force are obtained as 𝑘 = 0.0003, 

𝑘ௗ=0.4677 and the controller switches on at 𝑡=4.44 seconds. Figure 6.7 

shows the maximum peak of control force is 1.2435 and the switching 

duration is about 63 seconds. Compared with the non-optimal control 

parameters (shown in Figure 3.12), the maximum control force is reduced by 

approximately 60.62% but the control duration is increased by 65.08%. The 

optimal control parameters for minimum switching duration are 𝑘=7.0967, 

𝑘ௗ=9.9955 and the controller switches on at  𝑡=3.41 seconds. Compared with 

the non-optimal control parameters as shown in Figure 3.12, the switching 

duration in figure 6.8 is only around 1 second which is reduced by 95.45%. 

However, the maximum peak of the external control force in Figure 6.8 is 

34.47 which is an increase of 90.84%.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

u(
t)

Figure 6.7 Control input to the soft impact oscillator using the PD-like control law with the 
optimised control parameter 𝑘 = 0.0003, 𝑘ௗ = 0.4677 and the controller switches on at 𝑡 =

4.44 seconds 
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6.2.3 Soft impact oscillator with a Drift 
 

In this test, the PD-like control is optimised by PSO when applied on the soft 

impact oscillator with a drift. The system parameters of the oscillator are 𝑎 =

0.3, 𝑏 = 0.2, 𝜔 = 1, 𝑔 = 0.02, 𝜉 = 0.1 and 𝜑 = 𝜋/2. The objective of this test, 

which features 10 trials with 50 particles and in 100 iterations each, is to 

reduce the maximum peak of the controller’s external control force. The 

results for each trial are shown in Table 6.5, as well as the mean value and 

standard deviation across all 10 trials. In addition, Figure 6.9 shows the 

variation of the fitness value with the number of iterations increases. In a 

typical trial, it takes 55 iterations to converge to an optimum. From Table 6.5 

the minimum peak of external control force is 0.0555 with 𝑘 =0.0434, 

𝑘ௗ=0.0714 and the controller is switched on at 𝑡=5.4727 second. 

 
 
 

Figure 6.8 Control input to the soft impact oscillator using the PD-like control law with the 
optimised control parameter 𝑘 = 7.0967, 𝑘ௗ = 9.9955 and the controller switches on at 𝑡 =

3.41 seconds 
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Table 6.5 Optimised results of 10 trials on minimizing maximum peak of the external control 
force 

𝑘 𝑘ௗ 𝑡ଵ Maximum Peak of the External Control Force 
0.0434 0.0714 5.4727 0.0555 
0.0425 0.0710 5.4768 0.0557 
0.0434 0.0714 5.4727 0.0555 
0.0434 0.0714 6.2832 0.0562 
0.0445 0.0723 5.5501 0.0556 
0.0432 0.0714 5.4727 0.0555 
0.0434 0.0714 5.6004 0.0557 
0.0434 0.0714 5.4978 0.0556 
0.0434 0.0714 5.4727 0.0555 
0.0434 0.0714 5.7271 0.0560 

 
𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 = 0.0557 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 2.27 × 10ିସ 
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Figure 6.9 Fitness value (maximum peak of external control force) vs.  iterations in a typical 
trial.  



119 
 

10 trials have been conducted to optimise the switching duration when the 

proposed PD-like controller is applied to a soft impact oscillator with a drift. 

The initial population has 50 particles and a PSO is run for 100 iterations. The 

optimal results are listed in Table 6.6.  The mean value and standard 

deviation of the results are also calculated and it is noted that all 10 trials are 

resulted in consistent optimal solution. Figure 6.10 shows the performance of 

a typical trial and indicates that the PSO took 12 iterations to converge to the 

optimal result in this trial. From Table 6.6 the minimum switching duration is 

0.8126 seconds with the control parameters of  𝑘=4.0264, 𝑘ௗ=9.4060 and 

the controller is switched on at 𝑡=4.3668 second.  

Table 6.6 Optimised results of 10 trials on switching duration 

𝑘 𝑘ௗ 𝑡ଵ Switching Duration (s) 
4.0264 9.4060 4.3668 0.8126 
4.0264 9.4060 4.3668 0.8126 
4.1354 9.4050 4.3762 0.8221 
4.2358 9.4055 4.3616 0.8137 
4.5067 9.4060 4.3647 0.8158 
4.0264 9.4060 4.3668 0.8126 
4.0264 9.4051 4.3720 0.8137 
4.0264 9.4060 4.3668 0.8126 
4.0264 9.4060 4.3668 0.8126 
4.2352 9.4065 4.3689 0.8294 

 
𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 = 0.8158 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 5.34 × 10ିଷ 
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When analysing state switching in the soft impact oscillator with a drift, the 

controller parameters for minimising the external control force’s maximum 

peak are 𝑘 = 0.0434, 𝑘ௗ = 0.0714 and the controller switches on at  𝑡 = 5.47 

seconds. Figure 6.11 shows the control input of the controller using this set 

of parameters. The maximum peak of the control input is only 0.055, which 

is 97.36% smaller than the control input using the non-optimal set of control 

parameters (as shown in Figure 3.17). However, it takes approximately 140 

seconds to switch the system to its desired state, which is 88.57% longer 

than the case shown in Figure 3.17. Figure 6.12 illustrates the control input 

of the controller with the minimum switching duration. The set of control 

parameters are 𝑘 = 4.0264, 𝑘ௗ = 9.4060 and the controller switches on at  𝑡 =

4.36. The switching duration with this set of control parameters is about 1 

second, which is 93.75% shorter than the case with non-optimal PD-like 

control parameters as shown in Figure 3.17. However, the maximum control 

input is 7.49, which is 72.19% higher compared to the non-optimal case. 
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Figure 6.10 Fitness value (switching duration) vs.  iterations in a typical trial. 
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Figure 6.11 Control input to the soft impact oscillator with a drift using the PD-like control 
law with the optimised control parameter 𝑘 = 0.0434, 𝑘ௗ = 0.0714 and the controller switches 

on at 𝑡 = 5.47 seconds 

u
(t

)

Figure 6.12 Control input to the soft impact oscillator with a drift using the PD-like control 
law with the optimised control parameter 𝑘 = 4.0264, 𝑘ௗ = 9.4060 and the controller switches 

on at 𝑡 = 4.36 seconds 
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According to the analysis on the three test systems, these two objectives are 

conflicting with each other. On one hand, when the maximum peak of the 

external control force is minimised, the switching duration will increase 

significantly. The small external control force can reduce the energy and 

maintenance costs, but it requires more time to switch the system to the 

desired state. On the other hand, when the switching duration is minimised, 

the maximum peak of the external control force will increase. The small 

switching duration implies that the system can be switched to the desired 

stable state quickly although sometimes the actuator cannot provide the 

power required to shorten the switching duration.  

 

6.3 Summary 
 
PSO was applied for optimising the PD-like controller parameters with two 

single objectives namely: minimising the maximum peak of external control 

force and switching duration. The performance of PSO was investigated on 

three test systems namely: the Duffing oscillator, the soft impact oscillator 

and the soft impact oscillator with a drift. According to the analysis, the two 

single objectives are conflicting with other. Therefore, it is important to find 

a trade-off between the external control force and the switching duration by 

optimising the controller with multiple objectives at the same time. 
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Chapter 7 Multi-objective Optimisation of PD-
like Controller Parameters 
 

This chapter further optimises the proposed PD-like controller with multiple 

conflicting objectives. Specifically, the two objectives optimised 

independently in previous chapter are optimised at the same time using 

multi-objective optimisation. The objectives under consideration are 

minimising the maximum peak of external control force and the switching 

duration. The PD-like controller parameters are optimised for the three test 

systems namely, Duffing oscillator, soft impact oscillator and soft impact 

oscillator with a drift, in this chapter for improved performance. 

7.1 Introduction 
 
In many real-life problems, designers consider multiple objectives in system 

design and optimisation. However, in many cases, some objectives are in 

conflict with other and they cannot be optimised simultaneously with the 

same set of parameters. For example, in last chapter, the PD-like controller 

was optimised independently by PSO with two objectives namely, minimising 

the maximum peak of external control force and switching duration. The 

results showed that, these two objectives are contrary to each other. 

Moreover, in engineering design and optimisation, decision makers usually 

consider conflicting objectives such as improving the performance of the 

system while reducing the consumption of energy and emission pollutants. 

He/she usually faces trade-off in enhancing one performance objective in 

sacrifice of the other based on multi-objective optimisation results. 
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7.1.1 Multi-objective Optimisation 
 
In general, a multi-objective optimisation problem is formulated as follows 

[78]:                                   

Minimise:   𝑂𝐵𝐽(𝑥) = [𝑜𝑏𝑗ଵ(𝑥), 𝑜𝑏𝑗ଶ(𝑥), … , 𝑜𝑏𝑗(𝑥)]்  

Subject to: 𝑔(𝑥) ≤ 0,                𝑖 = 1, … , 𝑚  

 ℎ(𝑥) = 0,                 𝑗 = 1, … , 𝑝  

 𝑥 = [𝑥ଵ, 𝑥ଶ, … , 𝑥]்  

 𝑥
 ≤ 𝑥 ≤ 𝑥

௨,         𝑘 = 1, … , 𝑛  

where 𝑂𝐵𝐽(𝑥) is a vector of multiple objective functions, 𝑞 is the number of 

the objectives under consideration, 𝑔(𝑥) is the 𝑖 −th inequality constraint 

function, 𝑚 is the number of inequality constraint functions, ℎ(𝑥) is the 𝑗 −th 

equality constraint function, 𝑝 is the number of equality constraint functions, 

𝑥  is the vector of the independent optimising variables, 𝑥  is the 𝑘 − th 

independent variable, 𝑛 is the number of the independent variables, 𝑥
  and 

𝑥
௨ are the lower bound and upper bound of the 𝑘 −th independent variable 

respectively. Maximization of an objective can easily be converted into a 

minimisation by defining the minimisation objective as: 𝑙(𝑥) =
ଵ

(௫)
, where 

𝑓(𝑥) is the function of 𝑛 −th objective for maximization [78,109]. 

7.1.2 Pareto Optimal Solutions 
 

As compared with single objective optimisation, multi-objective optimisation 

usually has multiple optimal solutions, known as Pareto optimal solutions 

[110]. Without any requirement, there is no best solution in the set of optimal 

solutions that optimise all objectives at the same time. A Pareto optimal 

solution is a solution that is better in one or more objectives and not worse 

in all objectives and it also is known as the nondominated solution [78,111]. 

For example, the proposed PD-like control is applied on a multistable system 

with two sets of control parameters. The corresponding objective values 

(maximum peak of external control force and switching duration) of two 

different sets of control parameters are observed and they are named by 

solution A and solution B. If solution A is not worse than solution B in both 

objectives (the maximum peak of external control force and switching 

duration of solution A are not larger than those of solution B) and solution A 

(7.1) 
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is better than solution B in at least one objective (the maximum peak of 

external control force of solution A is smaller than that in solution B and/or 

the switching duration of solution A is smaller than that in solution B), solution 

A is a nondominated solution and solution B is a dominated solution. 

Mathematically, one solution 𝑥ଵ is said to dominate (in the Pareto’s sense) 

another solution 𝑥ଶ, if  

𝑜𝑏𝑗(𝑥ଵ) ≤ 𝑜𝑏𝑗(𝑥ଶ)   ∀𝑖 ∈ {1, … , 𝑚} and ∃𝑗 ∈ {1, … , 𝑚} | 𝑜𝑏𝑗(𝑥ଵ) < 𝑜𝑏𝑗(𝑥ଶ) 

Therefore, the nondominated solution or Pareto optimal solution is the 

solution which have no other solution dominated itself.  Moreover, the set of 

Pareto optimal solutions is called the Pareto Front. Figure 7.1 shows an 

example of Pareto Front with two objectives 𝑓ଵ and 𝑓ଶ. The bold line shows 

the Pareto Front and the yellow point shows one Pareto optimal solution 

(nondominated solution). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

7.1.3 Multi-objectives Optimisation Algorithms 
 

There are several methods that can be applied for solving multi-objective 

optimisation problem. The traditional method involves transforming the 

multi-objective problem into a single objective problem by adding a weight 

factor to every objective. Although this method is simple and has low 

computation complexity, the optimal solution is mainly affected by each 

objective’s weight factor which depends on the applications and/or user 

preference. Sometimes, it is difficult to determine a suitable combination of 

weights for multiple objectives in real life applications. 

 

Figure 7.1 Pareto fronts for two objectives optimisation problems 

(7.2) 
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For attaining a set of Pareto-optimal solution through one simulation, a 

Nondominated Sorting Genetic Algorithm (NSGA) was proposed in 1995 [112-

129]. This method is based on the genetic algorithm (GA) which is an 

evolutionary algorithm (EA) and follows the principle of survival of the fittest 

[130-135]. Firstly, a population of candidate solutions is randomly selected 

and the fitness value of every solution is calculated based on the objective 

functions [136]. Secondly, according to the fitness values of every solution in 

the population, the solutions with high fitness value are selected from the 

parent population. Thirdly, offspring candidate solution population is 

generated through crossover and mutation operations based on the parent 

population. Fourthly, a new population, which is combined by the parent and 

offspring populations, is evaluated by the fitness function. Finally, when 

certain stopping conditions such as maximum number of generations or 

maximum running time is achieved, optimal solution is obtained. Figure 7.2 

shows the flowchart of GA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 7.2 Flow chart of GA 
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NSGA and GA adopt similar principles. However, there is a little difference 

between the two methods in terms of the selection process. The NSGA 

requires the fitness values of each individual. The individuals are divided into 

different levels according to the nondominated sorting procedure. Every 

individual in p nondominated front is provided with a fitness number 𝑓, with 

the individuals in the first nondominated level given a larger fitness number. 

Furthermore, a sharing method is suggested for ensuring the diversity of the 

population. The following equation is used for calculating the sharing value 

between two individuals in the same front [112].  

𝑠ℎ(𝑑) =  ቐ1 − ቆ
𝑑

𝜎௦
ቇ

ଶ

,   𝑖𝑓 𝑑 < 𝜎௦

0,                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

where 𝑑 is the Euclidean distance between the two individual solutions 𝑥 

and 𝑥; 𝜎௦ is a sharing parameter and is the maximum phenotypic distance 

allowed between any two individuals (candidate solutions), indicating set 

value. If 𝑑 is less than 𝜎௦, the 𝑠ℎ(𝑑) is larger than 0 and smaller than 1 

and large 𝑠ℎ(𝑑) implies the two individuals 𝑖 and 𝑗 have a higher similarity. 

If 𝑑 is greater than 𝜎௦,  𝑠ℎ(𝑑) equals to zero. Then, the niche count of 

the individuals is calculated in the current front by the following equation 

[112], 

𝑐 =  𝑠ℎ(𝑑)



ୀଵ

, 𝑖 = 1, 2 , … , 𝑛 

where 𝑛 is the number of individuals in the same front. The niche count is 

dependent on the chosen 𝜎௦ . Large 𝜎௦  implies that more other 

individuals are in the niche of the individual and the niche count of the 

individual will increase. Moreover, the shared fitness value of the individuals 

in the p nondominated front is computed as follows [112].  

𝑓
ᇱ(𝑥) =  

𝑓(𝑥)

𝑐
 

Regarding two randomly selected individuals, if one is nondominated and the 

other is dominated, then the nondominated one is considered to be a better 

solution. In case of both being in the same front, the individual with small 

niche count is selected.  

 

 

(7.4) 

(7.5) 

(7.3) 
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However, the NSGA has three major disadvantages [137-142]. Firstly, it has 

high computational complexity. Secondly, it has the property of absence of 

elitism which means it may lose the fittest solutions they found before and 

cannot pass them to next generations. Thirdly, the diversity of the population 

is dependent on the sharing function and the sharing function need a sharing 

parameter 𝜎௦ which is a user-defined parameter. For overcoming these 

limitations, a fast and elitist multi-objective genetic algorithm (NSGA-II) was 

Figure 7.3 Flow chart of NSGA. The dashed block shows the nondominated sorting procedure 
in NSGA which is different from the selection procedure in GA. 
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proposed in 2002 [141]. Moreover, NSGA-II adopts the nondominated sorting 

and crowding distance for determining the Pareto front [143-147].  

 

For each solution p, two parameters are calculated. The first parameter 𝑛 is 

the number of solutions that dominate solution p, while the second parameter 

𝑆 is the set of the solutions dominated by the solution p,. Next, all solutions 

whose 𝑛 = 0  are identified and these solutions belong to the first 

nondominated front 𝐹ଵ . For every solution j in 𝐹ଵ , its set 𝑆  is verified. 

Furthermore, for every solutions q in 𝑆, the number of domination count, 𝑛, 

is determined. Then, all solutions who are only dominated by one solution 

(𝑛 = 1) are established which all belong to the second nondominated front 

𝐹ଶ. These processes stop only after identifying all solutions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 7.4 Pseudo code of nondominated sorting [143] 
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The NSGA uses the sharing function method to preserve diversity in 

population. The performance of the sharing function depends on the sharing 

parameter which is a user-defined parameter. Sometimes, it is difficult to 

determine the suitable sharing parameter for the sharing function. Moreover, 

each solution is compared to all other solutions, leading to high computational 

complexity. The crowded comparison method is recommended to overcome 

these limitations. (the pseudo code of crowding distance assignment is shown 

in Figure 7.5). In this method, the crowding-distance of every solution is first 

set to zero. Then, the crowding-distance of the boundary solutions for every 

objective is set to infinity. Next, every solution’s crowding distance is 

calculated using the following equation: 

𝑖ௗ = [(𝑓
ାଵ



ୀଵ

− 𝑓
ିଵ)/(𝑓

 − 𝑓
)] 

where 𝑖ௗ  is the crowding distance of solution 𝑖 , 𝑚 is the total number of 

objectives, 𝑓
ାଵ and 𝑓

ିଵ are the function value of solutions 𝑖 + 1 and  𝑖 − 1 of 

the 𝑗௧ objective, and 𝑓
௫ and 𝑓

 are the maximum and minimum function 

value of the 𝑗௧ objective, respectively. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.5 Pseudo code of crowding distance [143] 

Figure 7.6 Crowding distance calculation 

(7.6) 
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Next, the crowded-comparison operator (≺) is taken into consideration for 

Pareto front building. For every solution, 𝑖  has two attributes, one is 

nondomination rank (𝑖) and the other is the crowding distance (𝑖ௗ). For 

two solutions, 𝑖 and 𝑗, the following equation is implemented: 

𝑖 ≺ 𝑗  𝑖𝑓 (𝑖 ≤ 𝑗) 𝑎𝑛𝑑 (𝑖ௗ > 𝑗ௗ) 
 

While the Pareto front is building, if solution 𝑖 has a lower nondomination rank 

than that of solution 𝑗, then solution 𝑖 is preferred. If 𝑖 and 𝑗 are in the same 

front and if the crowding distance of 𝑖 is larger than that of 𝑗, then solution 𝑖 

is preferred.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the elitism approach of NSGA-II, the first generation is randomly selected 

and classified as nondominated. Based on the selection, crossover, and 

mutation operators in GA, their offspring are generated with size of N. The 

current population is then classified as per the nondomination, following 

which the elitism approach is introduced. The elitism approach of the 𝑡௧ 

generation (shown in Figure 7.7) begins with introducing a combined 

population 𝑅௧ with size 2N that combines the parent population 𝑃௧ with the 

offspring population 𝑄௧ . Then, the population is sorted according to the 

nondomination rank while the solutions in 𝑅௧ is divided into different sets, 𝐹ଵ 

(the set of all the solutions that belong to the first nondominated front), 𝐹ଶ, …, 

𝐹. Furthermore, all solutions in 𝐹ଵ are the best individuals in the population 

𝑅௧. If the size of 𝐹ଵ is smaller than N, all solutions in 𝐹ଵ are selected to be the 

parent population of the next generation 𝑃௧ାଵ . The next nondominated front 

𝐹ଶ and subsequent nondominated 𝐹ଷ, and so on, are then considered until the 

size of population 𝑃௧ାଵ is equal to N. 𝐹 is assumed to be the last set chosen 

Figure 7.7 Pseudo code of NSGA-II [143] 

(7.7) 
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for 𝑃௧ାଵ . It should be noted that the size of the solutions from the set 𝐹ଵ to 𝐹 

is typically larger than N. Therefore, regarding set 𝐹 , the solutions are 

classified using the crowded comparison operator while the better individuals 

are selected for the population 𝑃௧ାଵ first. The new population 𝑃௧ାଵ is then used 

for developing the next offspring population 𝑄௧ାଵ with size N. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Another common multiobjective optimisation method is called Strength 

Pareto Evolutionary Algorithm (SPEA) [148-149]. The process of this 

algorithm is, firstly, a set 𝑃 of initial population and an archive 𝑃ᇱ (an external 

empty set) are set. Secondly, all nondominated solutions in 𝑃 are copied to 

the archive 𝑃ᇱ and all the dominated solutions in the archive 𝑃ᇱ are deleted. 

If the size of the solution set is more than the limit of the size of 𝑃ᇱ, the 

solutions in the archive will be selected by a clustering technique. Thirdly, the 

fitness value of the solutions in 𝑃  and 𝑃ᇱ  are calculated. Fourthly, the 

solutions in 𝑃 and 𝑃ᇱ are randomly selected for mutation. The solutions in the 

archive 𝑃ᇱ has higher chance to be selected because these solutions have the 

better fitness value. Finally, after all of these processes the set 𝑃 are replaced 

by the offspring population. These processes will then be repeated until the 

ending condition is achieved such as the maximum working time. The method 

of calculating the fitness value of each solutions is shown below: 

 

Step one: for each solution 𝑝
∗   in the archive 𝑃ᇱ , a strength value 𝑆  is 

calculated as  

Figure 7.8 Sorting Processes of Individuals in NSGA-II 
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𝑆 =
𝑛

𝑁 + 1
 

where 𝑛 is the number of solutions dominated by the solution 𝑝∗ and 𝑁 is the 

number of the solutions in set 𝑃. The strength value of the solutions in 𝑃ᇱ are 

their fitness value.  

 

Step two: the fitness value of each solution 𝑝 in set 𝑃 is equal to the sum of 

the strength value of the solutions that dominate solution 𝑝. 

𝑆 = 1 +  𝑆

,ஹ

          𝑤ℎ𝑒𝑟𝑒 𝑆 ∈ [1, 𝑁) 

Comparing with NSGA-II, SPEA can find the pareto front faster with a small 

population size in general. However, the small population cannot guarantee 

the diversity of the population in searching optimal solutions. Moreover, SPEA 

is more computationally expensive as compared with NSGA-II. Therefore, 

NSGA-II is adopted in optimising the proposed PD-like controller with multiple 

objectives simultaneously. 

 

7.2 Multi-objective PD-like Controller Optimisation 
 
In Chapter 6, the PD-like control was optimised by PSO with two single 

objectives, namely minimising the maximum peak of external control input 

and switching duration, independently. However, these two objectives are 

conflicting with each other. The maximum peak of the external control input 

decreases while the switching duration increases or vice versa as illustrated 

in the last chapter. Compromised choice of optimal controller parameters is 

thus selected based on multi-objective optimisation.  

 

Large external control force may damage the actuator that drive the plant 

because the required control input may exceed the output actuator capacity. 

Long switching duration implies waste of time in state switching. Therefore, 

the system is expected to switch from current, undesired state to the desired 

state with small external control force and short switching time in order to 

prolong lifespan of the system and reduce energy cost. The proposed PD-like 

control is optimised by the NSGA-II algorithm with two objectives 

simultaneously, namely minimizing the maximum peak of external force and 

(7.8) 

(7.9) 
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the switching duration. Three control parameters namely the positive control 

gains 𝑘,  𝑘ௗ and the switch on time are considered in the multi-objective 

optimisation problem formulated as follows:  

 

Minimise: 𝑜𝑏𝑗ଵ(𝑥): 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑒𝑎𝑘 𝑜𝑓 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑓𝑜𝑟𝑐𝑒  𝑚𝑎𝑥|𝑢(𝑡)| and 

               𝑜𝑏𝑗ଶ(𝑥): 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛  Δ𝑡 = 𝑡ଶ − 𝑡ଵ 

Subject to: ℎ(𝑥): 𝑡ℎ𝑒 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑚𝑜𝑑𝑒𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 

                 𝑥: 𝑘, 𝑘ௗ  𝑎𝑛𝑑 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑡ଵ 

where 𝑡ଵ is the time instant when the controller switches on and  𝑡ଶ is the 

time instant when the controller switches off.  

 

The following subsections present the multi-objective optimisation of the 

proposed PD-like controller on the three test systems. 

7.2.1 Duffing Oscillator 
 
NSGA-II algorithm is applied to optimise the PD-like controller applied on the 

Duffing oscillator with the two objectives simultaneously. The parameters of 

the Duffing oscillator are selected as 𝑘 = 0.9, 𝛤 = 1.9 and 𝜔 = 1.2. Figure 7.9 

shows the Pareto Front of the optimisation and Figure 7.10 shows the 

corresponding Pareto optimal set. All point in the Pareto optimal set can be 

chosen as an optimal solution based on different requirements or objectives 

priorities and user preferences. The solutions in Pareto optimal set can be 

divided into 3 groups and solutions within a group exhibit similar performance. 

Solution groupings are identified by visual inspection for small cases like this 

example. Clustering algorithms can be adopted for solution groupings in 

complicated cases with more than 3 objectives. Three solutions are arbitrarily 

selected from each group for system performance investigation and they are 

solutions #10, #19 and #31 (blue-coloured in Figure 7.10). 

 

Figure 7.11 shows the results of the three chosen optimal solutions. Solution 

#31 minimises the switching duration while maximising the maximum peak 

of external control force. Solution #10 minimises the maximum peak of 

external control force and maximises the switching duration. Solution #19 

outperforms solution #10 in reducing the switching duration by 79.28% but 
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solution #10 outperforms solution #19 in decreasing the maximum peak of 

external control force by 65.05%. Moreover, solution #19 outperforms 

solution #31 in reducing the maximum peak of external control force by 83.98% 

but solution #31 outperforms solution #19 in shortening the switching 

duration by 88.53%. Solutions are adopted based on application, resource 

availability and user preference. For example, the set of parameters 

represented by solution #10 is selected for reducing the switching duration 

when an actuator is available for providing adequate power. The set of 

parameters represented by solution #31 is selected when the decision maker 

wants to save energy consumed by the system even though the switching 

duration may increase. The set of parameters represented by solution #19 is 

selected when the decision maker wants to have a balance between the 

maximum peak of external control force and the switching duration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.9 Pareto Front of Duffing oscillator with system parameters: 𝑘 = 0.9, 𝛤 = 1.9 and 
𝜔 = 1.2  
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Figure 7.10 The corresponding Pareto Optimal set of Pareto Front, (a) 𝑘 and 𝑘ௗ, (b) 𝑘 and 
the switching time, (c) 𝑘ௗ and the switching time 

Figure 7.11 The Pareto optimal performance of the PD-like controller with the three chosen 
optimal solutions in the two objectives (a) maximum peak of external control force, (b) 
switching duration 
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The 14th set of control parameters are chosen for testing which has a better 

performance than the non-optimal controller (in the previous test on Duffing 

oscillator as shown in Figure 3.6) in both objectives. The chosen set of control 

parameters are: 𝑘 = 2.15, 𝑘ௗ = 1.53 and the controller switches on at 𝑡 = 1.75 

second. The maximum peak of external control force and switching duration 

of the optimised control parameters are 1.39 and 7.30 seconds respectively. 

Figure 7.12 shows the control input to the Duffing oscillator with the Pareto 

optimal control parameters. Comparing with non-optimal controller (shown 

in Figure 3.6), the control input with the optimised control parameters 

decreases the maximum peak of external control input and switching duration 

by 16.61% and 51.50% respectively. Comparing with the controller optimised 

with the objective minimizing the maximum peak of external control force 

(shown in Figure 6.3), the switching duration decreases by 94.55% but the 

maximum peak of external control force increases by 87.77%. Moreover, 

comparing with the controller optimised with the objective minimizing the 

switching duration (shown Figure 6.4), the maximum peak of external control 

force decreases by 87.79% but the switching duration increases by 83.84%. 

Therefore, the PD-like control with this Pareto optimal control parameters can 

switch the Duffing oscillator to the desired state with a small external control 

force and short switching duration. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 7.12 Control input u(t) to the Duffing oscillator using PD-like control law with Pareto 

optimal control parameters. 𝑘 = 2.15, 𝑘ௗ = 1.53 and switching on time 𝑡 = 1.7522 seconds 

u(
t)
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7.2.2 Soft impact oscillator 
 

The NSGA-II algorithm is utilised for optimising the PD-like controller applied 

on the soft impact oscillator with the two objectives simultaneously. The 

parameters of soft impact oscillator under consideration are selected as 𝜉 =

0.01, 𝛽 = 29, 𝑔 = 1.26, 𝛤 = 1.9, and 𝜔 = 0.686. Figure 7.13 illustrates the Pareto 

Front of the multi-objective optimisation result while Figure 7.14 presents the 

corresponding Pareto optimal set. All points in the Pareto optimal set can be 

selected as an optimal solution depending on various requirement or 

objective priorities. In addition, as the solutions in Pareto optimal set can be 

classified into distinct five groups, five representative solutions are selected 

from each group and they are #7, #9, #17, #18, and #27 (blue-coloured in 

Figure 7.14). 

 

Figure 7.15 presents the results of the five chosen optimal solutions. It can 

be seen that solution #27 minimises the switching duration but maximises 

the maximum peak of external control force. While solution #9 minimises the 

external force’s maximum peak, it increases the switching duration. Solutions 

#7, #17, and #18, on the other hand, outperform solution #27 in reducing 

the external force’s maximum peak by 92.12%, 51.31%, and 87.75%, 

respectively; they also outperform solution #9 in shortening the switching 

duration by 39.51%, 94.04%, and 84.51%, respectively. However, solutions 

#7, #17, and #18 are outperformed by solution #27 in terms of the objective 

that reduces the switching duration by 94.57%, 44.9%, and 78.79%, 

respectively, and they are outperformed by solution #9 in decreasing the 

external force’s maximum peak by 13.38%, 85.99%, and 44.29%, 

respectively. All five solutions can be considered as the optimal solution based 

on different requirements concerning switching duration and actuator limit. 

Moreover, the set of parameters represented by solutions #7, #9, and #18 

can be selected for saving energy consumption when short switching duration 

is not a priority in performance. The set of parameters represented by 

solutions #17, #18, and #27 can also be selected for reducing the switching 

duration when an actuator is available for providing adequate power. 

Therefore, in these five solutions, solution #18 can be regarded as a good 



140 
 

kd

trade-off solution that both saves energy consumption and reduces the 

switching duration. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

Figure 7.13 Pareto Front of soft impact oscillator with system parameters: 𝜉 = 0.01, 𝛽 = 29, 
𝑔 = 1.26, 𝛤 = 1.9, and 𝜔 = 0.686 
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Figure 7.14 The corresponding Pareto Optimal set of Pareto Front for PD-like controller 
parameters by multi-objective optimisation, (a) 𝑘 and𝑘ௗ, (b) 𝑘 and the switching time, (c) 
𝑘ௗ and the switching time 
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The set of Pareto-optimal control parameters of solution #18 is chosen for 

testing which has a better performance than non-optimal controller (the 

previous test on soft impact oscillator shown in Figure 3.12). The chosen set 

of control parameters are: 𝑘 = 2.51, 𝑘ௗ = 3.11 and the controller switches on 

at 𝑡 = 7.61  second. Figures 7.16 (a), (b) and (c) show the control input 

response of the displacement and the trajectory of the system in the first 20 

seconds with the chosen set of control parameters respectively. The process 

of switching the soft impact oscillator from the current state to the desired 

state is shown below. At about 7.6 seconds, the controller is switched on. The 

external control force is negative which means the direction of the force is 

opposite to the direction of the displacement of the mass. The control input 

is used to change the direction of the mass. At about 7.67 seconds, the 

external control force become positive, which means the direction of the 

external control force is the same as the direction of the force. The external 

control force is used to increase the velocity of the mass. At about 9.3 seconds, 

the displacement of the mass exceeds the gap between the mass and the 

second spring and the impact occurs. At about 9.48 seconds, the 

displacement of the mass achieves the maximum amplitude and at about 

9.91 seconds, the displacement of the mass is less than the gap and the 

impact finishes. Within about 3.5 seconds, the trajectory of the system 

converges to the desired trajectory. In comparison of the performance of this 
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Figure 7.15 The Pareto optimal performance of the PD-like controller with the three chosen 
optimal solutions in the two objectives (a) maximum peak of external control force, (b) 
switching duration 
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Pareto optimal controller with the non-optimal controller (shown Figure 3.12), 

the control input with the optimised control parameters decreases the 

maximum peak of external control input and switching duration by 5.21% 

and 72.84% respectively. Moreover, this Pareto optimised controller is 

compared with the single-objective optimised controllers. When the controller 

minimised maximum peak of external control force (shown in Figure 6.7) is 

compared with the controller with parameters from solution #18, the 

switching duration decreases by 90.41% but the maximum peak of external 

control force increases by 57.41%. Similarly, the multi-objective optimised 

PD-like controller (solution #18) decreases the switching duration by 82.75% 

and the maximum peak of the external control force by 91.33% compared to 

the controller with minimised switching duration alone (as shown Figure 6.8). 

Therefore, the PD-like control with this Pareto optimal control parameters can 

switch the soft impact oscillator to the desired state with a small external 

control force and short switching duration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

u(
t)

(a) 
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Figure 7.16 (a) Control input u(t) (b) response of displacement (c) state trajectory of the 
soft impact oscillator with Pareto optimal control parameters: 𝑘 = 2.51 , 𝑘ௗ = 3.11  and
switching on time 𝑡 = 7.61 seconds 

(b) 
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7.2.3 Soft impact oscillator with a Drift 
 

This section demonstrates how NSGA-II can be used for optimising the PD-

like controller applied to the soft impact oscillator with a drift concerning the 

two objectives. The parameters of the soft impact oscillator with a drift 

include 𝑎 = 0.3, 𝑏 = 0.2, 𝜔 = 1, 𝑔 = 0.02, 𝜉 = 0.1, and 𝜑 = 𝜋/2. Figures 7.17 and 

7.18 illustrate the Pareto Front of the multi-objective optimisation results and 

the corresponding Pareto optimal set, respectively. Depending on different 

requirement or limitation of the applications, any points in the Pareto optimal 

set can be chosen by decision makers. The solutions in the Pareto optimal set 

can be divided into 4 groups. One representative solution is selected from 

each group. The four selected solutions (blue-coloured in Figure 7.18) are #5, 

#22, #25 and #27. 

 

Figure 7.19 shows the result of the four chosen optimal solutions. Solution 

#5 minimises the switching duration but maximises the maximum peak of 

external control force. On the contrary, solution #27 minimises the maximum 

peak of external control force but maximise the switching duration. Solutions 

#22 and #25 outperform solution #27 in reducing the switching duration by 

97.64% and 98.53% respectively but solution #27 outperforms solutions #22 

and #25 in reducing the maximum peak of external force by 95.34% and 

98.83% respectively. Moreover, solutions #22 and #25 outperform solution 

#5 in decreasing the maximum peak of external force by 82.30% and 29.49% 

respectively. In addition, solution #5 outperforms solutions #22 and #25 in 

shortening the switching duration by 55.51% and 28.73% respectively. 

Depending on different requirements or user preference, the sets of 

parameters represented by the four solutions are chosen. The set of 

parameters represented by solution #27 can save energy consumption while 

it spends lots of time in state switching. Both solutions #5 and #25 can 

shorten the switching duration while consuming a large amount of energy in 

state switching. The set of parameters represented by solution #22 is chosen 

if the decision maker wants to reduce both the switching duration and energy 

consumption. 
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(a) 

Figure 7.17 Pareto Front of the multi-objective optimisation results in PD-like controller 
applied on soft impact oscillator with a drift with system parameters: a=0.3, b=0.2, ω=1, 
g=0.02, ξ=0.1, and φ=π/2 
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Figure 7.18 The corresponding Pareto Optimal set of Pareto Front, (a) 𝑘 and𝑘ௗ, (b) 𝑘 and 
the switching time, (c) 𝑘ௗ and the switching time 
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The control parameters of solution #22 is chosen for testing which has a 

better performance than the non-optimal controller (the first test on soft 

impact oscillator with a drift, shown in Figure 3.12) in both objectives. The 

chosen Pareto-optimal set of control parameters are: 𝑘 = 7.45, 𝑘ௗ = 4.84 and 

the controller switches on at 𝑡 = 4.04 second. Figure 7.20 shows the control 

input to the soft impact oscillator with a drift with the Pareto-optimal control 

parameters. The maximum peak of external control force and switching 

duration of the optimised control parameters are 1.29 and 1.89 seconds 

respectively. This Pareto optimal controller is compared with three cases. 

Firstly, comparing with the non-optimal controller (shown in Figure 3.12), the 

control input with the Pareto optimised control parameters decreases the 

maximum peak of external control input and switching duration by 38.10% 

and 87.84% respectively. Secondly, comparing with the controller with 

minimised maximum peak of external control force (shown in Figure 6.11), 

the control input with the Pareto optimised control parameters decreases the 

switching duration by 98.65% but it increases the maximum peak of external 

control force by 95.74%. Thirdly, comparing with the controller with 

minimised switching duration (shown in Figure 6.12), the control input with 

the Pareto optimised control parameters decreases the maximum peak of 

external control input by 82.77% but it increases the switching duration by 

57.14%. Therefore, the PD-like controller can switch the soft impact oscillator 
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Figure 7.19 The Pareto optimal performance of the PD-like controller with the three chosen 
optimal solutions in the two objectives (a) maximum peak of external control force, (b) 
switching duration 
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with a drift to the desired state with this set of Pareto optimal control 

parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.3 Summary 
 
In conclusion, the PD-like controller is optimised based on multiple conflicting 

objectives: minimising the maximum peak of external force and the switching 

duration. NSGA-II algorithm was applied for multi-objective optimisation of 

the proposed PD-like controller for state switching in multistable systems. 

Moreover, performance of the Pareto-optimal controllers was investigated on 

the three test systems namely Duffing oscillator, soft impact oscillator, and 

soft impact oscillator with a drift. All results in the Pareto optimal set can be 

chosen by the decision maker based on the requirements, limitations of 

application and the priorities of objectives.  

 

 

u(
t)

Figure 7.20 Control input u(t) to the soft impact oscillator with a drift using PD-like control 
law with Pareto optimal control parameters 𝑘 = 7.4507, 𝑘ௗ = 4.8411 and switching on time 
𝑡 = 4.0376 second 
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Chapter 8 Conclusion and Future Work 
 
This thesis has investigated state switching control of multistable systems so 

that they operate in the preferred mode for various applications. A fast 

method for extracting knowledge of the basins of attraction of the multistable 

systems was proposed in this work. A novel PD-like controller was proposed 

to switch a multistable system from undesired state to desired state. The 

proposed PD-like controller was then optimised based on various performance 

objectives independently and simultaneously using single objective 

optimisation and multi-objective optimisation respectively. 

8.1 Conclusion 
 
In this thesis, a fast method for approximation of basins of attraction of 

multistable systems was proposed. The proposed method is called 

Randomised Triangular Subdivision and is based on Delaunay Triangulation. 

The performance of this method is investigated by a Duffing oscillator and a 

soft impact oscillator, which are typical multistable systems, with different 

number of co-existing states. Comparing with the traditional brute force 

algorithm, with the same number of initial conditions, the proposed 

randomised triangular subdivision method can estimate the basins of 

attraction with better accuracy and can capture geometrical and topological 

features at low resolution. 

 

A PD-like control was proposed in this thesis to switch the system from 

current undesired state to the desired state without changing the system 

parameters and destroying the original basins of attraction. The knowledge 

of nonlinearity of the systems is not required in synthesising the proposed 

PD-like controller. Moreover, it can maintain the systems in the desired state 

when the systems are subjected to external disturbance or noise. The 

principle of the controller is to apply an external control force which is 

dependent on the difference between the trajectories of the current state and 

desired state. This controller is investigated on two common multistable 

systems, namely Duffing oscillator and soft impact oscillator, which are 

simple one degree of freedom examples of smooth and non-smooth systems 

respectively. Moreover, for further study of the capability of the proposed 
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controller, the proposed controller is also tested on the soft impact oscillator 

with a drift system which is a complex multistable system for modelling 

percussive drilling. As demonstrated by simulations, the proposed PD-like 

controller was able to switch states in the three test systems successfully. 

 

This thesis also considered practical application of the proposed PD-like 

controller. In real life, actuators that are used to drive the plant/process 

cannot provide unlimited strength.  The constrained PD-like controller was 

then proposed in order to investigate the behaviours of the proposed 

controller under the consideration of the limited capacity of actuators in the 

systems. This method limits the strength of the control input by setting a 

bound for the control input based on the technical specification of the 

actuators. Compared with the performance of the unconstrained PD-like 

controller, the maximum peak of the control input is decreased and within 

actuator limits. However, the constrained PD-like control takes more time to 

switch the system to the desired state. If the actuator can provide enough 

power, the system will be switched to the desired state immediately. If the 

actuator provides small power, the system will be switched to the desired 

state through several intermediate stages. 

 

The performance of the PD-like controller is dependent on the controller 

parameters. Therefore, the performance of the PD-like controller can be 

optimised by finding a suitable set of control parameters. In this thesis, 

Particle Swarm Optimisation (PSO) was used to minimise the controller based 

on two single performance metrics or objectives, namely the maximum peak 

of the control input and the switching duration. The result of PSO was 

obtained through extensive numerical simulation. According to the simulation 

results, these two objectives are conflicting with each other. When the 

maximum peak of external control force is minimised, the switching duration 

will increase and vice versa. Therefore, the controller should be optimised 

based on multiple objectives simultaneously. NSGA-II algorithm was applied 

to optimise the controller with the two objectives mentioned above at the 

same time. The Pareto optimal results were obtained through extensive 

numerical simulation. All results in the Pareto optimal set can be chosen by 
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the decision maker based on the requirements, limitations of application and 

the priorities of objectives or user’s preference. 

 

8.2 Future work 
 
The research study can be further extended in the following directions: 

 

1. In chapter 2, the Randomised Triangular Subdivision was proposed to 

estimate the basins of attraction of multistable systems. The area of 

the convex hull which can cover the most part of the region of interest 

in the initial condition space was considered. In order to ensure the 

diversity of the initial conditions selected in the first Delaunay 

Triangulation of the space, the distribution of the random sample of 

the initial condition is expected to be as uniform as possible. Latin 

Hypercube Sampling will be adopted to ensure thorough coverage of 

the initial condition space [150]. Moreover, smooth boundary between 

different states should be reconstructed by the introduction of adaptive 

subdivision methods. Furthermore, sometimes, there are lots of small 

triangles which are close to each other are in the same state in the 

estimated basins of attraction. Intelligent merging algorithm will be 

devised to combine these small triangles so as to reduce memory 

storage for high dimensional multistable systems. Adaptive subdivision 

and merging algorithm will then be developed to intelligently identify 

smooth separatrix at high level of details while covering homogeneous 

regions of initial conditions in the same basin of attraction with fewer 

triangles as they only require low level of details in the future. 

 

2. In chapter 3, the PD-like controller was proposed for state switching in 

multistable systems. However, this controller requires the trajectory of 

the desired state for control feedback which is sometimes difficult to 

obtain. Moreover, sometimes no dynamic model of the system is 

available and the physical systems cannot be excited in many trials 

with different initial conditions for identification of the basins of 

attraction.  The PD-like controller can be extended so that it can switch 
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the system with less information about the desired state and for 

instance only an arbitrary initial condition which is located in the basin 

of the desired state is needed. This method switches the system to the 

desired state by driving the system to the neighbourhood of that 

condition. This new method does not require complete information 

about the desired trajectory and is easy to apply. However, it cannot 

maintain the system in the desired state under the effect of external 

noise. This limitation can be easily overcome by recording the desired 

trajectory when the system is switched to the desired state and then 

applying the proposed PD-like controller to maintain the system in the 

desired state. 

 

3. In chapter 7, the PD-like controller was optimised by the NSGA-II 

algorithm with two objectives simultaneously. More objectives can be 

considered in enhancing the performance of the proposed PD-like 

controller. For example, smoothness of the external control input is 

critical to the health of the actuator involved so that the actuator does 

not need to generate spurious output between two extremes 

continuously. Smoothness of the external control input can be 

estimated by the number of zero-crossing in the function 𝑢(𝑡) . 

Therefore, the direction of the external control force will not change 

too many times in a short switching duration. 

 

4. In this thesis, the performance of the proposed PD-like controller was 

investigated by extensive numerical simulation. In future work, the 

performance of the controller will be tested using experimental drilling 

test rig. Since, in real life experiment, some factors that affect the 

performance of the controller are not considered and are difficult to 

model in simulation. For instance, the controller cannot switch on 

exactly at the same time as the setting in numerical simulation. 

Moreover, for soft impact oscillator and soft impact oscillator with a 

drift, in the experiment, the spring and damper may be easily damaged 

because of the large external control force suggested by the controller. 

The physical parts in the test rig become fatigue easily over prolonged 

and heavy duty operation.  
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5. The stability analysis of the proposed PD-like controller will be studied 

in the future. One method to prove the stability of the controller is to 

use Lyapunov Stability Theorem. Moreover, Lyapunov function can also 

be constructed numerically [151-153]. 
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Appendix A  
 
Appendix A shows the Matlab code of how to apply the Randomised Triangular 
Subdivision on Duffing oscillator 
 
% random select 50 initial conditions in the selected region 
for i = 1:1:50000 
nPop = 50;     
Vx1 = -10 * rand(nPop,1) + 5; 
Vx2 = -10 * rand(nPop,1) + 5; 
vi = convhull(Vx1,Vx2); 
A(i) = polyarea(Vx1(vi),Vx2(vi)); 
if A(i)>95 
save('Myfile','Vx1','Vx2'); 
end 
end 
 
% Delaunay Triangulate the selected region using the selected initial 
conditions 
load Myfile 
vi = convhull(Vx1,Vx2); 
polyarea(Vx1(vi),Vx2(vi)) 
Vx = [Vx1,Vx2]; 
dt = delaunayTriangulation(Vx1,Vx2); 
  
% the mathematical model of the Duffing oscillator  
function x=osmodel(omega,F,k,xpre,i,Ts); 
  
x_pos = xpre(1); 
x_vel = xpre(2);  
x_acc = xpre(3); 
  
temp = F*cos(omega*i*Ts) - k*x_vel + x_pos - x_pos^3; 
  
x(3) = temp; 
x(2) = x_vel + temp*Ts; 
x(1) = x_pos + x_vel*Ts; 
 
% check whether all three vertices of the triangle are in the same 
state or not  
% number of iterations 
np = 60; 
  
% number of steps in each iteration 
n = 5000; 
iter = np*n; 
  
% parameters of the system 
k = 0.9; 
F = 1.9; 
omega = 1.2; 
Ts = 2*pi/(omega*n); 
  
% states of the system 
r1 = [-0.2868;1.6029]; 
r2 = [0.6964;2.8861]; 
  
% number of the triangles 
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nPop = 91;  
  
x_pos = zeros(1,iter+1); 
x_vel = zeros(1,iter+1); 
x_acc = zeros(1,iter+1); 
  
sa = 0; 
di = 0; 
SAx = []; 
SAy = []; 
DIx = []; 
DIy = []; 
Q = []; 
  
% vertices of each triangle 
xx = [dt.Points(dt.ConnectivityList(:,1),1), 
dt.Points(dt.ConnectivityList(:,1),2)]; 
yy = [dt.Points(dt.ConnectivityList(:,2),1), 
dt.Points(dt.ConnectivityList(:,2),2)]; 
zz = [dt.Points(dt.ConnectivityList(:,3),1), 
dt.Points(dt.ConnectivityList(:,3),2)]; 
  
%check the state of each vertex of each triangle 
for ii = 1:1:nPop 
    omega = 1.2; 
    Vx = [xx(ii,:);yy(ii,:);zz(ii,:)];     
for it = 1:1:3     
    x_pos(1) = Vx(it,1); 
    x_vel(1) = Vx(it,2); 
    X0 = [Vx(it,1);Vx(it,2)]; 
for i = 1:iter 
    x = [x_pos(i),x_vel(i),x_acc(i)]; 
     
    x_later = osmodel(omega,F,k,x,i,Ts); 
    x_pos(i+1)=x_later(1); 
    x_vel(i+1)=x_later(2); 
    x_acc(i+1)=x_later(3); 
end 
    X = [x_pos(end);x_vel(end)]; 
    if norm(X-r1)<1e-2 
       Q(ii,it) = 1; 
    else 
       Q(ii,it) = 2; 
    end 
end 
  
% check whether all three vertices of the triangle are in the same 
state or not  
    if Q(ii,1)==Q(ii,2) && Q(ii,2)==Q(ii,3) && Q(ii,3)==Q(ii,1) 
        sa = sa+1; 
        SAx(sa,:) = (Vx(:,1)'); 
        SAy(sa,:) = (Vx(:,2)'); 
        A1(sa) = A(ii); 
    else 
        di = di+1; 
        DIx(di,:) = (Vx(:,1)'); 
        DIy(di,:) = (Vx(:,2)'); 
        A2(di) = A(ii); 
    end 
end 



175 
 

 
% Calculate the area of each triangle 
% xx, yy, zz are the vertices of each triangle 
xx = [dt.Points(dt.ConnectivityList(:,1),1), 
dt.Points(dt.ConnectivityList(:,1),2)]; 
yy = [dt.Points(dt.ConnectivityList(:,2),1), 
dt.Points(dt.ConnectivityList(:,2),2)]; 
zz = [dt.Points(dt.ConnectivityList(:,3),1), 
dt.Points(dt.ConnectivityList(:,3),2)]; 
A = []; 
for i = 1:1:91 
   A(i,1) = 0.5*abs(x(i,1)*(y(i,2)-z(i,2))+y(i,1)* (z(i,2)-
x(i,2))+z(i,1)*(x(i,2)-y(i,2))); 
end 
 
% calculate the centroid of each triangle  
% x coordinates of the centroid of triangles 
ctx = (dt.Points(dt.ConnectivityList(:,1),1) + 
dt.Points(dt.ConnectivityList(:,2),1) + 
dt.Points(dt.ConnectivityList(:,3),1))/3; 
  
% y coordinates of the centroid of triangles 
cty = (dt.Points(dt.ConnectivityList(:,1),2) + 
dt.Points(dt.ConnectivityList(:,2),2) + 
dt.Points(dt.ConnectivityList(:,3),2))/3; 
  
% centroid of triangles 
ct = [ctx,cty]; 
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