
ELYAN, E., MORENO-GARCIA, C.F. and JAYNE, C. 2021. CDSMOTE: class decomposition and synthetic minority class
oversampling technique for imbalanced-data classification. Neural computing and applications [online], 33(7), pages

2839-2851. Available from: https://doi.org/10.1007/s00521-020-05130-z

CDSMOTE: class decomposition and synthetic
minority class oversampling technique for

imbalanced-data classification.

ELYAN, E., MORENO-GARCIA, C.F. and JAYNE, C.

2021

This document was downloaded from
https://openair.rgu.ac.uk

https://doi.org/10.1007/s00521-020-05130-z

ORIGINAL ARTICLE

CDSMOTE: class decomposition and synthetic minority class
oversampling technique for imbalanced-data classification

Eyad Elyan1 • Carlos Francisco Moreno-Garcia1 • Chrisina Jayne2

Received: 17 June 2019 / Accepted: 16 June 2020 / Published online: 18 July 2020
� The Author(s) 2020

Abstract
Class-imbalanced datasets are common across several domains such as health, banking, security, and others. The domi-

nance of majority class instances (negative class) often results in biased learning models, and therefore, classifying such

datasets requires employing some methods to compact the problem. In this paper, we propose a new hybrid approach

aiming at reducing the dominance of the majority class instances using class decomposition and increasing the minority

class instances using an oversampling method. Unlike other undersampling methods, which suffer data loss, our method

preserves the majority class instances, yet significantly reduces its dominance, resulting in a more balanced dataset and

hence improving the results. A large-scale experiment using 60 public datasets was carried out to validate the proposed

methods. The results across three standard evaluation metrics show the comparable and superior results with other common

and state-of-the-art techniques.

Keywords Machine learning � Class-imbalance � Classification � Undersampling � Oversampling

1 Introduction

Class-imbalance classification is a long withstanding

problem in the literature [1–5] where a binary dataset

contains a disproportionately larger amount of samples of

the majority class (i.e., negative class) [6]. Such datasets

are common in many domains including life sciences [7],

protein classification [8], DNA sequence recognition [9],

financial sector [10], Medical domain [11], Medicine rating

and recommendations [12], engineering drawings analysis

[13–15] and others. An example of a binary classification

problem is shown in Eq. 1. In a classification task, the aim

is to learn a function hðxÞ that maps an instance xi 2 X to a

class yi, where yi 2 Y ¼ fCN ;CPg, denoting negative and

positive class, respectively. In an imbalanced dataset, the

positive class CP (class of interest) is often underrepre-

sented in the dataset, causing a learning algorithm to be

biased toward the majority class instances CN .

X ¼

x11 x12 . . . x1n

x21 x22 . . . x2n

..

. ..
. . .

. ..
.

xm1
..
.

. . . xmn

2
666664

3
777775
; Y ¼

y1

yi

..

.

ym

2
66664

3
77775

ð1Þ

Consider the banking sector, a dataset for handling fraud-

ulent transactions. Most transactions are legitimate (i.e.,

90–99%, xi 2 CN), and few are fraud (class CP in Eq. 1). In

such scenario, an accuracy more than 90% can be easily

obtained. However, it is easy to miss-classify the class of

interest (i.e., xi 2 CP), and hence, the need for different

solutions accounts for the data distribution. Solutions for

handling such a problem can be broadly categorized as

data-based, algorithmic-based or cost-sensitive [2]. Data-

based solutions are commonly used to compact class-im-

balanced datasets. These methods are focused on either

undersampling the data to reduce the dominance of the

majority class instances, oversample the minority class, or

a hybrid approach that combines both methods. Algorith-

mic-based solutions tend to modify the learning algorithms.

Such algorithms include C4.5, k nearest neighbors (k-NN),

support vector machine (SVM) and others.

Unlike most learning models which assign the same cost

for all misclassifications in the learning process, cost-

& Eyad Elyan

e.elyan@rgu.ac.uk

1 Robert Gordon University, Aberdeen, UK

2 Teesside University, Middlesbrough, UK

123

Neural Computing and Applications (2021) 33:2839–2851
https://doi.org/10.1007/s00521-020-05130-z(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-8342-9026
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05130-z&domain=pdf
https://doi.org/10.1007/s00521-020-05130-z

sensitive methods are based on the actual class and aiming

at minimizing the total cost [16]. These methods emphasize

the class of interest (positive class) by assigning higher

costs for misclassifying it.

In this paper, we propose a new method for handling the

class-imbalance problem based on class decomposition

(CD) of the majority class and synthetic oversampling of

the minority class. For short, we will refer to the proposed

method as CDSMOTE. Our method is designed to first find

the similarities within the majority class instances and

group them accordingly. This results in reducing the

dominance of the majority class without causing informa-

tion loss, as it is the case with other undersampling tech-

niques. To ensure a balanced distribution of the data, we

then apply an oversampling method to improve the repre-

sentation of the minority class. Extensive experiments were

carried out, and the results show the superiority of the

proposed method in improving different metrics when

compared with the common and state-of-the-art methods.

The rest of the paper is organized as follows. Section 2

provides the necessary background and relevant literature.

In Sect. 3, we present our method. Section 4 details the

experiments with thorough evaluation and discussion of the

results. Finally, Sect. 5 concludes the work and discusses

possible future directions.

2 Related work

Handling the class-imbalance is most commonly achieved

using ether data-based [17, 18] or algorithmic-based solu-

tions [19]. Because of the purpose and scope of this paper,

we will focus on data-based methods. For those interested

in algorithmic-based solutions, we refer the reader to a

recent survey [20] for more details. Data resampling is one

of the standard methods for handling class-imbalanced

datasets classification. These methods include undersam-

pling, which aims at reducing the dominance of the

majority class instances, oversampling, aiming at increas-

ing the visibility of the minority class instances or hybrid

approaches (combining both methods).

Random sampling is one of the most basic methods used

to handle the class-imbalance problem. It can be applied as

random undersampling (RUS), with the aim of rebalancing

a dataset by randomly sampling a subset of the majority

class instances, or as random oversampling (ROS), to

multiply the instances of the minority class. This approach

is simple, and thus, it is almost certain that it will result in

losing data or overfitting. Therefore, these methods are

rarely used alone. For example, in [21] a hybrid approach

of RUS and a boosting algorithm (RUSBoost) was imple-

mented to improve the classification results.

Other methods are focused on undersampling data from

the overlapping region aiming at minimizing the overlap

between positive and negative instances. Figure 1a shows a

typical example of a hugely imbalanced dataset with the

overlapping region highlighted in Fig. 1b, while Fig. 1c

shows a possible solution where undersampling is carried

out within that region. Several techniques are available to

facilitate undersampling from the overlapping region.

Among these, Tomek Link (T-Link) [22] which is a pop-

ular concept is originally proposed to edit the nearest

neighbor rule which is used to remove instances in an

overlapping region. The main idea is simple, given a

dataset Z, two samples (a from the majority class and b

from the minority class) and a distance function d between

them, a T-Link is obtained if there is an example z 2 Z

such that:

distðz; aÞ[distða; bÞ ^ distðz; bÞ[distða; bÞ ð2Þ

The basic idea then is to discard sample a from the

dataset whenever a T-link is obtained. This method is

proved to be useful in handling class-imbalance and pro-

vided a better alternative to random sampling. For exam-

ple, Kubat and Matwin [23] proposed an undersampling

method by shrinking the overlapping region using T-Link

[22]. This was achieved by selectively removing redundant

majority class instances close to the class boundary. Better

performance was reported based on real datasets. Devi

et al. [24] proposed a more recent method based on T-Link

which also aimed at removing noise and redundant nega-

tive instances from the overlapping region. Other similar

approaches include neighboring cleaning rule (NCL) for

small sets [25] and the majority undersampling technique

(MUTE) [26]. Removing negative class instances selec-

tively (i.e., from the overlapping region) often yields to

better results. However, this does not prevent data loss

which might affect the overall accuracy. Therefore, in

some scenarios or application domains where the overall

accuracy matters, alternatives should be considered to

minimize the risk of losing information [2]. A recent work

presented in [6] by Vuttipittayamongkol and Elyan fol-

lowed a similar approach to selectively remove the nega-

tive instances from the overlapping region by using fuzzy

C-Means and reported the comparable results with the state

of the art. More recently, the authors extended their work

by proposing new methods for handling class-imbalance

where unlike other common resampling methods, they

introduced a novel way to detect and remove negative

instances from the overlapping region using neighborhood

searching techniques and reported the comparable results

with state-of-the-art methods [27].

Oversampling methods aiming at improving the pres-

ence of the minority class instances are also common

practice. Synthetic minority oversampling technique

2840 Neural Computing and Applications (2021) 33:2839–2851

123

(SMOTE) proposed by Chawla et al. [28] is still widely

used in this domain. SMOTE is based on generating syn-

thetic data points using a neighborhood-based technique

(i.e., k-NN). Several extensions of SMOTE have been

proposed since its introduction, including SMOTEBoost

[29], Borderline-SMOTE [17], DBSMOTE [30],

MWMOTE [31] and others. ADASYN [32] is another

common oversampling method that is widely used. This

method is based on assigning a higher weight to harder-to-

learn samples (samples in the overlapping region) using

k-NN.

Clustering-based methods are common practice across

different domains [33] and widely used for undersampling

data. A clustering method such as k-means or fuzzy

C-means (FC-means) [34] is applied to cluster the majority

class instances into k clusters. Data are then sampled from

each cluster aiming at having a smaller and yet represen-

tative sample. As a result, a more balanced dataset is

obtained. Bunkhumpornpat et al. [35] proposed a majority

class undersampling technique based on density-based

spatial clustering algorithm (DBMUTE). DBMUTE was

designed to eliminate negative instances from the over-

lapping region. Lin et al. [36] presented another clustering-

based undersampling method where the negative instances

were first clustered with the number of clusters set to equal

the number of data points in the minority class. The

undersampling was then carried out using cluster centers

and clusters nearest neighbors, respectively. An experiment

using 44 public datasets showed the competitive results.

Clustering-based methods were also used to handle

minority classes in the dataset. For example, Yong et al.

[37] used k-means to divide the minority class into smaller

clusters, and genetic algorithm was then used to generate

new samples based on those clusters. This technique,

however, will not be applicable when the number of

minority class instances is minimal. Similarly, Seoane

Santos et al. [38] handled patients data by clustering the

minority class instances and then rebalanced the data using

SMOTE. Puntumapon et al. [39] proposed a new method

called TRIM, as a preprocessing stage before applying

oversampling methods such as SMOTE or one of its

extensions. Lim et al. [40] implemented an evolutionary

ensemble learning framework by clustering the minority

class instances using mini-batch k-means and hierarchical

agglomerative clustering before generating synthetic

samples.

Overall, it can be said that undersampling minority class

instances contributed to improving the results before

applying oversampling; however, such methods require

enough samples from the minority class instances before

they can be applied. More recently, Generative Adversarial

Neural Networks (GAns) have been applied successfully to

handle class-imbalance, by synthesizing new samples of

the minority class’s instances to handle the imbalance

problem. A typical example was presented in [14, 41, 42]

where a new data augmentation approach using variants of

GANs to handle the class-imbalance problem was pre-

sented. Using image-based datasets, the methods showed

favorable performance over other traditional sampling

techniques.

3 Methods

The method presented in this paper is designed to first

reduce the dominance of the majority class instances in the

dataset by applying unsupervised learning algorithm to

group it into subclasses. An oversampling technique is then

used to improve the presence of the minority class

instances in the dataset. Algorithm 1 provides a schematic

overview of the proposed method, where for any dataset A,

first, it is transformed into a decomposed dataset Ac

Fig. 1 Undersampling imbalanced datasets. a Imbalanced dataset, b overlapping region and c undersampling from overlapping region

Neural Computing and Applications (2021) 33:2839–2851 2841

123

(Sect. 3.1), followed by oversampling of the minority class

instances (oversample) subject to reassessing the decom-

posed dataset Ac (Sect. 3.2). If oversampling is then

applied, then a dataset Acm is created which is a result of

class decomposition and oversampling combined. Finally,

a learning algorithm is applied to the resulting dataset

dataset.

3.1 Class decomposition

Class decomposition is achieved by applying a clustering

algorithm to a training set and aims at minimizing the bias-

variance trade-off [43] by creating more local boundaries

within the dataset. The method was presented by Vilalta

et al. [44], where experiments using 20 datasets showed an

improvement in performance in Naive Bayes and SVM. In

[45], Polaka used hierarchical and k-means clustering to

decompose the majority class instances and reported an

improvement in RF performance. More recently in [7],

Elyan and Gaber extended this approach by applying class

decomposition to all classes in the dataset. The results

showed significant improvement. The K value (number of

clusters) was set experimentally in this work. Later on, the

authors [46] showed that RF performance via decomposi-

tion could be optimized using genetic algorithm. More

recently, CD was applied to a set of engineering symbols

extracted from engineering drawings, and it proved that the

performance of SVM, RF and convolutional neural net-

works (CNN) was improved significantly [15].

In this paper, we follow a similar approach to [7, 46] by

applying k-means clustering algorithm to the majority class

instances. By decomposing the majority class into k sub-

classes, we aim to achieve two goals. First, reduce the

dominance of the majority class instances and also avoid

the loss of information which often results from applying

other undersampling methods. This is illustrated in Fig. 2.

Figure 2 (left) shows the original dataset with the

minority class instances (P), while the right side shows the

dataset after applying class decomposition, which resulted

in the same dataset but with different subclasses (clusters)

representing the majority class instances (N) as

N C1;N C2; Notice that with such an approach, we

transform the dataset into different distributions and at the

same time preserve all information. Consider the binary

classification task in Eq. 3, where we want to learn h(x)

that maps each instance xi to a class yi 2 fCN ;CPg.

hðXÞ : X ! Y ð3Þ

Notice that in a classification task such as in Eq. 5, we aim

to minimize the number of misclassification as shown in

Eq. 4

min
Xm
i¼1

ðyi 6¼ ŷiÞ
 !

ð4Þ

where yi is the actual class label, ŷi is the predicted class

label and m is the number of instances in the dataset. When

we apply class decomposition to the dataset X in Eq. 3, we

get a new classification task (Eq. 5).

h0ðXÞ : X ! Y 0 ð5Þ

Here, we want to learn a function h0ðxÞ that maps each

instance xi to the corresponding label

y0i 2 fCN1;CN2; . . .CNK ;CPg, where K denotes the number

of clusters. Notice that with such approach, we transform a

binary classification problem into a multiclass classifica-

tion problem. Here, transforming the data will not only

reduce the dominance of the negative class CN by clus-

tering it into K subclasses, but will also allow training of

the learning algorithm at a fine-grained level. The same

objective function in Eq. 4 holds but with a minor change,

such that each prediction is considered correct as far as it is

within the main class of labels. In other words for any

negative instance xi ! CN , a predicted label ŷi is consid-

ered correct, if and only if ŷi 2 fCN1;CN2; . . .CNKg.

N P

0
20

0
60

0

N
_C

1
N
_C

2
N
_C

3
N
_C

4
N
_C

5 P

0

50

100

150

200

Fig. 2 Class decomposition applied to an imbalanced binary dataset

2842 Neural Computing and Applications (2021) 33:2839–2851

123

Table 1 Datasets

Dataset No. samples No. features Imbalance ratio

Glass1 214 9 1.82

Wisconsin 683 9 1.86

Ecoli0_vs_1 220 7 1.86

Pima 768 8 1.87

Iris0 150 4 2

Glass0 214 9 2.06

Yeast1 1484 8 2.46

Haberman 306 3 2.78

Vehicle2 846 18 2.88

Vehicle1 846 18 2.9

Vehicle3 846 18 2.99

Glass0123_vs_456 214 9 3.2

Vehicle0 846 18 3.25

Ecoli1 336 7 3.36

New-thyroid2 215 5 4.92

New-thyroid1 215 5 5.14

Ecoli2 336 7 5.46

Segment0 2308 19 6.02

Glass6 214 9 6.38

Yeast3 1484 8 8.1

Ecoli3 336 7 8.6

Page-blocks0 5472 10 8.79

Ecoli034_vs_5 200 7 9

Yeast2_vs_4 514 8 9.08

Ecoli067_vs_35 220 6 9.09

Ecoli0234_vs_5 202 7 9.1

Yeast0359_vs_78 506 8 9.12

Yeast0256_vs_3789 1004 8 9.14

Ecoil046_vs_5 203 6 9.15

Ecoli0346_vs_5 205 7 9.25

Ecoli0347_vs_56 257 7 9.28

Yeast05679_vs_4 528 8 9.35

Vowel0 988 13 9.98

Ecoli067_vs_5 220 6 10

Glass016_vs_2 192 9 10.29

Led7digit02456789_vs_1 443 7 10.97

Ecoli01_vs_5 240 6 11

Glass2 214 9 11.59

Ecoli0147_vs_56 332 6 12.28

Shuttle0_vs_4 1829 9 13.87

Yeast1_vs_7 459 7 14.3

Glass4 214 9 15.47

Ecoli4 336 7 15.8

Page-blocks13_vs_2 472 10 15.85

Abalone9-18 731 8 16.4

Dermatology6 358 34 16.87

Glass016_vs_5 184 9 19.44

Shuttle2_vs_4 129 9 20.5

Neural Computing and Applications (2021) 33:2839–2851 2843

123

3.2 Minority class oversampling

Applying CD to a dataset will result in different data dis-

tribution. In other words, new minority/majority-class

instances may appear (from within the clusters of the

majority class instances). So, first, we check whether the

number of samples in the minority class is close to the

average number of samples of the majority subclasses. For

instance, in Fig. 2, it is shown that the minority class is

below the average number of samples of the five subclasses

after class decomposition. (The horizontal line represents

the average in red color in Fig. 2.) In this case, an over-

sampling is applied to the minority class. To oversample,

we chose SMOTE [28] due to its efficiency and popularity

as one of the most common oversampling methods.

SMOTE requires two classes as input (a minority and a

majority) to perform the oversampling of the minority class

using the majority class samples as a reference for the

synthetic sample generation. In this paper, we use the

majority subclass with the number of samples closest to the

mean as the majority class input to SMOTE. In Fig. 2, this

would be N C3. In cases where a tie takes place (i.e., more

than one majority class to chose), one is selected at ran-

dom. It has to be noted that these simple heuristics were

chosen empirically when implementing CDSMOTE to

handle class-imbalance classification. In other words, it

was found that oversampling the minority class when it

falls below the average number of subclasses yields better

results overall.

4 Experiments

A large-scale experiment has been carried out aiming at

comparing CDSMOTE with other common undersampling

methods for handling class-imbalance data classification.

In this experiment, CDSMOTE is compared against

SMOTE [28] and ADASYN [32]. These were chosen as

they are among the most common undersampling methods

in the literature. Moreover, CDSMOTE is compared

against class decomposition [7] and with recent and state-

of-the-art methods including [36, 47, 48]. The following

subsections describe the experiment in details.

4.1 Datasets

A collection of 60 datasets was used in this experiment,

and these are publicly available and commonly used in

class-imbalance data classification (i.e., [36, 47, 48], ...).

The datasets were obtained from the KEEL repository.1 As

can be seen in Table 1, these datasets are binary classifi-

cation datasets with different imbalance ratios, different

numbers of instances and a varied number of features.

4.2 Settings and implementation details

All datasets were partitioned into training and testing sets

with a ratio of 80%, 20%, respectively, and fivefold cross-

validation training. In all experiments, SVM with linear

kernel was used as the learning algorithm. Other learning

algorithms could have been considered, for example RF

which showed the favorable results over other state-of-the-

Table 1 (continued)

Dataset No. samples No. features Imbalance ratio

Yeast1458_vs_7 693 8 22.1

Glass5 214 9 22.78

Yeast2_vs_8 482 8 23.1

Yeast4 1484 8 28.1

Winequality-red4 1599 11 29.17

Yeast1289_vs_7 947 8 30.57

Yeast5 1484 8 32.73

Ecoli0137_vs_26 281 7 39.14

Yeast6 1484 8 41.4

Winequality-red8_vs_67 855 11 46.5

Winequality-white39_vs_5 1482 11 58.28

Abalone19 731 8 129.44

1 http://sci2s.ugr.es/keel/imbalanced.php.

2844 Neural Computing and Applications (2021) 33:2839–2851

123

http://sci2s.ugr.es/keel/imbalanced.php

Table 2 CDSMOTE outperforming SMOTE, ADASYN and CD

Dataset IR Measure Baseline SMOTE ADASYN CD CDSMOTE

Yeast1 2.46000 AUC 0.78900 0.79000 0.78800 0.87900 0.88400

Haberman 2.78000 AUC 0.70100 0.68900 0.67500 0.89200 0.89800

Haberman 2.78000 Fscore 0.06100 0.43900 0.44600 0.35400 0.47400

Vehicle2 2.88000 Gmean 0.96200 0.96200 0.95900 0.96600 0.96900

Vehicle2 2.88000 Fscore 0.94000 0.93400 0.93500 0.95000 0.95500

Glass0123_vs_456 3.20000 AUC 0.96800 0.96200 0.97000 0.97700 0.98000

Vehicle0 3.25000 Fscore 0.93500 0.94000 0.93400 0.93500 0.94500

Ecoli1 3.36000 Fscore 0.73800 0.77200 0.77100 0.79000 0.80000

Ecoli2 5.46000 Gmean 0.70000 0.91700 0.89400 0.78200 0.92000

Ecoli2 5.46000 Fscore 0.63200 0.72300 0.67000 0.65900 0.74700

Segment0 6.02000 Fscore 0.99000 0.99000 0.99000 0.99000 0.99500

Glass6 6.38000 AUC 0.94700 0.92300 0.92300 0.97900 0.98400

Yeast3 8.10000 AUC 0.96700 0.96900 0.96700 0.97700 0.97900

Yeast3 8.10000 Gmean 0.50600 0.89800 0.90900 0.74800 0.92300

Yeast3 8.10000 Fscore 0.40400 0.66900 0.62700 0.68600 0.79500

Ecoli3 8.60000 AUC 0.93300 0.94000 0.92600 0.95400 0.96000

Ecoli3 8.60000 Gmean 0.00000 0.88700 0.87500 0.00000 0.90300

Ecoli3 8.60000 Fscore 0.00000 0.57500 0.55100 0.00000 0.68600

Page-blocks0 8.79000 AUC 0.94200 0.96400 0.95900 0.98100 0.98400

Ecoli034_vs_5 9.00000 AUC 0.92200 0.87600 0.88100 0.97800 0.98500

Ecoli034_vs_5 9.00000 Gmean 0.88000 0.88400 0.87600 0.81200 0.90100

Ecoli034_vs_5 9.00000 Fscore 0.77900 0.72400 0.66800 0.75900 0.85000

Yeast2_vs_4 9.08000 AUC 0.88300 0.90300 0.91200 0.93800 0.96800

Yeast2_vs_4 9.08000 Fscore 0.45400 0.67200 0.62400 0.50900 0.74000

Ecoli0234_vs_5 9.10000 AUC 0.91100 0.88800 0.88400 0.97700 0.97800

Ecoli0234_vs_5 9.10000 Gmean 0.87600 0.90500 0.89300 0.85000 0.90600

Yeast0359_vs_78 9.12000 AUC 0.76400 0.77600 0.76500 0.93300 0.94000

Yeast0359_vs_78 9.12000 Fscore 0.33100 0.34600 0.30100 0.29300 0.39300

Ecoil046_vs_5 9.15000 AUC 0.87600 0.83000 0.80400 0.96600 0.98000

Ecoil046_vs_5 9.15000 Gmean 0.81100 0.83600 0.83000 0.78200 0.89500

Ecoil046_vs_5 9.15000 Fscore 0.78100 0.73400 0.64200 0.67900 0.85400

Ecoli0346_vs_5 9.25000 Gmean 0.84400 0.89900 0.87100 0.88300 0.93400

Ecoli0346_vs_5 9.25000 Fscore 0.77700 0.75700 0.61000 0.79000 0.82400

Ecoli0347_vs_56 9.28000 AUC 0.88400 0.88600 0.87000 0.97500 0.98100

Yeast05679_vs_4 9.35000 AUC 0.84000 0.84600 0.84500 0.94200 0.94500

Yeast05679_vs_4 9.35000 Fscore 0.00000 0.43300 0.42400 0.00000 0.45500

Vowel0 9.98000 Gmean 0.88400 0.94900 0.95800 0.93200 0.97600

Vowel0 9.98000 Fscore 0.83700 0.78900 0.81600 0.89900 0.91700

Glass016_vs_2 10.29000 Gmean 0.00000 0.51800 0.51600 0.00000 0.73700

Glass016_vs_2 10.29000 Fscore 0.00000 0.17600 0.19500 0.00000 0.22200

Led7digit02456789_vs_1 10.97000 AUC 0.95400 0.94900 0.92500 0.98000 0.98100

Ecoli01_vs_5 11.00000 AUC 0.93600 0.91000 0.91000 0.98600 0.98700

Glass2 11.59000 Fscore 0.00000 0.16200 0.14500 0.00000 0.17800

Ecoli0147_vs_56 12.28000 AUC 0.96200 0.95200 0.93900 0.98600 0.99000

Yeast1_vs_7 14.30000 Gmean 0.00000 0.76200 0.77500 0.00000 0.78400

Yeast1_vs_7 14.30000 Fscore 0.00000 0.29300 0.28400 0.00000 0.39100

Glass4 15.47000 AUC 0.99300 0.99300 0.99000 0.98800 0.99700

Glass4 15.47000 Gmean 0.00000 0.91200 0.90800 0.14100 0.97600

Neural Computing and Applications (2021) 33:2839–2851 2845

123

art methods [49] such as boosting and SVM. However, RF

had shown already the favorable results concerning accu-

racy when class-decomposition was applied to the dataset

as discussed in [7, 46]. In this work, we have chosen SVM

with a linear kernel and default settings to establish the

impact of class decomposition on class-imbalanced dataset

classification.

Table 2 shows that each dataset was processed using

SMOTE, ADASYN, CD, CDSMOTE and finally the

baseline where no undersampling or oversampling.

Regarding SMOTE and ADASYN, the number of nearest

neighbors was set to equal 4 (k ¼ 4), and for class

decomposition, we used k-means with k ¼ 2. It is worth

pointing out that we held these parameters fixed through-

out, and no-parameter tuning was carried out to ensure a

fair comparison between methods and to assess the impact

of CDSMOTE on learning from imbalanced datasets using

the three different evaluation metrics. First, we evaluate the

results using Area Under the Curve (AUC) of the receiving

operating characteristic (ROC) curve, which is a plot of the

sensitivity or true positive rate (TPR) as a function of the

false positive rate (FPR). The second evaluation metric we

used is geometric mean (Gmean), which measures the

balance between the TPR and the true negative rate (TNR)

and is defined as
ffi
TPR � TNR

p
. Finally, we used F1 Score

between the TPR and the FPR [35] and is defined as F1

Score = b� TPR�FPR
TPRþFPR

, with b value = 2.

The experiments were implemented using Python 3.6

and were carried out on a Windows 10 machine with 16

GB RAM and a 2.7 GHz processor.

4.3 Results

As can be seen in Table 2, CDSMOTE outperformed all

methods across one or more evaluation metric in 39 data-

sets. Moreover, it was observed that across the 60 datasets,

CDSMOTE outperformed at least one method in one or

more comparison. The comparison against CD was made to

establish the need for applying oversampling after reducing

the dominance of the majority class instances.

Table 2 (continued)

Dataset IR Measure Baseline SMOTE ADASYN CD CDSMOTE

Glass4 15.47000 Fscore 0.00000 0.69900 0.66200 0.18200 0.82300

Ecoli4 15.80000 Gmean 0.28300 0.94300 0.93700 0.38300 0.96100

Ecoli4 15.80000 Fscore 0.30200 0.69100 0.69100 0.38400 0.81300

Abalone9-18 16.40000 AUC 0.92000 0.92000 0.92800 0.96600 0.97600

Abalone9-18 16.40000 Fscore 0.00000 0.42000 0.42400 0.00000 0.50600

Glass5 22.78000 Fscore 0.00000 0.66700 0.61100 0.48600 0.77400

Yeast2_vs_8 23.10000 AUC 0.78700 0.82400 0.80600 0.97700 0.98100

Yeast2_vs_8 23.10000 Gmean 0.73400 0.74400 0.68200 0.73400 0.76500

Yeast2_vs_8 23.10000 Fscore 0.69100 0.62600 0.20200 0.69100 0.79200

Yeast4 28.10000 Fscore 0.00000 0.29000 0.27900 0.00000 0.31200

Winequality-red4 29.17000 Fscore 0.00000 0.12600 0.12600 0.00000 0.14000

Yeast1289_vs_7 30.57000 Fscore 0.00000 0.12800 0.12800 0.00000 0.15200

Yeast5 32.73000 Gmean 0.00000 0.96700 0.96600 0.00000 0.96900

Yeast5 32.73000 Fscore 0.00000 0.47300 0.47300 0.00000 0.54000

Yeast6 41.40000 Gmean 0.00000 0.89200 0.87400 0.00000 0.89700

Yeast6 41.40000 Fscore 0.00000 0.32700 0.24200 0.00000 0.36600

Winequality-red8_vs_67 46.50000 Fscore 0.00000 0.09200 0.09200 0.00000 0.10800

Abalone19 129.44000 Fscore 0.00000 0.03900 0.05800 0.00000 0.07500

Table 3 CDSMOTE versus other methods using Gmean, F1 score and

AUC (t test)

Method Gmean F1-score AUC

1 Baseline 0.00055801 0.00000107 0.00001961

2 SMOTE 0.02154869 0.00000004 0.00000756

3 ADASYN 0.00537313 0.00003774 0.00000731

4 CD 0.00090928 0.00000125 0.00030986

2846 Neural Computing and Applications (2021) 33:2839–2851

123

A closer look at Table 2, and comparing the perfor-

mance of CDSMOTE against all other methods using

Gmean, F1 Score and AUC, we can see an improvement

gained by applying CDSMOTE. Statistical significance of

the results was measured using the paired t test. With 95%

confidence, the p-values for paired t-tests between

CDSMOTE and all other methods across the three evalu-

ation metrics are shown in Table 3, which clearly show a

statistically significant improvement in performance using

CDSMOTE.

It was also observed from the results that the best

improvement across the three evaluation metrics was

achieved using F1 Score. This suggests that CDSMOTE

improves the presence of the minority-class instances and

reduces the dominance of the majority-class cases. The

results show also that CDSMOTE did not lose in any

dataset against the three different methods (ADASYN,

SMOTE and CD) combined. It was, however, observed

that a similar performance (tie) was recorded in six dif-

ferent datasets and across the three evaluation metrics.

These include Iris0, New-thyroid1, New-thyroid2, Shut-

tle0_vs_4, Shuttle2_vs_4 and Dermatology6. These are the

datasets where 100% accuracy was recorded (i.e., F1 Score

= 1).

For further evaluation, we compared our method with

recent state-of-the-art techniques using the most recent

results and reported the same experiment settings and

datasets. First, we consider Cleofas-Sanchez et al. [47],

who attempted class-imbalance classification using 31 of

the datasets through a hybrid associative classifier with

translation (HACT) based on SMOTE and used Gmean for

evaluating the results. Table 4 lists the performance of

CDSMOTE against this method. Then, we considered Lin

et al. [36] who presented a clustering-based undersampling

Table 4 CDSMOTE against

SMOTE?HACT [47] using

Gmean

Dataset IR CDSMOTE SMOTE?HACT [47]

Wisconsin 1.86 0.96 0.977

Yeast1 2.46 0.582 0.662

Haberman 2.78 0.596 0.625

Vehicle1 2.9 0.78 0.63

Vehicle3 2.99 0.723 0.649

Glass0123_vs_456 3.2 0.91 0.866

Ecoli1 3.36 0.88 0.874

Ecoli2 5.46 0.92 0.892

Segment0 6.02 0.997 0.753

Glass6 6.38 0.94 0.884

Yeast3 8.1 0.923 0.869

Ecoli3 8.6 0.903 0.875

Ecoil034_vs_5 9 0.901 0.89

Yeast0256_vs_3789 9.14 0.766 0.768

Ecoli046_vs_5 9.15 0.895 0.878

Ecoli0346_vs_5 9.25 0.934 0.881

Ecoli0347_vs_56 9.28 0.823 0.864

Yeast05679_vs_4 9.35 0.776 0.81

Ecoli067_vs_5 10 0.899 0.835

Led7digit02456789_vs_1 10.97 0.874 0.888

Ecoli01_vs_5 11 0.897 0.894

Yeast1_vs_7 14.3 0.784 0.693

Glass4 15.47 0.976 0.867

Ecoli4 15.8 0.961 0.938

Yeast1458_vs_7 22.1 0.567 0.646

Glass5 22.81 0.788 0.497

Yeast2_vs_8 23.1 0.765 0.74

Yeast4 28.1 0.794 0.829

Yeast1289_vs_7 30.57 0.602 0.691

Ecoli0137_vs_26 39.14 0.733 0.816

Yeast6 41.4 0.897 0.873

Bold font indicates the winning method

Neural Computing and Applications (2021) 33:2839–2851 2847

123

method on 44 datasets and reported performance using

AUC. An Ensemble Adaboost C4.5 classifier was used for

classification. The results in comparison with CDSMOTE

is shown in Table 5. Finally, Zhu et al. [48] used 31 of the

datasets used in this paper, and the authors adopted an

algorithmic-based approach by designing their own clas-

sifier: Boundary-Eliminated Pseudoinverse Linear Dis-

criminant (BEPILD). Table 6 compares CDSMOTE

performance against BEPILD using the two metrics

reported by the authors (AUC and Gmean).

Table 4 compares CDSMOTE with [47] in terms of

Gmean.Notice that CDSMOTE obtains the better results in

20 out of 31 datasets. Using a paired t test on the 20

datasets where CDSMOTE wins shows a statistically sig-

nificant difference with p value equal to 0.000506.

Table 5 compares CDSMOTE and [36] across AUC,

where it is shown that CDSMOTE outperformed [36] in 37

out of 44 datasets. A paired t test shows significant statis-

tical improvement with a p value of 2:633 � 10�7.

Table 6 shows the comparison of CDSMOTE against

the BEPILD method presented in [48] for Gmean and

AUC. In terms of Gmean, CDSMOTE obtains the better

results in 13 out of 31 datasets. The difference in perfor-

mance in these datasets is not statistically significant (using

t test resulted in a p value = 0.0695); however, for some

application domains, such as health, life science and

security, such improvement in performance could be cru-

cial. Considering only the 13 winning datasets in Table 6,

we found out a statistically significant improvement using

CDSMOTE using a paired t test resulting in a p value of

0.006054. When measuring performance using AUC

Table 6, our proposed method proved to be superior across

almost all datasets. Out of 31 datasets, CDSMOTE out-

performed BEPILD in 30 datasets. Using a t test, a p value

of 2:821 � 10�10 was obtained.

4.4 Discussion

To summarize, out of 60 datasets, CDSMOTE proved to be

superior to the most common and established methods used

in handling class-imbalanced datasets classification. These

methods include SMOTE [28] and ADASYN [32] and CD

[46]. The improvement across three common evaluation

metrics (Gmean, F1 Score and AUC) was statistically sig-

nificant as shown in Tables 3. These results suggest that

applying class decomposition to a majority class instances in

a binary dataset does not only reduce the dominance of the

majority class but also such decomposition provides a more

linearly separable space within the local class boundaries.

The proposed method also showed superior performance

over recent and state-of-the-art methods presented in the

literature such as Cleofas-Sanchez et al. [36, 47], and [48],

as can be seen in Tables 4, 5 and 6. An improvement over

these methods was statistically significant. The results also

showed that the best trade-off between AUC and Gmean,

Table 5 CDSMOTE against Clust?C4:5Ab [36] using AUC

Dataset IR CDSMOTE Clust?C4:5Ab [36]

Glass1 1.82 0.832 0.834

Ecoli0_vs_1 1.86 0.979 0.983

Wisconsin 1.86 0.983 0.99

Pima 1.87 0.905 0.758

Iris0 2 0.99 0.99

Glass0 2.06 0.898 0.89

Yeast1 2.46 0.884 0.747

Haberman 2.78 0.898 0.641

Vehicle2 2.88 0.992 0.995

Vehicle1 2.9 0.933 0.832

Vehicle3 2.99 0.93 0.848

Glass0123_vs_456 3.2 0.98 0.982

Vehicle0 3.25 0.992 0.946

Ecoli1 3.36 0.974 0.94

New-thyroid2 4.92 0.996 0.956

New-thyroid1 5.14 0.999 0.973

Ecoli2 5.46 0.967 0.947

Segment0 6.02 1 0.996

Glass6 6.38 0.984 0.917

Yeast3 8.1 0.979 0.967

Ecoli3 8.6 0.96 0.926

Page-blocks0 8.79 0.984 0.986

Yeast2_vs_4 9.08 0.968 0.977

Yeast05679_vs_4 9.35 0.945 0.869

Vowel0 9.98 0.997 0.987

Glass016_vs_2 10.29 0.915 0.75

Glass2 11.59 0.923 0.76

Shuttle0_vs_4 13.87 1 1

Yeast1_vs_7 14.3 0.934 0.768

Glass4 15.47 0.997 0.853

Ecoli4 15.8 0.996 0.95

Page-blocks13_vs_2 15.85 0.995 0.992

Abalone9-18 16.4 0.976 0.831

Glass016_vs_5 19.44 0.991 0.964

Shuttle2_vs_4 20.5 1 1

Yeast1458_vs_7 22.1 0.858 0.632

Glass5 22.78 0.995 0.949

Yeast2_vs_8 23.1 0.981 0.868

Yeast4 28.1 0.958 0.874

Yeast1289_vs_7 30.57 0.936 0.7

Yeast5 32.73 0.984 0.987

Ecoli0137_vs_26 39.14 0.993 0.838

Yeast6 41.4 0.973 0.909

Abalone19 129.44 0.972 0.728

Bold font indicates the winning method

2848 Neural Computing and Applications (2021) 33:2839–2851

123

the two classically used metrics for imbalanced datasets,

was obtained by CDSMOTE. Overall, the proposed method

obtains the better results in terms of AUC than other

methods. CDSMOTE maximizes the F1 Score results,

meaning that it effectively offers the best trade-off between

the precision and recall for the minority class. Therefore,

CDSMOTE can provide an alternative to handle the class-

imbalance problem in specific scenarios. It has to be

pointed out that there is a large room for improving these

results. This includes hyper-parameters tuning and opti-

mization (optimize the k value), further experiments with

different learning algorithms (i.e., ensemble-based meth-

ods), using alternative clustering methods (i.e., soft clus-

tering techniques, density-based and others) or using

different oversampling methods such as GANs.

5 Conclusions and future work

In this paper, we have presented a new approach for han-

dling class-imbalance problem by means of class decom-

position. Unlike most common undersampling methods,

our method suffers no data loss and preserves all majority

class instances. A large-scale experiment showed that

CDSMOTE produces the comparable results with state-of-

the-art methods, while significantly outperforming some of

the most established methods across metrics such as AUC,

Gmean and F1 Score. The number of datasets used in this

experiment with different sizes, dimensions and imbalance

ratios suggests that the proposed methods can generalize

and scalable across larger and more diverse datasets. It has

to be noted that these results were obtained using default

parameters settings and with one classifier, namely SVM

Table 6 CDSMOTE against

BEPILD [48] using Gmean and

AUC

Dataset IR CDSMOTEGmean BEPILDGmean CDSMOTEAUC BEPILDAUC

Wisconsin 1.86 0.96 0.975 0.983 0.975

Pima 1.87 0.728 0.748 0.905 0.749

Yeast1 2.46 0.582 0.71 0.884 0.711

Vehicle1 2.9 0.78 0.787 0.933 0.788

Vehicle0 3.25 0.968 0.946 0.992 0.946

Glass6 6.38 0.940 0.919 0.984 0.92

Yeast3 8.1 0.923 0.899 0.979 0.899

Ecoli3 8.6 0.903 0.875 0.960 0.88

Ecoli034vs5 9 0.901 0.904 0.985 0.908

Ecoli067vs35 9.09 0.795 0.865 0.973 0.88

Ecoli0234vs5 9.1 0.906 0.908 0.978 0.917

Yeast0359vs78 9.12 0.695 0.744 0.940 0.755

Ecoil046vs5 9.15 0.895 0.892 0.980 0.906

Yeast05679vs4 9.35 0.776 0.784 0.945 0.789

Ecoli067vs5 10 0.899 0.874 0.981 0.877

Glass016vs2 10.29 0.737 0.734 0.915 0.75

Led7digit02456789vs1 10.97 0.874 0.898 0.981 0.902

Ecoli0147vs56 12.28 0.902 0.887 0.990 0.89

Yeast1vs7 14.3 0.784 0.764 0.934 0.766

Ecoli4 15.8 0.961 0.919 0.996 0.923

Abalone9-18 16.4 0.812 0.994 0.976 0.883

Dermatology6 16.87 0.999 0.882 0.999 0.994

Yeast1458vs7 22.1 0.567 0.62 0.858 0.632

Yeast4 28.1 0.794 0.83 0.958 0.831

Winequality-red4 29.17 0.662 0.696 0.961 0.7

Yeast1289vs7 30.57 0.602 0.716 0.936 0.725

Yeast5 32.73 0.969 0.962 0.984 0.987

Yeast6 41.4 0.897 0.875 0.973 0.878

Winequality-red8vs67 46.5 0.636 0.721 0.970 0.74

Winequality-white39vs5 58.28 0.586 0.629 0.982 0.657

Abalone19 129.44 0.723 0.775 0.972 0.728

Bold font indicates the winning method

Neural Computing and Applications (2021) 33:2839–2851 2849

123

with a linear kernel, meaning that further improvement can

be made at the data level as well as the algorithmic level.

At the data level, the method presented in this paper can

benefit from better clustering and grouping of the majority

class instances. This might include isolating the instances

within the overlapping region. At the algorithmic level, we

intend to examine other learning algorithms, in particular,

ensemble-based classification methods such as RF, which

has proved to outperform other learning methods. Also, the

use of other clustering methods can be explored for further

improvement in the results. This might include considering

density-based clustering methods instead of using k-means,

which is often sensitive to noise. Finally, the results can be

further improved by applying some parameter tuning

techniques, to ensure that the best parameter setting is

chosen.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Barandela R, Sánchez JS, Garcı́a V, Rangel E (2003) Strategies

for learning in class imbalance problems. Pattern Recognit

36:849–851

2. Japkowicz N, Stephen S (2002) The class imbalance problem: a

systematic study. Intell Data Anal 6(5):429–449

3. Kotsiantis S, Kanellopoulos D, Pintelas P (2006) Handling

imbalanced datasets: a review. GESTS Int Trans Comput Sci Eng

30(1):25–36

4. Chawla NV (2005) Data mining for imbalanced datasets: an

overview. In: Maimon O, Rokach L (eds) Data mining and

knowledge discovery handbook. Springer, Boston, MA

5. Haixiang G, Yijing L, Shang J, Mingyun G, Yuanyue H (2017)

Learning from class-imbalanced data: review of methods and

applications. Expert Syst Appl 73:220–239

6. Vuttipittayamongkol P, Elyan E, Petrovski A, Jayne C (2018)

Overlap-based undersampling for improving imbalanced data

classification. In: Yin H, Camacho D, Novais P, Tallón-Balles-

teros AJ (eds) Intelligent data engineering and automated learn-

ing—IDEAL 2018. Springer, Cham, pp 689–697

7. Elyan E, Gaber MM (2016) A fine-grained random forests using

class decomposition: an application to medical diagnosis. Neural

Comput Appl 27(8):2279–2288

8. Zhao XM, Li X, Chen L, Aihara K (2008) Protein classification

with imbalanced data. Proteins 70(2):311–319

9. Garcı́a-Pedrajas N, Pérez-Rodrı́guez J, Garcı́a-Pedrajas M, Ortiz-

Boyer D, Fyfe C (2012) Class imbalance methods for translation

initiation site recognition in DNA sequences. Knowl Based Syst

25(1):22–34

10. Kim MJ, Kang DK, Kim HB (2015) Geometric mean based

boosting algorithm with over-sampling to resolve data imbalance

problem for bankruptcy prediction. Expert Syst Appl

42(3):1074–1082

11. Vuttipittayamongkol P, Elyan E (2020) Overlap-based under-

sampling method for classification of imbalanced medical data-

sets. In: Maglogiannis I, Iliadis L, Pimenidis E (eds) Artificial

intelligence applications and innovations. Springer, Cham,

pp 358–369

12. Li S, Hao F, Li M, Kim H-C (2013) Medicine rating prediction

and recommendation in mobile social networks. In: Park JJ,

Arabnia HR, Kim C, Shi W, Gil J-M (eds) Grid and pervasive

computing. Springer, Berlin, pp 216–223

13. Elyan E, Moreno-Garcı́a CF, Johnston P (2020) Symbols in

engineering drawings (SIED): an imbalanced dataset bench-

marked by convolutional neural networks. In: Iliadis L, Angelov

PP, Jayne C, Pimenidis E (eds) Proceedings of the 21st EANN

(engineering applications of neural networks) 2020 conference.

Springer, Cham, pp 215–224

14. Elyan E, Jamieson L, Ali-Gombe A (2020) Deep learning for

symbols detection and classification in engineering drawings.

Neural Netw 129:91–102

15. Elyan E, Moreno-Garcia CF, Jayne C (2018) Symbols classifi-

cation in engineering drawings. In: International joint conference

on neural networks (IJCNN)

16. Thai-Nghe N, Gantner Z, Schmidt-Thieme L (2010) Cost-sensi-

tive learning methods for imbalanced data. In: Proceedings of the

international joint conference on neural networks (IJCNN),

pp 1–8

17. Estabrooks A, Jo T, Japkowicz N (2004) A multiple resampling

method for learning from imbalanced data sets. Comput Intell

20(1):18–36

18. Krawczyk B, Galar M, Jeleń Ł, Herrera F (2016) Evolutionary

undersampling boosting for imbalanced classification of breast

cancer malignancy. Appl Soft Comput J 38:714–726

19. Stefanowski J (2013) Overlapping, rare examples and class

decomposition in learning classifiers from imbalanced data. In:

Emerging paradigms in machine learning. Springer, Berlin,

pp 277–306

20. Branco P, Torgo L, Ribeiro RP (2016) A survey of predictive

modeling on imbalanced domains. ACM Comput Surv

49(2):31:1–31:50

21. Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A (2010)

Rusboost: a hybrid approach to alleviating class imbalance. IEEE

Trans Syst Man Cybern Part A Syst Hum 40(1):185–197

22. Tomek I (1976) An experiment with the edited nearest-neighbor

rule. IEEE Trans Syst Man Cybern SMC–6(6):448–452

23. Kubat M, Matwin S (1997) Addressing the curse of imbalanced

training sets: one sided selection. Int Conf Mach Learn

97:179–186

24. Devi D, Biswas S, Biswajit P (2017) Redundancy-driven modi-

fied tomek-link based undersampling: a solution to class imbal-

ance. Pattern Recognit Lett 93:3–12

25. Laurikkala J (2001) Improving identification of difficult small

classes by balancing class distribution. In: Quaglini S, Barahona

P, Andreassen S (eds) Artificial intelligence in medicine.

Springer, Berlin, pp 63–66

2850 Neural Computing and Applications (2021) 33:2839–2851

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

26. Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C (2011)

MUTE: majority under-sampling technique. In: International

conference on information, communications and signal process-

ing, pp 1–4

27. Vuttipittayamongkol P, Elyan E (2020) Neighbourhood-based

undersampling approach for handling imbalanced and overlapped

data. Inf Sci 509:47–70

28. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002)

SMOTE: synthetic minority over-sampling technique. J Artif

Intell Res 16:321–357

29. Chawla NV, Lazarevic A, Hall LO, Bowyer KW (2003)

Smoteboost: improving prediction of the minority class in

boosting. In: Knowledge discovery in databases: KDD 2003.

Springer, Berlin, pp 107–119

30. Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C (2012)

DBSMOTE: density-based synthetic minority over-sampling

technique. Appl Intell 36(3):664–684

31. Barua S, Islam M, Yao X, Murase K (2014) MWMOTE: majority

weighted minority oversampling technique for imbalanced data

set learning. IEEE Trans Knowl Data Eng 26:405–425

32. Haibo H, Bai Y, Garcia EA, Li S (2008) Adaptive synthetic

sampling approach for imbalanced learning. Int Jt Conf Neural

Netw (IJCNN) 3:1322–1328

33. Li S, Chen W, Li S, Leung K-S (2019) Improved algorithm on

online clustering of bandits. In: Proceedings of the 28th inter-

national joint conference on artificial intelligence, AAAI Press,

pp 2923–2929

34. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means

clustering algorithm. Comput Geosci 10(2–3):191–203

35. Bunkhumpornpat C, Sinapiromsaran K (2017) DBMUTE: den-

sity-based majority under-sampling technique. Knowl Inf Syst

50(3):827–850

36. Lin WC, Tsai CF, Hu YH, Jhang JS (2017) Clustering-based

undersampling in class-imbalanced data. Inf Sci 409–410:17–26

37. Yong Y (2012) The research of imbalanced data set of sample

sampling method based on K-means cluster and genetic algo-

rithm. Energy Procedia 17:164–170

38. Seoane Santos M, Henriques Abreu P, Garcı́a-Laencina PJ,

Simão A, Carvalho A (2015) A new cluster-based oversampling

method for improving survival prediction of hepatocellular car-

cinoma patients. J Biomed Inform 58:49–59

39. Puntumapon K, Rakthamamon T, Waiyamai K (2016) Cluster-

based minority over-sampling for imbalanced datasets. IEICE

Trans Inf Syst 99(12):3101–3109

40. Lim P, Goh CK, Tan KC (2017) Evolutionary cluster-based

synthetic oversampling ensemble (ECO-ensemble) for imbalance

learning. IEEE Trans Cybern 47(9):2850–2861

41. Ali-Gombe A, Elyan E, Jayne C (2019) Multiple fake classes

GAN for data augmentation in face image dataset. In: 2019

International joint conference on neural networks (IJCNN),

pp 1–8

42. Ali-Gombe A, Elyan E (2019) MFC-GAN: class-imbalanced

dataset classification using multiple fake class generative adver-

sarial network. Neurocomputing 361:212–221

43. Geman S, Bienenstock E, Doursat R (1992) Neural networks and

the bias/variance dilemma. Neural Comput 4(1):1–58

44. Vilalta R, Rish I (2003) A decomposition of classes via clustering

to explain and improve naive Bayes. In: Machine learning:

ECML 2003, pp 1–12

45. Polaka I (2013) Clustering algorithm specifics in class decom-

position. In: Proceedings of the international scientific conference

46. Elyan E, Gaber MM (2017) A genetic algorithm approach to

optimising random forests applied to class engineered data. Inf

Sci 384:220–234

47. Cleofas-Sánchez L, Sánchez JS, Garcı́a V, Valdovinos RM

(2016) Associative learning on imbalanced environments: an

empirical study. Expert Syst Appl 54:387–397

48. Zhu Y, Wang Z, Zha H, Gao D (2017) Boundary-eliminated

pseudoinverse linear discriminant for imbalanced problems.

IEEE Trans Neural Netw Learn Syst 29(6):2581–2594

49. Fernández-Delgado M, Cernadas E, Barro S, Amorim D (2014)

Do we need hundreds of classifiers to solve real world classifi-

cation problems? J Mach Learn Res 15:3133–3181

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:2839–2851 2851

123

	coversheet_journal_article
	ELYAN 2020 CDSMOTE (VOR)
	CDSMOTE: class decomposition and synthetic minority class oversampling technique for imbalanced-data classification
	Abstract
	Introduction
	Related work
	Methods
	Class decomposition
	Minority class oversampling

	Experiments
	Datasets
	Settings and implementation details
	Results
	Discussion

	Conclusions and future work
	Open Access
	References

