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Adaptive iterative working state
prediction based on the double
unscented transformation and dynamic
functioning for unmanned aerial
vehicle lithium-ion batteries

Haotian Shi1, Shunli Wang1 , Carlos Fernandez2, Chunmei Yu1,
Xiaoxia Li1 and Chuanyun Zou1

Abstract
In lithium-ion batteries, the accuracy of estimation of the state of charge is a core parameter which will determine the
power control accuracy and management reliability of the energy storage systems. When using unscented Kalman filter-
ing to estimate the charge of lithium-ion batteries, if the pulse current change rate is too high, the tracking effects of
algorithms will not be optimal, with high estimation errors. In this study, the unscented Kalman filtering algorithm is
improved to solve the above problems and boost the Kalman gain with dynamic function modules, so as to improve sys-
tem stability. The closed-circuit voltage of the system is predicted with two non-linear transformations, so as to improve
the accuracy of the system. Meanwhile, an adaptive algorithm is developed to predict and correct the system noises and
observation noises, thus enhancing the robustness of the system. Experiments show that the maximum estimation error
of the second-order Circuit Model is controlled to less than 0.20V. Under various simulation conditions and interference
factors, the estimation error of the unscented Kalman filtering is as high as 2%, but that of the improved Kalman filtering
algorithm are kept well under 1.00%, with the errors reduced by 0.80%, therefore laying a sound foundation for the fol-
low-up research on the battery management system.
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Introduction

With the widespread using of lithium-ion battery (LiB)
in industry, daily life and the rise of dynamic wireless
power transmission technology,1 the estimation of state
of charge (SOC) has become an important part of bat-
tery management. However, due to the complex struc-
ture of the battery, the SOC estimation is difficult
because the SOC state of the battery is affected by the
discharge current, internal temperature of the battery,
self-discharge, aging and other factors. SOC of LiB is
also the key of unmanned aerial vehicle (UAV) battery
management system (BMS). Accurate estimation of the
nuclear power status of LiBs can not only make the uti-
lization of batteries more efficient but also facilitate the
rational and effective management of LiBs, so as to
improve the performance and safety of UAV. Due to
the influence of various internal and external factors in
the use of UAV power LiB, it is unable to accurately

estimate SOC. Nowadays, with the continuous develop-
ment of new energy and deep studies of LiB, a few new
kinds of accurate estimation methods are successively
put forward for SOC ampere-hour integral measure-
ments with simple operations. The early SOC estima-
tion methods have very strong dependence. If the initial
SOC is inaccurate, the estimated error will be accumu-
lated gradually, finally deviating from the real and esti-
mated values.2 The open-circuit voltage (OCV) method
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uses battery OCV and nonlinear relation between the
SOC and the lithium battery SOC estimate, but the bat-
tery Small OCV measurement deviation errors may also
occur in SOC. And measuring the OCV needs the bat-
tery to stand for a long time, so the OCV method can-
not accurately estimate the SOC of the batteries in
working states. The OCV method is not accurate to
estimate the SOC of the battery’s working state.3

The extended Kalman filter (EKF) algorithm is one
of the most commonly used4 SOC estimation algo-
rithms, and the EKF algorithm is used to evaluate the
power and energy of the hybrid system of LiB and
ultra-capacitors, which solves the estimation error
caused by system interference and sensor noise,5 but
EKF needs to calculate the Jacobi matrix of each cycle,
which leads to a large amount of calculation. Adaptive
EKF is used to estimate the working state of LiBs,
which solves the limitation of EKF in SOC estimation
of LiBs.6 The fractional-order model is applied to the
short circuit fault diagnosis of electric vehicle (EV)
batteries,7 and the fractional-order model is used to
estimate the state of the hybrid power system of LiBs
and ultra-capacitors, which fills the gap in the research
on the remaining power estimation of hybrid power
systems.8 In addition, an enhanced equivalent circuit
model (ECM) considering charge redistribution, health
state and temperature effect is proposed.9 The ECM of
pure EV LiBs is analyzed.10 A dynamic linear model–
based charging state estimation method for LiBs is
studied,11 which is also EKF state analysis of LiBs in
EV charge estimation.12 A joint estimation method of
SOC and state of energy (SOE) based on the particle
filtering is proposed, which greatly reduces the problem
of cumulative error due to current or voltage measure-
ment noise.13 A method for estimating the SOC of a
LiB considering capacity attenuation is proposed.14

The OCV and charging state function of no-load LiBs
are optimized.15 The parameter identification method
of the ECM of aviation LiBs is studied16 and the health
status is evaluated and analyzed.17

Aiming at the problem that large initial SOC error
leads to the accumulation of subsequent SOC estima-
tion error, a fractional-order model–based estimation
method for SOC of LiBs is proposed.18 In addition, a
new method for predicting the life of LiBs based on the
voltage change rate and iterative calculation is pro-
posed.19 The online dynamic equilibrium adjustment of
high-power LiB packs based on the equilibrium state
estimation is designed.20 The method of data model
fusion is applied to the estimation of online charging
state and health state of LiB.21 The particle filter (PF)
method was used to estimate LiFePO4 batteries, which
solved the interference problem caused by temperature
changes and drift current noise in SOC estimation.22

The charge state and deformation rate of the electro-
chemical cell are studied.23 The dual-scale adaptive PF
algorithm is also applied to online parameter state esti-
mation of LiBs, which solves the problem of large
workload and inaccurate state estimation in offline

state.24 With the continuous deepening of research, the
battery’s hysteresis effect is considered in the ECM,
and the unscented PF is used to predict the discharge
state and the remaining discharge time, which improves
the accuracy and convergence speed of SOC estimation
under dynamic driving cycles.25 The support vector
machine (SVM) is also applied in the accurate estima-
tion of SOC of LiBs,26 and a vehicle battery predictive
charge control model based on the vehicle state predic-
tion is established,27 and their estimation accuracy is
similar to EKF. In addition to this, to solve the prob-
lem of accurate estimation of aviation LiB pack, a
safety prediction and estimation method based on the
real-time detection and filtering is proposed.28 To avoid
a lot of work of offline estimation, the battery model
and online estimation of LiB charging state are
studied.29 Using the principle of artificial intelligence to
solve, the neural network gives the optimal decision,
optimizes its energy consumption method in the corre-
sponding building area and improves the utilization effi-
ciency of LiBs.30 A power state estimation model based
on the classification regression tree is studied and used
in hybrid cars.31 A new power management method is
proposed and applied to V2V, V2B/I, V2N and other
connected vehicles, which greatly reduces energy con-
sumption.32 The charging state model of LiBs is estab-
lished to facilitate the high efficiency of industrial
application.33 A model-based untraceable Kalman filter
observer is designed and used in charge state estimation
of LiBs.34 An online model identification and state-of-
charge estimation method for LiBs based on the recur-
sive least squares observer is proposed,35 and a hybrid
energy storage system based on the energy distribution
strategy for four-wheel-drive EVs is studied.36

In addition to the above, many SOC estimation
algorithms have added the latest technologies. By using
the untracked Kalman filter (UKF) algorithm, an accu-
rate equivalent circuit modeling method of LiB based
on the recurrent neural network is proposed.37 The
synergy method of EKF and UKF is used to estimate
the SOC of LiB, which improves the robustness and
stability of the BMS system.38 The modified neural net-
work model is combined with EKF to estimate the
SOC of LiB.39 An onboard adaptive model for LiB
state estimation based on the proportional integral
error adjustment Kalman filter is established and stud-
ied.40 In addition, an accurate charge state estimation
of LiB based on the model mismatch is proposed.41 By
constructing observer, an enhanced SOC estimation
model and its online parameter identification are estab-
lished,42 and a method for LiB model identification
and charging state estimation based on the iterative
learning is proposed.43 An LiB model based on the new
reduced-order electrochemistry was established and the
estimation method of the SOC is given.44 The health
diagnosis method of LiB energy storage based on the
mechanism recognition model is studied.45

An improved UKF algorithm is used for SOC esti-
mation of LiBs, and two nonlinear transformations are
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used to improve the accuracy of the system, under the
premise of ensuring the stability of the system. The
Kalman gain is improved and adaptive dynamic gain
adjustment module is added to solve the problem of
SOC value oscillation when the state of BMS changes
suddenly. To solve the influence of noise on system sta-
bility, an adaptive algorithm is proposed to predict and
correct system noise and observation noise, which can
effectively reduce noise error and enhance system
stability.

Mathematical analysis

ECM

The LiB models mainly include pure mathematical
model, electrochemical mechanism model, thermal
management model and ECM, among which the ECM
is the most widely used. Common ECMs include Rint,
Resistance -Capacitance (RC), Thevenin, partnership
for a new generation of vehicles (PNGV) and general
nonlinear (GNL) models. The advantages and disad-
vantages of the above common ECMs are shown in
Table 1.

Because the working condition of UAV is more
complicated, it requires higher precision of the model.
Among the above five models, PNGV and GNL mod-
els have the highest accuracy. Compared with the GNL
model, PNGV model has simple structure and less dif-
ficulty in model identification, which meets the require-
ments of parameter measurement in dry environment
under complex working conditions of UAV. However,
as the PNGV model could not completely represent the
relaxation effect of the battery, this paper improved it
and simulated the unrepresented relaxation effect in the
original PNGV model through another parallel RC
branch, so as to make it more fully meet the require-
ments of parameter measurement under the compli-
cated working conditions of UAV. Therefore, the
second-order circuit model (S-OCM) is more suitable
for characterizing battery status in dynamic environ-
ments. The circuit coupling relationship of the S-OCM
is shown in Figure 1.

In the above S-OCM, on the basis of the PNGV
model, a parallel RC circuit was added and E is the
ideal voltage source. R0 is the ohm resistance. RS and
RL are the polarization resistance. CS and CL are the
polarization capacitance. Among them, the parallel cir-
cuit composed of RS and CS has a small time constant,
which is used to simulate the process of rapid voltage
change when the current changes suddenly. The paral-
lel circuit composed of RL and CL is used to simulate
the rapid change of voltage when the current changes
suddenly because their time constant is relatively large.
The battery charging and discharging current takes I as
the parameter and UL as the battery terminal voltage.
The S-OCM can better characterize the polarization
characteristics of the battery, and it lays a foundation
for UAV to maintain high stability and robustness
when flying in the ever-changing environment

The calculation of ampere-hour integration is as
follows

SOC tð Þ=SOC t0ð Þ �
ðt
t0

hThII

QN
dt ð1Þ

wherein SOC(t0) and SOC(t) represent the SOC value
of the battery at the initial time and at time t, respec-
tively. I is the charge and discharge current, and hI rep-
resents the coulomb efficiency at different I. T is the
ambient temperature, and hT represents the influence
coefficient of different T on hI. QN is the rated capacity.
According to the S-OCM, selecting SOC as the unique

Table 1. Advantages and disadvantages of different models.

Models The advantages and disadvantages

Rint The circuit parameters are simple, but the dynamic characteristics of the battery cannot be reflected.
RC It makes up for the deficiency of the Rint model, but the circuit equation is very complicated and the establishment

of the model state equation is relatively difficult.
Thevenin It has the advantages of Rint model and Resistance-Capacitance (RC) model, but the model regards the internal

resistance of the battery as a constant value, which cannot represent the steady-state change of the battery
voltage, and is not easy to estimate the running time of the battery.

PNGV It makes up for the shortcoming of the Thevenin model, which is relatively simple and easy to identify parameters
in the model.

GNL Two parallel RC circuits are applied to characterize the transient and transient changes of battery voltage,
respectively, and the self-discharge module is added. However, it is difficult to identify the model parameters.

PNGV: partnership for a new generation of vehicles; GLN: general nonlinear; RC, Resistance-Capacitance.

Figure 1. The second-order circuit model.
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state variable of the system in the algorithm greatly
reduces the computational complexity and enhances
the timeliness of the algorithm. According to the posi-
tive direction selected above, the discrete form of the
LiB state space equation is described as follows

SOC kð Þ=SOC k� 1ð Þ � hThITs

QN
I k� 1ð Þ+wk�1

UL kð Þ=Uoc SOC kð Þð Þ � Rs 1� e
� TS

CSRS

� �
I k� 1ð Þ � RL 1� e

� TS
CLRL

� �
I k� 1ð Þ � R0I k� 1ð Þ+ vk

8<
: ð2Þ

wherein TS is the sampling time and wk-1 and vk are the
system noises, which are not related to each other.

Parameter identification

In view of the difference in the internal resistance of
LiBs in the charging and discharging process, the
selected LiBs are tested with the hybrid pulse power

characterization (HPPC) test of the main charging pro-
cess and HPPC test of the main discharging process.
The HPPC test steps of the main discharge process are
summarized in Table 2.

Similarly, change the above fourth step to start
charging at 0.5-C current. The charging time is 12min,
and the experimental data are recorded, which is the
HPPC test process of the main charging process. The
change of voltage and current of a single group in the
HPPC experiment is shown in Figure 2.

The features of the voltage response curve of the
HPPC test are used for parameter identification, and
the features are shown in Table 3.

It can be seen from Table 2 that the values of R0 and
Cb in the S-OCM can be directly obtained from features
(1) and (4). The parameter values of the double RC cir-
cuit can be identified according to the battery terminal
curve of features (2) and (3).

According to feature (1), the sudden change in the
terminal voltage of the battery at the start and stop of
discharge is caused by the ohm internal resistance.

Table 2. HPPC test steps of the main discharge process.

Step 1 The LiB is discharged in the standard discharge.
After that, let the battery rest for 2 h and then
charge the battery to 100% SOC with constant
current and voltage. Where the charging current
is set as 1 C (68 A h), the charging voltage is set
as 4.2 V, and the cutoff condition is set as 3.4 A.

Step 2 Let the battery rest for 12 h to activate the
battery and measure and record the voltage
values at both ends of the battery.

Step 3 The current pulse test is carried out on the LiB.
First discharge at 1-C current for 10 s, then
maintain for 40 s and then charge at 1-C current
for 10 s. The purpose is to make the battery
return to the SOC value before discharge and
complete a set of pulse charging and discharging
tests.

Step 4 Start discharging with 0.5-C current, discharge
for 12 min (remaining 90% SOC of the battery)
and then let it rest for 1 h. The cutoff condition
is 3 V.

Step 5 Repeat steps (3) and (4); each cycle discharges
10% capacity, record the SOC 0.9, 0.8, 0.7, .,
0.1 at the relevant data and prepare for the next
parameter identification.

HPPC: hybrid pulse power characterization; SOC: state of charge.

(a) (b)

Figure 2. Schematic diagram of current and voltage curves in HPPC experiment: (a) the HPPC single-cycle current profile and (b)
the HPPC single-cycle voltage profile.

Table 3. The features of voltage response curve of HPPC test.

Features (1) The voltage at time t1 and time t2 is vertically
changed, which is caused by the ohm resistance
of the battery.

Features (2) During t1~t2, the discharge current charges the
polarization capacitor, which is the zero-state
response of the double RC series circuit.

Features (3) During t2~t3, discharge of polarization capacitor
to polarization resistance, it is a zero-input
response of a double RC series circuit.

Features (4) Due to the existence of the energy storage
capacitor, the terminal voltage U1 is slightly
higher than the terminal voltage U5.

HPPC: hybrid pulse power characterization; RC, Resistance -

Capacitance.
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Therefore, the ohm internal resistance can be calculated
through the ohm law, as shown in equation (3)

R0 =
U1 �U2ð Þ+ U4 �U3ð Þ

2I
ð3Þ

When the LiB is in the pulse discharge stage of
HPPPC experiment, let the flow direction of Ib be the
positive direction of current. According to the reference
direction of voltage and current in the figure,
Kirchhoff’s current law (KCL) and Kirchhoff’s voltage
law (KVL) equations can be listed, as shown in
equation (4)

dU1=dt= i tð Þ=CS �U1=RSCS

dU2=dt= i tð Þ=CL �U2=RLCL

UL =UOC SOCð Þ � i tð ÞR0 �U1 �U2

8<
: ð4Þ

wherein U1 is the terminal voltage of the parallel circuit
composed of RS and Cs andU2 is a shunt terminal com-
posed of RL and CL.

According to Figure 2(a), the battery is constantly
exiled for 10 s during t1;t3 and remained in a static
state for the rest of the time. By time-domain analysis
of two RC circuits in series, the voltage of RC network
can be obtained as shown in equation (5)

U1 =
RSi tð Þ 1� e�

t�t1ð Þ
ts

� �
t1 \ t\ t2

US t2ð Þe�
t�t2ð Þ

ts t2 \ t\ t3

8><
>:

U2 =
RLi tð Þ 1� e

� t�t1ð Þ
tL

� �
t1 \ t\ t2

UL t2ð Þe�
t�t2ð Þ
tL t2 \ t\ t3

8><
>:

ð5Þ

wherein t1 is the start time of discharge, t2 is the stop
time of discharge and t3 is the shelving stop time. tS is
the time constant of RS and CS parallel circuits, tL is
the time constant of RL and CL parallel circuits. The
calculation formulas of tS and tL are shown in equa-
tion (6)

tS =RSCS; tL =RLCL ð6Þ

Related to the SOC of the battery are: the battery
during discharge, polarization capacitance CS and CL

in charging status, the voltage of the parallel connection
circuit of RC exponential rise, after the batteries from
discharge into the quiet place, capacitance CS and CL

to separate parallel resistance discharge, and the voltage
value of RC parallel circuit drops. When using Matlab
for HPPC experimental data curve fitting, the reuse
method of undetermined parameters can be calculated
for values of the RS, RL, CS and CL in the S-OCM. The
specific methods are shown in Table 4.

Iterative calculation

The interior of the LiB is a typical nonlinear system.
The battery OCV, battery internal resistance, battery
terminal voltage and battery charge state all show

strong nonlinear changes under battery operating con-
ditions. The nonlinear Kalman filter includes EKF,
UKF and so on. The forced transformation of EKF’s
nonlinear system into a linear system will cause the
Taylor truncation error. The method of neglecting
higher order terms may diverge filtering and cause the
algorithm to fail. When the nonlinear strength of the
system is high, the effect of EKF is not ideal. UKF is
based on the unscented transformations and uses a suit-
able sampling strategy to approximate the distribution
of state variables; the error introduced in EKF algo-
rithm due to ignoring higher order terms is avoided. At
the same time, there is no need to repeatedly calculate
the complex Jacobian matrix, which makes the calcula-
tion difficult. However, according to the estimation
effect under simulated dynamic conditions, when the
pulse current change rate is large, the estimation error
of the UKF algorithm is large. To solve the problem,
the UKF algorithm is improved on the premise of the
same estimation accuracy and adaptive algorithm is
added into the improved UKF to predict and modify
the system noise and observed noise, effectively reduc-
ing the estimation error.

Nonlinear transformation. Nonlinear transformation is
the core of UKF algorithm, and its basic principle is to
characterize the probability density distribution of ran-
dom variables with appropriate distribution of

Table 4. The experimental procedure of HPPC test.

Step 1 First, the experimental data from U4 to U5 in
Figure 2(b) are taken out to prepare for data
fitting.

Step 2 Write the output equation of the battery
terminal voltage by the features (3), as shown in
equation (7).
UL = UOC � IRse

� t
ts � IRLe

� t
tL

(7)
Step 3 Simplify parameter identification, as shown in

equation (8).
UL = f � ae�ct � be�dt

(8)
Step 4 Take f, a, b, c and d as the undetermined

parameters, take equation (8) as the objective
equation to carry out double exponential curve
fitting.

Step 5 According to the fitting results of the double
exponential curve, by comparing equations (7)
and (8), the result of parameter identification is
shown in equation (9).

UOC = f

RS = a=I

RL = b=I

CS = 1=ðRScÞ
CL = 1=ðRLdÞ

8>>>>>><
>>>>>>:

ð9Þ

HPPC: hybrid pulse power characterization.
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sampling points. The nonlinear characteristics of LiB
pack are described by the traceless transformation
method, which avoids the estimation error caused by
Taylor series expansion and high-order term abandon-
ment. Compared with Taylor series expansion, the
traceless transformation has at least second-order accu-
racy, and for Gaussian distribution, the third-order
accuracy is achieved. The selection of untracked trans-
formation sampling points is realized based on the cor-
relation sequence of the prior mean value and the prior
covariance matrix square root, with the principle
shown in Figure 3.

The unscented transformation shows good perfor-
mance in SOC estimation. The sigma data points after
transformation are obtained by nonlinear function
transformation, and mean and covariance after trans-
formation are obtained by weighted data points, and
then their weighted factors are obtained.

Iterative process. Combined with the S-OCM of LiB
pack, the iterative calculation of SOC is realized based
on the UKF. By taking SOC as the variable in the
equation of state and the open-circuit voltage as the
variable of the observation equation, the expressions of
the equation of state and the observation equation are
constructed.

The xk is the state variable, and yk is the observed
variable of working voltage output. The system noise
parameter wk and the observed noise parameter vk are
both Gaussian white noise, and the covariances are Q
and R, respectively. By iterative calculation, the esti-
mated xk of the Kalman filter model is calculated from
the previous state value xk21, input signal Ik and mea-
surement signal yk. The UKF algorithm does not need
to linearize the nonlinear equation of state function
f(*) and the observation equation function h(*) and
used nonlinear transformation processing to find the
detected data points. Then, the Gaussian probability
density data sequence of these SOC sample data points
is calculated. The selection of sample data points is
based on the nonlinear transformation processing and
used in the state space description of SOC estimation
of LiB pack. The 2n + 1 dimension Sigma data set
and its weighting coefficients are obtained by nonlinear
transformation processing. Based on the above analy-
sis, the Sigma data set is obtained by equation (10)

x ið Þ= �x i=0
x ið Þ= �x+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n+ lð ÞPx

p� �
i

i=0; . . . ; n

x ið Þ= �x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n+ lð ÞPx

p� �
i�n i= n+1; . . . ; 2n

8<
:

ð10Þ

wherein n is the dimension of the state variable.
The above Sigma data set is analyzed and its corre-

sponding weight is obtained by equation (11)

v 0ð Þ
m =

l

n+ l
; l=a2 n+ kð Þ � n

v 0ð Þ
c =

l

n+ l
+ 1� a2 +b
� �

v ið Þ
m =v ið Þ

c =
1

2 n+ lð Þ ; i=1; . . . ; 2n

8>>>>>><
>>>>>>:

ð11Þ

wherein vm and vc are the weights needed to calculate
the mean and variance of the Sigma points, respectively.
a is the scale factor. k is a free parameter. b is a nonne-
gative weight. l is the scaling factor.

Since the computational complexity of SOC is posi-
tively correlated with the number of data points, it is
more beneficial for integrated applications to use fewer
data sets in transformation process. Therefore, in this
paper, SOC is selected as the only state variable to
implement the unscented transformation, which is used
for the parameter preprocessing of SOC estimation of
LiBs. The estimation process of SOC is as follows.

S1: Construction of Sigma point set, as shown in equa-
tion (12)

xk�1
ið Þ=

xk�1
xk�1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n+ lð ÞPk�1

p
xk�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n+ lð ÞPk�1

p
2
4

3
5 ð12Þ

S2: Bringing the Sigma point set into the equation of
state. One-step prediction of the state variable is
obtained

xkjk�1
ið Þ= f xk�1

ið Þ; uk�1

h i
+wk�1i=1; . . . ; 2n+1

ð13Þ

S3: The state variables are updated in time based on
the results of the one-step prediction and the mean and
weight of the Sigma point set

xkjk�1 =
X2n
i=0

v ið Þxkjk�1
ið Þ ð14Þ

S4: According to the variance weight of the Sigma
point set, the predicted value of the variance of the
SOC state is updated

Pkjk�1 =
X2n
i=0

v ið Þ xkjk�1 � xkjk�1
ið Þ

h i

xkjk�1 � xkjk�1
ið Þ

h iT
+Qk�1

ð15Þ

Figure 3. Unscented transformation schematic.
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S5: The UT transform is used again for the state value
predicted in one step to obtain a new sequence of
Sigma data points for SOC estimation

xkjk�1
ið Þ=

xkjk�1
xkjk�1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n+ lð ÞPkjk�1

p
xkjk�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n+ lð ÞPkjk�1

p
2
4

3
5 ð16Þ

S6: The Sigma point set after the double unscented
transformation is brought into the observation equa-
tion of the estimation model for updating the observa-
tion variables. The update process is shown in equation
(17)

ykjk�1
ið Þ= h xk�1

ið Þ; uk
	 


+ vk�1 i=1; . . . ; 2n+1

ð17Þ

S7: Calculate the predicted value of UL and covariance
matrix update.
(1) Observed value update

�ykjk�1 =
X2n
i=0

v ið Þykjk�1
ið Þ ð18Þ

(2) Autocorrelation matrix update

Pyy;k =
X2n
i=0

vc
ið Þ ykjk�1

ið Þ � ykjk�1

h i

ykjk�1
ið Þ � �ykjk�1

h iT
+R

ð19Þ

(3) Cross-correlation matrix update

Pxy;k =
X2n
i=0

v ið Þ
c xkjk�1

ið Þ � �xkjk�1

h i
ykjk�1

ið Þ � �ykjk�1

h iT
ð20Þ

S8: Calculate Kalman gain matrix

Kk =Pxy;kP
�1
yy;k ð21Þ

S9: The state variable and error covariance update.
(1) The status variable update process

�xk = �xkjk�1 +Kk yk � �ykjk�1

h i
ð22Þ

(2) Error covariance update

Pk =Pkjk�1 � KkPyy;kK
T
k ð23Þ

Error correction strategy

Although UKF is more robust than EKF, when using
UKF to estimate the charge of LiBs, if the pulse cur-
rent change rate is large, the tracking effect of the algo-
rithm is not ideal, and the estimation error is large. The

UKF algorithm is improved to solve these problems,
improve the Kalman gain with dynamic function mod-
ule to improve system stability. The closed-circuit vol-
tage of the system is predicted by two nonlinear
transformations to improve the accuracy of the system.
Meanwhile, an adaptive algorithm is proposed to pre-
dict and correct system noise and observation noise,
which makes the system more stable. The detailed flow-
chart of the improved algorithm is shown in Figure 4.

Double nonlinear transformation. In the prediction process
of SOC estimation, by using unscented transformation
to solve the problem of SOC estimation of mean and
variance of nonlinear transformation, don’t need to cal-
culated the Jacobian matrix, and there are no higher-
order term negligence problems, so that the system has
high accuracy and strong stability. Three Sigma data
point sequences of SOC values and their corresponding
weights vc and vm are obtained through a nonlinear
transformation. Then, the predicted values of the three
Sigma data points are obtained by the state equation,
and the single SOC predicted values are obtained by
the weighted summation processing. The unscented
transformation is performed again on the predicted
result, and the transformation results are applied to the
observation equation, so as to improve the estimation
accuracy. Finally, the closed-circuit voltage predictive
value is calculated by weighting and used in the status

Figure 4. The iterative flow of the improved algorithm. The
background in the figure does not need to be highlighted.
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update of SOC estimation process. The calculation of
the second nonlinear transformation is shown in equa-
tion (16). The whole process of iterative calculation of
double nonlinear transformation is shown in Figure 5.

Dynamic function correction. According to the estimation
results under simulated dynamic conditions, when the
pulse current change rate is high, the estimation error is
large. When Kalman filter performs filtering estima-
tion, if the state of the system is suddenly changed, it is
often slow to track the real state, thus reducing the esti-
mation accuracy. In this paper, we will improve it to
make the algorithm have better tracking effect on the
estimation process.

If the change of working current meets the condi-
tions shown in equation (24) below

Ik � Ik�1
Dt

5DImax ð24Þ

wherein the DImax is the maximum current change set-
ting value. Namely, if the working condition current
causes jump mutation, then the improved Kalman gain
and state estimation measurement are updated as
shown in equation (25)

K0k = gKk = g Pxy;kPxy;k
�1� �

xk = xkjk�1 +K0k yk � ykjk�1
� ��

ð25Þ

wherein the g is the gain factor and its value can be
more than 1, so that the convergence speed of the esti-
mated value in the process of algorithm estimation is
accelerated. The value should not be too large, other-
wise the error will also increase. This article values
between 1 and 2.

To enhance the stability of the system, the gain is set
as a dynamic value and automatically adjusted accord-
ing to the change of current. When the current changes
a lot in the working condition, the gain can be adjusted

to a large value dynamically, so that the algorithm can
estimate the speed of convergence to increase. When
the current changes a little more gently, the gain value
will gradually return to the original value. Then,
dynamic gain calculation and state estimation measure-
ment are updated as shown in equation (26)

K00k =K0ku= gK kð Þ 1+atk�t0ð Þ
xk = xkjk�1 +K00k yk � ykjk�1

� ��
ð26Þ

wherein a is the number between 0 and 1, t0 is the time
point at the beginning of the mutation and tk is the time
point after the mutation. u=1+atk�t0 is a dynamic
function, tk � t0 starts out at approximately 0, atk�t0

starts out at 1, y is close to 2 and then it converges the
fastest. With the constant change in tk, the larger the
value of tk � t0, the closer the value of atk�t0 is to 0,
and then, the closer the value of y is to 1, the gain coef-
ficient returns to the original value, and the conver-
gence speed decreases to the state before the mutation.
When the next mutation comes, t0 time is recorded
again and tk starts to increase from the time point of
new t0. By means of exponential function, the gain at
the initial time of mutation is larger to accelerate the
convergence speed, and then, the gain is smaller to
decrease the convergence speed, so that the dynamic
gain correction can be realized.

Adaptive noise prediction. The covariance Qk and Rk in
the estimation of the algorithm have certain influence
on the accuracy and stability of the system. When the
Rk value is large, the gain value decreases and the filter-
ing convergence speed is slow, at which time the filter-
ing correction effect is small. When the Rk value is
small, the gain value is large, the filtering convergence
speed is fast and the filtering correction effect is large.
However, the actual statistical characteristics of noise
are unknown, and the set value is usually used in

Figure 5. Double nonlinear transformation iterative calculation process schematic.
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estimation. Inaccurate noise variance will reduce the
robustness of the system. In this paper, the adaptive
algorithm is applied to predict and modify the system
noise and observed noise, which enhances the robust-
ness of the system. The estimation principle is as
follows:

The system noise and the covariance of the system
noise are shown in equation (27)

wk= 1� ekð Þwk�1 + ek xkjk�1 � Ak�1xkjk�1
� �

Qk = 1� ekð ÞQk�1 + ek K00k�1eke
T
k +Pxkjk�1 � Ak�1Pxkjk�1A

T
k�1

� �(

ð27Þ

The observed noise and the covariance of the
observed noise are shown in equation (28)

vk = 1� ekð Þvk�1 + ek yk � ykjk�1
� �

Rk = 1� ekð ÞRk�1 + ek eke
T
k � CkPxkjk�1C

T
k

� �(

ð28Þ

wherein the calculation of ek and ek is shown in equa-
tion (29)

ek = yk � ykjk�1 � vk�1

ek =
1�hð Þ

1�hk�1ð Þ

(
ð29Þ

wherein the value of h, which is the forgetting factor,
should be between 0.95 and 0.99.

According to Ak21 in equation (26), the Ck21 in
equation (27) can be calculated, as shown in equation
(30)

Ck�1 =
∂f xkð Þ
xk

� �
ð30Þ

The analysis shows that the prediction of system
noise and observed noise depends on e. Although the
error of the battery model cannot be eliminated, the
experimental verification shows that the adaptive algo-
rithm can estimate the noise, improve the filtering sta-
bility and real-time adjustment ability and reduce the
SOC estimation error.

Experimental analysis

Experimental platform

The UAV ternary polymer LiB is selected for the test;
the actual battery capacity after measurement is 68Ah.
Using the battery internal resistance tester, the internal
resistance of the battery is found to be 0.67mV. The
experimental device structure is shown in Figure 6,
which consists of (1) power cell high-power charge and
discharge tester (CT-4016-5V100A-NTFA); (2) three-
layer independent temperature control test chamber;
(3) supporting experimental equipment (BTT-331C);
and (4) host computer that displays measurement data
and controls charging and discharging processes.

Modeling verification

The parameters of the main charge HPPC test and the
main discharge HPPC test are brought into the S-
OCM. The terminal voltage comparison curve obtained
from the experiment is shown in Figure 7.

According to the voltage error curve shown in
Figure 7(e) and (f), the S-OCM can well estimate termi-
nal voltage during charging and discharging. Among
them, the maximum parameter identification error of
the HPPC test of the main charging process is less than
0.015V (nominal voltage is 4.2V), and the maximum
parameter identification error of the HPPC test of the
main discharge process is less than 0.01V, laying the
foundation for follow-up research.

Complex discharge ratio experiments

For the purpose of verifying accuracy and stability of
the improved algorithm, complex discharge ratio
experiments are designed to more accurately analyze
and describe the operating characteristics of UAV
LiBs. In the experimental process, SOC estimation per-
formance test under complex converter conditions is
realized by combining converter simulation experi-
ments with different discharge current multiples. The
experimental correlation curve is shown in Figure 8.

As can be seen from the complex discharge ratio
experiment index curves, it can be seen that due to peri-
odic polarization effect of initial discharge point and
final discharge point, the estimation error of UKF
algorithm is up to 1.8%. The improved UKF algorithm
also has the maximum error in the initial estimation,
but the SOC estimation error is only 1%. Compared
with the traditional algorithm, the improved algorithm
can reduce the estimation error by about 0.8%.

Phased working condition experiments

In order to verify the improved UKF for the reliability
of UAV in the process of practical work, the phased
working condition experiments are designed. In practi-
cal applications, LiBs are used not only for unlocking
and starting UAV in normal flight but also for online

Figure 6. Battery test platform.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 7. The HPPC test index curves of main discharging and charging processes: (a) HPPC test current curve of the main charge,
(b) terminal voltage and voltage estimation, (c) HPPC test current curve of the main discharge, (d) terminal voltage and voltage
estimation, (e) voltage estimation error of the main charge and (f) voltage estimation error of the main discharge.

(a) (b)

(c) (d)

Figure 8. The complex discharge ratio experiment index curves: (a) current profile of the complex discharge ratio experiments,
(b) the terminal voltage and SOC profiles of the complex discharge ratio experiments, (c) estimated result comparison of different
methods and (d) estimated error comparison of different methods.
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calibration of sensors and emergency output. The over-
all experimental test process is shown in Figure 9.

In Figure 9, Ta is the time required for sensor cali-
bration, Tb is the unlocking start time of UAV, Tc is
the self-discharge time during UAV flight and Td is
the emergency output time of UAV LiBs. The test
process is described below. S1: the system detects
whether the total voltage of the UAV LiB is greater
than the minimum voltage of 3.00V. S2: discharge Ta

second at 0.30C to simulate online calibration of
UAV sensor. S3: after setting aside for 10.00 s, judge
whether the total voltage of LiBs is greater than the
minimum voltage of 3.00 V, meeting the conditions
and entering step 4. S4: simulate the unlocking and
starting of UAV with 0.60-C discharge Tb second and
judge whether the total battery voltage is greater than
the minimum voltage at the same time. If the condi-
tions are met, the flight mission enters step 5 or it
ends. S5: simulate self-discharge of LiBs at 0.01-C dis-
charge Tc second, and then enter step 6. S6: use 1.00-
C discharge Td second to simulate emergency output
and judge whether the single voltage and total voltage
are greater than the minimum voltage at the same
time. If the conditions are met, the flight mission can
continue, otherwise it will end. S7: over.

The parameters of UAV LiBs under different work-
ing conditions are set as shown in Table 5.

According to the data in Table 5, staged working
condition tests were performed on the UAV LiB. The
results are shown in Figure 10.

The results show that the SOC estimation under
UKF has obvious oscillation under the condition of
drastic changes in operating current, and the improved
method can make the lithium-ion BMS of UAV more
robust and ensure the safety of UAV flight mission. As
can be seen from the figure above, under the UKF algo-
rithm, the maximum error voltage of the terminal vol-
tage of the ion battery is about 0.07V, and the error
percentage is about 1.8%. The maximum error of the
short voltage under the improved UKF algorithm is
about 0.03V, and the error percentage is about 0.7%.
In comparison, the improved algorithm is superior not
only in robustness but also in accuracy, which meets the
requirements of UAV BMS.

Compound noise effect

Based on the above experiments, the adaptability of the
improved UKF algorithm to noise is studied. Due to
flaws in processor computing conditions, it is inevitable
to have the problem of decimal number reservation
and high-order item abandonment in the process of
iterative calculation, and then, the process noise is gen-
erated, which affects the SOC estimation results. In
addition, as the parameters such as voltage, current
and temperature of the external measurable signal of
LiB pack are affected by the sampling accuracy of the
sampling module, it is inevitable that sampling error
will occur, which will cause observation noise and fur-
ther affect the SOC estimation results. Therefore, based
on the practical application considerations and based
on the verification of SOC estimation accuracy, it is
necessary to further carry out the influence experiment
of compound noise and carry out the experimental veri-
fication of the adaptability of the improved algorithm
in terms of working conditions, so as to ensure that the
method has a high estimation accuracy under various
interference factors.

To verify the adaptability of the improved algorithm
to compound noise, set the corresponding relationship
between the change values of process noise and obser-
vation noise as shown in Table 6.

The SOC estimation results are obtained through
experimental analysis, as shown in Figure 11.

In Figure 11, SOC_0 is obtained by Ampere-Hour
integral method. From the results of the experiment, in
the case of poor equilibrium state, the modified

Figure 9. UAV experiment tests the flow of working conditions.
The background in the figure does not need to be highlighted.

Table 5. Working condition set.

Parameter Ta Tb Tc Td

Working condition 600 20 100 600
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algorithm has obvious correction effect. When the pro-
cess noise is small, the experimental value can converge
to the actual value in the whole simulation process.

With the increase in process noise, the overshoot of the
system starts to increase, but the experimental value
converges to the real value quickly under the dynamic
modification of the improved algorithm, which further
verifies the advantages of the improved algorithm in
the estimation effect.

Conclusion

To fully meet the requirements of parameter measure-
ment in the complex working environment of UAV, an
S-OCM is established to describe the battery state in

(a) (b)

(c) (d)

Figure 10. The phased working condition experiment index curves: (a) current profile of the phased working condition
experiments, (b) the terminal voltage and SOC profiles of the phased working condition experiments, (c) estimated result
comparison of different methods and (d) estimated error comparison of different methods.

(a) (b)

(c) (d)

Figure 11. Estimated result of different compound noise.

Table 6. Correspondence table.

SOC Q R

SOC_1 1e212 0.001
SOC_2 1e29 0.010
SOC_3 1e26 0.100
SOC_4 1e23 1.000

SOC: state of charge.
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the dynamic environment. In addition, to solve the
problem that the tracking effect of the algorithm is not
ideal and the estimation error is large when the pulse
current change rate is large, the dynamic function mod-
ule is used to improve the Kalman gain, and two non-
linear transformations are used to predict the closed-
loop voltage of the system. To solve the influence of
noise on system stability, an adaptive algorithm is pro-
posed to predict and correct system noise and observa-
tion noise, which can effectively reduce noise error and
enhance system stability. At the same time, the
improved UKF method is used to carry out relevant
experiments on the adaptability. The equivalent model-
ing, different CC discharge, UAV working condition
and composite noise tests were carried out to verify the
feasibility of the model and algorithm in different
states. The results show that the algorithm has high
estimation accuracy under various simulated working
conditions and interference factors. When the current
input changes drastically, the estimated error of the
improved algorithm can still be maintained at about
1.00%. Compared with UKF, the error is reduced by
0.80%, which is used as the basis for subsequent drone
BMS research.
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