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Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are found in the aquatic environment globally. Such drugs including nap-
roxen, ibuprofen and ketoprofen are chiral molecules. Enantiomers of those drugs have identical physicochemical properties 
but can behave and interact differently in chiral environments due to differences in their three-dimensional shape. This results 
in enantiospecific differences in environmental fate and toxicity, which is often overlooked. Therefore, we review the analyti-
cal methods, occurrence and fate, and toxicity of chiral non-steroidal anti-inflammatory drugs at the enantiomeric level. The 
advancement of enantioselective chromatography methods, particularly the use of polysaccharide-based stationary phases, 
has enabled trace determination of enantiomers in complex environmental matrices. Macrocosm and microcosm studies 
of engineered and natural environments revealed that such drugs can undergo both enantioselective degradation and chiral 
inversion. Enantioselectivity has been reported during wastewater treatment, in surface waters and in agricultural soils. The 
use of microcosms spiked with individual enantiomers over racemates is essential to evaluate these degradation and inver-
sion fate processes. The chiral inversion process whereby one enantiomer converts into its antipode can be significant if the 
more toxic enantiomers are formed. Existing enantiospecific effect studies report less than an order of magnitude difference 
in enantiomer toxicity. However, toxicity data for enantiomers are limited and further research is needed to better appreciate 
the environmental risk at the enantiomeric level.
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Introduction

The presence of pharmaceutical drugs in the environment 
has been an increasingly active area of research over the last 
20 years. NSAIDs are a common therapeutic group of phar-
maceuticals used to relieve pain and reduce inflammation. 
They act via inhibition of the cyclooxygenane isoenzymes 
(Brune and Patrignani 2015). NSAIDs are mainly excreted 
in urine as metabolites with a small proportion of the con-
sumed dose being excreted unchanged. For example, 1% or 
less of naproxen, ibuprofen and ketoprofen is reported to be 
excreted unchanged in urine (Upton et al. 1980).

The extensive use of NSAIDs as prescription and over-
the-counter medication results in the presence of µg L−1 
concentrations in untreated wastewater (Camacho-Muñoz 

et al. 2014; Cizmas et al. 2015; Gardner et al. 2013; Kaspr-
zyk-Hordern et al. 2009; Larsson et al. 2014; Petrie et al. 
2015; Roberts and Thomas 2006; Tijani et al. 2016). Fur-
thermore, it is not uncommon for naproxen and ibuprofen 
concentrations to be greater than 10 µg L−1 in wastewater 
(Camacho-Muñoz et al. 2014; Kasprzyk-Hordern et al. 2009; 
Larsson et al. 2014; Petrie et al. 2015; Roberts and Thomas 
2006). Incomplete removal during wastewater processing is 
reported for conventional wastewater treatment plants such 
as trickling filters and activated sludge (Camacho-Muñoz 
et al. 2012; Kasprzyk-Hordern et al. 2009; Petrie et al. 2015; 
Roberts and Thomas 2006; Verlicchi et al. 2012). Despite 
dilution of wastewater effluent upon discharge to surface 
waters, NSAIDs are found at ng L−1 to µg L−1 concentrations 
in the aquatic environment (Kasprzyk-Hordern et al. 2009; 
Petrie et al. 2015; Roberts and Thomas 2006).

NSAIDs are weakly acidic with acid-dissociation con-
stants (pKa, pH at which 50% of the drug is ionized) in the 
range 3.7–4.9 (Table 1). Therefore, at typical environmen-
tal pH values (6.5–8.0) they will be ionized and negatively 
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1 3 Table 1  Physicochemical properties and pharmacological activity of chiral non-steroidal anti-inflammatory drugs and their metabolites

Drug, formula and CAS 
number

Structure
(* denotes chiral carbon)

pKa
a Log Kow

b Log
Dow

c
Solubility
(mg  L−1)b

Log Koc
b Prescription Pharmacological activity Notes

R/S(±)-ibuprofen
C13H18O2
R/S(±): 15687-27-1
S(+): 51146-56-6
R(−): 51146-57-7

4.85 3.79 1.64 41.05 2.60 R/S(±)-ibuprofen S(+)-ibuprofen inhibits 
COX-1  (IC50 = 2.6 μM) 
and COX-2  (IC50 
1.53 μM). S(+)-ibuprofen 
inhibits COX activity, 
thromboxane formation, 
activation and platelet 
aggregation than R(−)-
ibuprofend,e,f

50–60% of R(−)-ibuprofen 
undergoes metabolic 
 inversionm

90% of the dose is eliminated 
via urine as metabolites or 
their  conjugatesn

R/S(±)-carboxyibuprofen
C13H16O4
R/S(±): 15935-54-3

3.97 1.97 − 1.06 1453 3.08 – – –

R/S(±)-2-hydroxyibuprofen
C13H18O3
R/S(±): 51146-55-5

4.63 2.29 − 0.08 2974 1.23 – – –

R/S(±)-2-phenylpropionic 
acid

C9H10O2
R/S(±): 492–37-5

4.34 1.85 − 1.01 4987 1.65 – – –

R/S(±)-ketoprofen
C16H14O3
R/S(±): 22071-15-4
S(+): 22161-81-5
R(−): 56105-81-8

3.88 3.12 − 0.66 120.4 2.46 R/S(±)- or as S(+)-keto-
profen

S(+)-ketoprofen is a potent 
inhibitor of COX-1 and 
COX-2  (IC50 = 1.9 and 
27 nM, respectively), 
R(−)-ketoprofen is 100 to 
1000 times less  potentg,h

Chiral inversion in vivo in 
human from R to S is lim-
ited to approx. 10%. o

80% of the dose is eliminated 
via urine, primarily as the 
glucuronide  metaboliten

R/S(±)-dihydroketoprofen
C16H16O3
R/S(±): 59960-32-6

4.30 2.56 − 0.51 1136 2.19 – – –

R/S(±)-naproxen
C14H14O3
R/S(±):23981-80-8
S(+): 22204-53-1
R(−): 23979-41-1

4.19 3.10 − 0.27 144.9 2.54 S(+)-naproxen S(+)-naproxen is a non-
selective COX inhibi-
tor. The  IC50 values for 
human recombinant 
COX-1 and COX-2 are 
0.6–4.8 µM and 2.0–
28.4 µM,  respectivelyd,i

95% of naproxen and 
its metabolites can be 
recovered in the urine 
with 66–92% recovered as 
conjugated metabolite and 
less than 1% recovered as 
naproxen and desmethyl-
naproxen. Less than 5% of 
naproxen in excreted in the 
 faecesn
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Table 1  (continued)

Drug, formula and CAS 
number

Structure
(* denotes chiral carbon)

pKa
a Log Kow

b Log
Dow

c
Solubility
(mg  L−1)b

Log Koc
b Prescription Pharmacological activity Notes

R/S(±)-O-
desmethylnaproxen

C13H12O3
S(+):52079-10-4
R(−):123050-98-6

4.34 2.54 0.24 2296 2.90 – – –

R/S(±)-indoprofen
C17H15NO3
R/S(±):31842-01-0

3.74 2.32 − 1.13 67.9 2.13 R/S(±)-indoprofen – n.a

R/S(±)-carprofen
C15H12ClNO2
R/S(±):53716-49-7
S(+): 52263-84-0

4.42 3.73 1.11 2.20 3.69 R/S(±)-carprofen S(+)-carprofen  IC50 
176 µM for COX-1 and 
7 µM for COX-2 R(−)-
carprofen  IC50 380 µM 
for COX-1 and 161 µM 
for COX-2 in dog.j

n.a

R/S(±)-flurbiprofen
C15H13FO2
R/S(±):5104–49-4

4.42 3.81 0.86 17.7 3.44 R/S(±)-flurbiprofen S(+)-flurbiprofen is the 
COX-active enantiomer 
of the non-selective COX 
inhibitor flurbiprofen 
with  IC50 values of 0.48 
and 0.47 µM for COX-1 
and COX-2, respectively, 
in guinea pig whole 
blood.k

70% of the dose eliminated 
in the urine as parent drug 
and  metabolitesn

R/S(±)-fenoprofen
C15H14O3
R/S(±):29679-58-1

3.96 3.90 − 0.20 30.1 2.84 R/S(±)-fenoprofen S(+)-fenoprofen  IC50 
149 µM for COX-1 and 
59 µM for COX-2. No 
data on R(−)-fenoprofen.l

90% of a dose is elimi-
nated as glucuronide and 
4′-hydroxyfenoprofen 
 glucuroniden

Key: R/S(±), racemic mixture; pKa, acid dissociation constant; Kow, n-octanol/water partition coefficient; Dow, n-octanol/water distribution coefficient; Koc, organic/carbon partition coefficient; 
COX-1, cyclooxygenase 1; COX-2, cyclooxygenase 2;  IC50, half maximal inhibitory concentration; n.a., not available
a ChemAxon; bChemSpider database; cDow was calculated as a function of pH using Dow = Kow∕(1 + 10pH−pka);dBarnett et al. (1994); eEvans et al. (1991); fVillanueva et al. (1993); gPalomer 
et al. (2000); hGhezzi et al. (1998); iLaneuvillet et al. (1994); jRiviere and Papich (2009); kCarabaza et al. (1996); lPoggi et al. (2006); mEvans (2001); nDrugBank; oRudy et al. (1998)
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charged. Their pH-dependent octanol–water partition coeffi-
cients (log DOW) range from − 1.13 to 1.64 at pH 7 (Table 1). 
Being charged enables electrostatic attractions with posi-
tively charged ions and surfaces in the environment. Other 
than the aqueous phase of environmental matrices, NSAIDs 
have been reported in the particulate phases of wastewater 
and activated sludge (Martín et al. 2012; Radjenović et al. 
2009b) as well as being found in solid matrices including 
digested sludge, sediments and soils (Albero et al. 2014; 
Kumirska et al. 2015; Martín et al. 2012; Radjenović et al. 
2009a).

Pharmaceutical drugs as a group of environmental pollut-
ants remain termed emerging contaminants as their behav-
iour in the environment is not fully understood. Drug ste-
reochemistry plays a significant role on the fate and effects 
of chiral pharmaceuticals in the environment (Kasprzyk-
Hordern 2010; Sanganyado et al. 2017). However, NSAID 
stereochemistry in environmental settings is often over-
looked. Therefore, the purpose of this review is to provide 
an up-to-date appraisal on the analysis, fate and toxicity of 
chiral NSAIDs, and to discuss recommendations for future 
research in this area.

Chiral non‑steroidal anti‑inflammatory 
drugs

Several NSAIDs are chiral including ibuprofen, naproxen, 
ketoprofen, indoprofen, flurbiprofen, carprofen and fenopro-
fen as well as several of their metabolites (Table 1). Enan-
tiomers of chiral pharmaceuticals have identical chemical 
structures but different spatial arrangements of atoms around 
a stereogenic centre, e.g. see ketoprofen in Fig. 1a. Pairs of 
enantiomers have identical physicochemical properties but 
behave and interact differently in chiral environments due to 
differences in their three-dimensional shape. Consequently, 
chiral pharmaceuticals can exhibit enantioselectivity in envi-
ronmental occurrence, fate and toxicity (Eaglesham et al. 
2020; Kasprzyk-Hordern 2010; Ribeiro et al. 2012a, b, 2013; 
Sanganyado et al. 2017; Wong 2006). Pharmaceuticals with 
two stereogenic centres have two pairs of enantiomers and so 
on. Diastereomers are those stereoisomers that are not mirror 
images and can have different physicochemical properties, 
e.g. see the metabolite dihydroketoprofen in Fig. 1b.

Differences that exist in the way chiral NSAIDs are dis-
pensed. For example, ibuprofen is dispensed as the racemate, 

enan�omers

enan�omers

diastereomersdiastereomers

(R)-2-(3-((R)-hydroxy(phenyl)methyl)
phenyl)propanoic acid

(S)-2-(3-((S)-hydroxy(phenyl)methyl)
phenyl)propanoic acid

(R)-2-(3-((S)-hydroxy(phenyl)methyl)
phenyl)propanoic acid

(S)-2-(3-((R)-hydroxy(phenyl)methyl)
phenyl)propanoic acid

enan�omers

(R)-2-(3-benzoylphenyl)propanoic acid(S)-2-(3-benzoylphenyl)propanoic acid

(a)

(b)

Fig. 1  Enantiomers of ketoprofen (a) and enantiomers and diastereomers of dihydroketoprofen (b)
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i.e. equal dose of both enantiomers, and naproxen is dis-
pensed in enantiopure form as S(+)-naproxen only. Nap-
roxen is dispensed in this way because R(−)-naproxen causes 
hepatic toxicity, and the majority of the desired pharmaco-
logical activity resides with S(+)-naproxen (Harrington and 
Lodewijk 1997). Ketoprofen is dispensed as the racemate 
and as enantiomerically pure S(+)-ketoprofen (Table 1). As 
enantiomers of the same drug can behave differently in bio-
logically mediated environments, enantioselective changes 
during human metabolism can occur.

Chiral NSAIDs are unlike many other chiral pharmaceu-
ticals in that they can undergo chiral inversion whereby one 
enantiomer can convert into its antipode (Wsol et al. 2004). 
For example, unidirectional inversion of the biologically less 
active enantiomer R(−)-ibuprofen to the active enantiomer 
S(+)-ibuprofen has been reported in in vivo mammalian 
studies (Hao et al. 2005). The inversion process proceeds 
with an enzyme mediated reaction to form an activated 
Coenzyme A derivative of R(−)-ibuprofen (Fig. 2). This 
initial biotransformation step is considered to be enantiose-
lective. The derivative is then racemized by an epimerase 
and cleaved by a hydrolase to release S(+)-ibuprofen (Kato 
et al. 2004, 2003). Racemization could result from the enzy-
matic deprotonation of the Coenzyme A derivative forming 
an enol-type intermediate (Khan et al. 2014). Enzymatic pro-
tonation can then take place either side of the planar double 
bond system.

Further enantioselectivity of chiral NSAIDs can also be 
observed during wastewater treatment and in the environ-
ment itself (Caballo et al. 2015a; Camacho-Muñoz et al. 
2019; Hashim and Khan 2011; Kasprzyk-Hordern 2010; 
Khan et  al. 2014; Matamoros et  al. 2009; Sanganyado 
et al. 2017). This results in enantiomeric compositions in 
the environment being considerably different to that of the 
dispensed medication. Significantly, laboratory-based eco-
toxicity testing of pharmaceuticals to assess environmental 

risk is typically undertaken using ‘off-the-shelf’ analytical 
reference standards. This can lead to the underestimation 
or overestimation of the associated environmental risk if 
enantiospecific toxicity exists. Nevertheless, an improved 
understanding on the importance of drug stereochemistry 
has resulted in more exposure and effect-driven studies of 
NSAIDs undertaken at the enantiomeric level (Camacho-
Muñoz et al. 2019; Yuan et al. 2018). This has been possible 
by the improvements in analytical methodologies capable of 
enantioselective determination at the ng L−1 concentrations 
found in the environment.

Enantioselective analytical methods 
for non‑steroidal anti‑inflammatory drugs 
in environmental matrices

The role of the analytical method is to achieve adequate 
separation of enantiomers such that their concentrations can 
be measured accurately. Traditionally, analytical methods 
capable of enantioselective analysis were used for quality 
control purposes in the manufacturing industry. Such meth-
ods facilitate the analysis of single drugs only, commonly 
making use of ultraviolet detection. These methods utilized 
chiral stationary phases for direct enantiomer separations 
using liquid chromatography (LC) which avoids the need for 
derivatization. These LC methods were typically operated in 
normal phase with mobile phases not compatible with mass 
spectrometry (MS). However, the use of MS is essential for 
environmental analysis due to the complexity of environ-
mental matrices and the comparatively low concentrations 
of pharmaceutical drugs present (Kasprzyk-Hordern 2010; 
Ribeiro et al. 2012b, 2014; Sanganyado et al. 2017; Wong 
2006). Therefore, new enantioselective methods have been 
developed to enable the coupling of the chromatographic 
system to MS specifically for environmental analysis. This 

Fig. 2  Proposed mechanism of 
R(−)-ibuprofen inversion in rat 
liver. Adapted from Kato et al. 
(2003)

R(-)-Ibuprofen

S(+)-Ibuprofen

R(-)-Ibuprofenyl-CoA

S(+)-Ibuprofenyl-CoA

Acyl-CoA Synthase

Hydrolase

Hydrolase

2-Arylpropionyl-CoA 
Epimerase
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also helps facilitate the simultaneous determination of sev-
eral drugs in the same analytical run.

Enantioresolution (RS) is a critical parameter to optimize 
during enantioselective method development. Ideally, RS 
greater than 1.5 ensures baseline separation; however, RS of 
1.0 is considered adequate for quantitative purposes as it rep-
resents a maximum 2% peak overlap (Bagnall et al. 2012). 
To date, enantioselective methodologies for NSAIDs have 
been developed for wastewater, river water, drinking water, 
sediments, sludge and fish tissues (Table 2). LC, gas chroma-
tography (GC) and more recently, supercritical fluid chroma-
tography (SFC) have been utilized as the separation method 
for environmental analysis. Prior to instrumental analysis, 
such methodologies require appropriate sample extraction 
and clean-up methods such as solid-phase extraction (SPE) 
and pressurized liquid extraction, depending on the matrix 
under investigation. Extraction methods are not considered 
enantioselective in nature and not discussed in this review. 
These have been reviewed extensively elsewhere, e.g. see 
(Boyacı et al. 2015; Buchberger 2011; Evans and Kaspr-
zyk-Hordern 2014; Farré et al. 2012; Llompart et al. 2019; 
Madikizela et al. 2018; Płotka-Wasylka et al. 2016; Zuloaga 
et al. 2012).

Liquid chromatography–mass spectrometry

Liquid chromatography (LC) is the most popular method 
of enantioselective analysis due to availability of chiral 
columns. Direct enantiomer separations typically rely on 
different stereospecific interactions with the chiral station-
ary phase. Chiral additives can also be added to the mobile 
phase to achieve direct separations; however, they are 
often not compatible with MS (Sanganyado et al. 2017). 
The direct approach relies on formation of transient dias-
tereomeric complexes between the chiral selector and drug 
enantiomers in thermodynamic equilibria. The formation of 
these transient diastereomeric complexes for enantiosepa-
ration is driven by hydrogen bonds or ionic, ion–dipole, 
dipole–dipole, van der Waals and π–π interactions (Scriba 
2016). However, the precise mechanisms of enantiosepara-
tion remain poorly understood. Nevertheless, several tools 
are available to study the mechanism of chiral recognition 
including spectroscopic techniques, especially nuclear mag-
netic resonance spectroscopy. Molecular modelling is also 
proposed to visualize and analyze the dynamics of the pro-
cess (Scriba 2016). Traditionally, the three-point interac-
tion model was often used to describe the chiral recogni-
tion process (Bao et al. 2013; Pirkle and Pochapsky 1989). 
Here, three functional groups around the stereogenic centre 
of one of the enantiomers undergo molecular interactions 
with the chiral stationary phase (Berthod 2006). A variety of 
chiral stationary phases have been utilized for enantiosepa-
ration of NSAIDs including derivatized polysaccharides 

(Camacho-Muñoz et al. 2016; Li et al. 2020; Ma et al. 2019; 
Wang et al. 2018; Yuan et al. 2018), glycopeptides (Cama-
cho-Muñoz and Kasprzyk-Hordern 2017), glycoproteins 
(Camacho-Muñoz and Kasprzyk-Hordern 2015) and Pirkle-
type columns (Caballo et al. 2015a; Coelho et al. 2019).

Chiral selector: polysaccharide phases

The most popular phases for chiral NSAIDs are the derivat-
ized polysaccharides (Table 2). Amylose tris-(3,5-dimethyl-
phenylcarbamate), amylose tris-(3-chlorophenylcarbamate), 
amylose tris-(3-chloro-5-methylphenylcarbamate) and cel-
lulose tris-(4-methylbenzoate) have all been used (Table 2). 
Such phases have a high number of chiral centres in the 
ordered polysaccharide backbone and substituents. Separa-
tion of carprofen, flurbiprofen, ibuprofen, indoprofen, keto-
profen, laxoprofen, naproxen and pranoprofen has all been 
achieved by polysaccharide phases (Table 2). Separation of 
NSAIDs is achieved in reversed phase mode under isocratic 
(Li et al. 2020; Ma et al. 2019; Yuan et al. 2018) and gradi-
ent elution mode (Camacho-Muñoz et al. 2016; Wang et al. 
2018). Mobile phases typically consist of MS compatible, 
i.e. thermally labile, aqueous ammonium buffers such as for-
mate or acetate, and organic modifiers such as acetonitrile 
or methanol. The type and concentration of buffer as well 
as the organic modifier influence enantioseparations (Cama-
cho-Muñoz et al. 2016; Li et al. 2020; Ma et al. 2019; Wang 
et al. 2018; Yuan et al. 2018). For example, Li et al. (2020) 
reported a reduction in organic modifier of acetonitrile from 
50 to 35% approximately doubled the flurbiprofen RS on an 
amylose tris-(3-chlorophenylcarbamate) phase. Less signifi-
cant changes to RS were observed by varying the ammonium 
formate concentration from 20 to 30 mM (Li et al. 2020).

Mobile phase pH also plays an important role in the sepa-
ration. For example, when the analyte is fully ionized, it has 
a greater affinity with the aqueous mobile phase than the 
polysaccharide stationary phase. Polysaccharide phases such 
as amylose tris-(3,5-dimethylphenylcarbamate) do not have 
ionic sites within their structure for interaction with charged 
analytes (Ma et al. 2019). As the pKa of the NSAIDs is 
3.7–4.9 (Table  1), methods typically report the use of 
mobile phases with pH less than 5 (Table 2). However, care 
is needed as pH will also have a significant influence on MS 
sensitivity. Too low a pH will result in the neutral form of 
the drug predominating and poor MS response. Therefore, 
development of such methods for environmental analysis 
requires trade-offs between enantiomer separation and MS 
response. This could be overcome by post-column infusion 
of acidic/basic modifier which has been applied in LC–MS/
MS and SFC–MS/MS (Borges et al. 2011; Svan et al. 2015). 
Nevertheless, existing methods using polysaccharide-based 
phases (and appropriate sample preparation) report method 
detection limits (MDLs) at low ng  L−1 for aqueous matrices 
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Table 2  Enantioselective methodologies coupled to mass spectrometry for environmental analysis of chiral non-steroidal anti-inflammatory drugs

Drug Matrix Sample col-
lection and 
storage

Extraction 
and clean-up

Stationary phase and 
column dimensions

Mobile phase 
conditions and 
run time

Analysis Calibration 
method

RS Recovery  
(%)

MDL (ng 
 L−1 or 
ng g−1)

References

Carprofen, 
flurbipro-
fen, indo-
profen and 
naproxen

Fish tissue 
(5 g)

− 20 °C USE-SPE Amylose tris-(3-chlo-
rophenylcarbamate); 
250 × 4.6 mm, 5 μm

20 mM 
 NH4HCO2/
ACN pH 3.5 
(4:6, v/v) @ 
0.6 mL/min; 
25 °C; 10 
µL injection; 
35 min

LC–ESI–
MS/MS

Matrix-
matched

0.66–7.17 82.6–106.7 1–8a A

Flurbiprofen, 
ibuprofen 
and nap-
roxen

River water 
(500 mL)

Stored in dark 
glass bottles 
with 0.02% 
(w/v)  NaN3 
@ 4 °C; 
filtered

SPE Amylose tris-(3,5-dimeth-
ylphenylcarmabate); 
150 × 4.6 mm, 5 µm

10 mM 
 NH4OAc 
(pH 5): ACN 
(65:35, v/v) 
@ 0.4 mL/
min; 25 °C; 
20 µL injec-
tion; ≥ 17 min

LC–ESI–
MS/MS

Matrix-
matched

 ≥ 1.0 89.3–100.5 0.35–11.1 B

Flurbiprofen, 
ibuprofen, 
ketoprofen 
and nap-
roxen

River water 
(500 mL)

Amber glass 
bottles @ 
4 °C; filtered 
0.45 µm; 
acidified to 
pH 2

SPE 1-(3,5-dinitrobenzamido)-
1,2,3,4-tetrahydrophen-
anthrene; 250 × 4.6 mm, 
5 µm

MeOH/
H2O + 0.1% 
AcOH (6:4); 
1 mL/min; 
room  Ta; 10 
µL injection; 
90 min

LC–ESI–
MS/MS

Internal 
standard 
(deuterated 
surrogates)

0.68–28.1 96.0–107.0 0.36–2.66 C

Flurbiprofen, 
ibuprofen 
and keto-
profen

River water, 
lake 
water and 
wastewater 
(100 mL), 
sediment 
and sludge 
(1 g)

Liquid samples 
@ 4 °C, solid 
samples: 
air-dried, 
ground, 
sieved, desic-
cator @ room 
 Ta

Liquid 
samples: 
MSPE-
DLLME; 
Solid sam-
ples: USE-
MSPE-
DLLME

Amylose tris-(3-chloro-
5-methylphenylcarba-
mate) 250 × 4.6 mm, 
5 μm

H2O + 0.1%FA/
ACN (4:6, 
v/v); 0.4 mL/
min; 20 °C; 
10 µL injec-
tion; ≥ 25 min

LC–ESI–
MS/MS

Matrix-
matched

 > 1.0 75.8–92.1 1.85–3.73b 
0.35–3.73c

D
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Drug Matrix Sample col-
lection and 
storage

Extraction 
and clean-up

Stationary phase and 
column dimensions

Mobile phase 
conditions and 
run time

Analysis Calibration 
method

RS Recovery  
(%)

MDL (ng 
 L−1 or 
ng g−1)

References

Flurbiprofen, 
ibuprofen, 
indoprofen, 
laxoprofen 
and prano-
profen

River water, 
influ-
ent and 
effluent 
wastewater 
(200 mL)

n.a MSPE Cellulose tris-(4-methylb-
enzoate) 150 × 4.6 mm, 
5 μm

(A) 5 mM 
NH4OAc 
(pH5) and 
(B) MeOH; 
Gradient: 
0 min 30% A; 
23 min, 30% 
A; 25 min, 
20% A; 
35 min, 20% 
A @ 0.4 mL/
min; 20 °C; 
10 µL injec-
tion: ≥ 35 min

LC–ESI–
MS/MS

Matrix-
matched

 > 1.5 76–91 9.40–26.3 E

Ibuprofen 
and nap-
roxen

Influent and 
effluent 
wastewater 
(500 mL)

Amber glass 
bottles @ 
4 °C

SPE Dimethyl-β-cyclodextrin 
20 m, 0.25 mm i.d. 
0.12 µm

He; Oven: 
100 °C 
for 2 min, 
increased by 
2 °C/min to 
200 °C, held 
at 200 °C for 
5 min; 2 µL 
injection

GC–EI–MS/
MS

n.a n.a n.a 100a F

Carboxy-
ibuprofen, 
2-hydroxy-
ibuprofen, 
ibuprofen, 
indoprofen, 
ketoprofen 
and nap-
roxen

Influent and 
effluent 
wastewater 
(100 mL), 
river water 
(200 mL)

High-density 
polyethylene 
bottles @ 
4 °C; filtered 
0.7 µm

SPE Glycopeptide teicoplanin 
250 × 2.1 mm, 5 μm

10 mM 
NH4OAc (pH 
4.2)/MeOH 
(7:3, v/v) @ 
0.08 mL/min; 
15 µL injec-
tion; min

LC–ESI–
MS/MS

Internal 
standard 
(deuterated 
surrogates)

 > 0.4 55.5–121.2 1.32–1319 G
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Table 2  (continued)

Drug Matrix Sample col-
lection and 
storage

Extraction 
and clean-up

Stationary phase and 
column dimensions

Mobile phase 
conditions and 
run time

Analysis Calibration 
method

RS Recovery  
(%)

MDL (ng 
 L−1 or 
ng g−1)

References

Carprofen, 
flurbi-
profen, 
2-hydroxy-
ibuprofen, 
ibuprofen, 
indoprofen 
and nap-
roxen

Influent and 
effluent 
wastewater 
(50 mL)

High-density 
polyethylene 
bottles @ 
− 20 °C

SPE Amylose tris-(3,5-dimeth-
ylphenylcarbamate) 
150 × 2.1 mm, 2.5 μm

CO2 (A)/
MeOH + 0.2% 
 NH4OH (B); 
Gradient: 
0 min—95% 
A, 3.5 min—
95% A, 
10 min—40% 
A, 13.5 min—
40% A, 
13.8 min—
95% A, 
16 min—95% 
A @ 1.5 mL/
min, 30 °C, 5 
µL injection; 
16 min

UHSFC-
ESI–MS/
MS

Internal 
standard 
(deuterated 
surrogates)

 > 0.7 47–127 2.38–2173 H

Dihydroke-
toprofen, 
2-hydroxy-
ibuprofen, 
ibuprofen, 
indoprofen, 
ketoprofen 
and nap-
roxen

River water 
(250 mL) 
and 
effluent 
wastewater 
(500 mL)

High-density 
polyethylene 
bottles @ 
4 °C

SPE α1-acid glycoprotein 
100 × 2 mm, 5 μm

10 mM 
 NH4OAc 
(pH 6.2)/
ACN (99:1, 
v/v)MeOH 
(7:3, v/v) 
@ 0.08 mL/
min; 25 °C; 
15 µL injec-
tion; < 20 min

LC–ESI–
MS/MS

Internal 
standard 
(deuterated 
surrogates)

 > 0.7 73.7–158.2 0.1–23.2 I

Ibuprofen, 
ketoprofen 
and nap-
roxen

Freshwa-
ter fish 
(200 mg)

n.a SUPRAS (R)-1-naphthylglycine and 
3,5-dinitrobenzoic acid 
250 × 4.6 mm, 5 μm

THF/50 mM 
 NH4OAc in 
MeOH (9:1) 
@ 0.5–
1.2 mL/min, 
25 °C; 10 µL 
injection

LC–TIS–
MS/MS

Internal 
standard 
(deuterated 
surrogates)

 > 1.4 97–103 0.5-1a J

Ibuprofen, 
ketoprofen 
and nap-
roxen

Influent and 
effluent 
wastewater 
(72.2 mL)

Dark glass 
containers

SUPRAS (R)-1-naphthylglycine and 
3,5-dinitrobenzoic acid 
250 × 4.6 mm, 5 μm

THF/50 mM 
 NH4OAc in 
MeOH (9:1) 
@ 0.5–
1.2 mL/min, 
25 °C; 10 µL 
injection

LC–TIS–
MS/MS

Internal 
standard 
(deuterated 
surrogates)

 > 1.4 97–103 0.5–1.2 K
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Drug Matrix Sample col-
lection and 
storage

Extraction 
and clean-up

Stationary phase and 
column dimensions

Mobile phase 
conditions and 
run time

Analysis Calibration 
method

RS Recovery  
(%)

MDL (ng 
 L−1 or 
ng g−1)

References

Ibuprofen, 
ketoprofen 
and nap-
roxen

Ultra-pure 
water, 
drinking 
water, 
synthetic 
effluent 
wastewater 
and river 
water 
(500 mL)

Amber glass 
bottles; 
filtered at 
0.45 µm; 
acidified to 
pH 2.5

SPE Derivatization with 
(R)-1-phenylethyl-
amine; HP5-MS fused 
silica capillary column 
(30 m × 0.25 mm 
i.d. × 0.25 mm film 
thickness)

He @ 0.8 mL/
min; 
270–280 °C; 
Oven: 120 °C 
for 1 min, 
increased by 
40 °C/min 
to 240 °C, 
increased 
by 5 °C/min 
to 300 °C, 
maintained 
for 4 min; 1 
µL injection; 
18 min

GC–EI–MS/
MS

Internal 
standard 
(deuterated 
surrogates)

2.87–4.02 n.a 0.2–3.3 L

Ibuprofen River water 
(1 L), 
influ-
ent and 
effluent 
wastewater 
(250 mL)

− 20 °C SPE 16-m OV1701-DMPen 
(DMPen) heptakis(2,6-
O-dimethyl-3-O-n-
pentyl)-â-cyclodextrin; 
1:1 diluted with 
OV1701) fused silica 
column (0.25 mm i.d)

He; Oven: 70 °C  
for 2 min, 
increased by 
20 °C/min 
to 120 °C, 
increased by 
2.5 °C/min 
to 152 °C 
increased by 
20 °C/min 
to 230 °C, 
maintained 
isocratically; 
1 µL injec-
tion; 8 min

GC–EI–MS/
MS

n.a n.a n.a 1a M

Key: ACN, acetonitrile; AcOH, acetic acid;  CO2, carbon dioxide; DLLME, dispersive liquid–liquid microextraction; FA, formic acid; GC–EI–MS/MS, gas chromatography–electron impact–
tandem mass spectrometry;  H2O, water; He, helium; LC–ESI–MS/MS, Liquid chromatography-electrospray ionization-tandem mass spectrometry; LC–TIS–MS/MS, Liquid chromatogra-
phy-turbo ion spray-tandem mass spectrometry; MDL, method detection limit; MeOH, methanol; MSPE, magnetic solid-phase extraction; n.a., not available;  NaN3, sodium azide;  NH4OAc, 
ammonium acetate;  NH4HCO2, ammonium formate;  NH4OH, ammonium hydroxide; RS, resolution; SPE, solid-phase extraction; SUPRAS, supramolecular solvents; THF, tetrahydrofuran; 
UHSFC-ESI–MS/MS, ultra-high supercritical fluid chromatography-electrospray ionization-tandem mass spectrometry; USE, ultrasonic extraction
a Limit of detection; bliquid phase; cparticulate phase; ALi et al. (2020); BMa et al. (2019); CCoelho et al. (2019); DYuan et al. (2018); EWang et al. (2018); FMatamoros et al. (2009); GCamacho-
Muñoz and Kasprzyk-Hordern (2017); HCamacho-Muñoz et al. (2016); ICamacho-Muñoz and Kasprzyk-Hordern (2015); JCaballo et al. (2015b); KCaballo et al. (2015a); LHashim et al. (2011); 
MBuser et al. (1999)

Table 2  (continued)
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or ng  g−1 concentrations for solid matrices. Chromato-
graphic run times range from 16 to 35 min (Table 2).

Chiral selector: glycopeptide and glycoprotein phases

Glycopeptide-based stationary phases have been widely 
applied for the separation of pharmaceutical drugs (Bagnall 
et al. 2012; Camacho-Muñoz and Kasprzyk-Hordern 2017; 
Evans et al. 2015; Petrie et al. 2018). Vancomycin is more 
suited to those basic drugs, e.g. beta-blockers, and teicopla-
nin for acidic drugs, e.g. NSAIDs. Teicoplanin has an iso-
electric point of ~ 3.5, and electrostatic interactions are con-
sidered one of the dominant interactions occurring between 
the analytes and stationary phase. As the chiral selector itself 
is ionizable, changes to pH affects its degree of ionization as 
well as the analyte (Ilisz et al. 2013). Teicoplanin has been 
successfully applied for the simultaneous enantioseparation 
of indoprofen, naproxen, ketoprofen and ibuprofen as well 
as its metabolites carboxyibuprofen and 2-hydroxyibuprofen 
(Camacho-Muñoz and Kasprzyk-Hordern 2017). Separation 
was achieved in reversed phase mode with a mobile phase 
consisting of 70:30 (v/v) 10 mM ammonium acetate at pH 
4.2/methanol (Table 2). However, the chromatographic run 
time for the separation of all studied NSAIDs was 60 min. A 
contributing factor to the comparatively long run time was 
the inclusion of additional drugs from different therapeutic 
groups including anthelmintic drugs, anti-cancer drugs, anti-
bacterial drugs, central nervous system drugs and anti-fungal 
drugs within the same method.

The protein-based phase α1-acid glycoprotein (AGP) has 
also been successfully applied for the enantioseparation of 
NSAIDs (Table 2). This phase consists of a single peptide 
chain with 181 amino acids and five heteropolysaccharide 
units, containing 14 residues of sialic acid (Hermansson 
1983). Due to the complexity of proteins, hydrophobic, 
ionic, π–π and steric interactions, and hydrogen bonding 
are assumed to be the main retention mechanisms (Hagi-
naka 2001). However, a limitation of AGP is the maximum 
content of organic modifier in the mobile phase cannot 
exceed 20%. Furthermore, the operating pH range is lim-
ited to pH 4–7. Nature and content of the organic modifier 
as well as the mobile phase pH are considered to have the 
greatest influence on enantioseparation using AGP phases 
(Hermansson and Hermansson 1994; Michishita et al. 2010). 
Successful separation has been achieved for ibuprofen, nap-
roxen, ketoprofen and dihydroketoprofen using a mobile 
phase comprising 99:1 (v/v) 10 mM ammonium acetate (pH 
6.2):acetonitrile (Camacho-Muñoz and Kasprzyk-Hordern 
2015). Separation of all NSAIDs was achieved in 20 min 
(Table 2).

Chiral selector: Pirkle‑type phases

Pirkle-type stationary phases comprise a small chiral mol-
ecule bonded to a chromatographic support via a spacer 
(Fernandes et al. 2013; Pirkle and Pochapsky 1989). A num-
ber of different phases have been developed with the most 
popular being 1-(3,5-dinitrobenzamido)-1,2,3,4-tetrahydro-
phenanthrene. It was initially used for the separation of nap-
roxen enantiomers (Welch 1994) and separates analytes with 
an aromatic system with a hydrogen-bond acceptor group 
near the stereogenic centre (Fernandes et al. 2013). Coelho 
et al. (2019) successfully developed a separation method 
for flurbiprofen, ibuprofen, ketoprofen and naproxen using 
a 1-(3,5-dinitrobenzamido)-1,2,3,4-tetrahydrophenanthrene 
stationary phase. The optimum mobile phase of 60:40 (v/v) 
methanol/0.1% acetic acid required a chromatographic run 
time of 90 min (Table 2). On the other hand, Caballo et al. 
(2015a) used a Pirkle-brush column with a (R)-1-naphth-
ylglycine and 3,5-dinitrobenzoic acid chiral selector for 
enantioseparation of ibuprofen, ketoprofen and naproxen. In 
this study, the mobile phase comprised 90:10 (v/v) tetrahy-
drofuran/50 mM ammonium acetate in methanol operated 
under a variable flow rate (Table 2). Under such conditions, 
the ammonium acetate concentration was reported to have 
the greatest influence on RS using this stationary phase. The 
chromatographic run time was 36 min (Caballo et al. 2015a).

Gas chromatography–mass spectrometry

Chiral GC methods for the environmental analysis of 
NSAIDs and pharmaceuticals in general are limited (Buser 
et al. 1999; Hashim and Khan 2011). This is due to the non-
volatile nature of drugs requiring chemical derivatization to 
make them GC amenable. Hashim and Khan (2011) reported 
the derivatization of ibuprofen, ketoprofen and naproxen 
using (R)-1-phenylethylamine. This resulted in the conver-
sion of the enantiomers to amide diastereomers facilitating 
indirect separation using a (5%-phenyl)-methylpolysiloxane 
phase (Hashim and Khan 2011). The derivatization process 
was complete within 5 min; however, an additional SPE 
treatment was required to separate the diastereomers from 
the derivatizing reagent. Nevertheless, chromatographic 
separation was achieved within 18 min and MDLs were 
in the range 0.2–3.3 ng L−1 and commensurate with those 
more sensitive LC methods (Table 1). An alternative meth-
odology was utilized by Matamoros et al. (2009) whereby 
methylation of the carboxylic acid groups of ibuprofen and 
naproxen was performed using trimethylsulfonium hydrox-
ide. Enantiomers were then separated directly on a chiral 
dimethyl-b-cyclodextrin column. In this case, the run time 
was 57 min (Table 2).
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Supercritical fluid chromatography–mass 
spectrometry

SFC–MS has also shown applicability for enantioselective 
analysis of pharmaceuticals (Camacho-Muñoz et al. 2016; 
Garzotti and Hamdan 2002; Hamman et al. 2011; Płotka 
et al. 2014). Supercritical fluids have the advantages of both 
gas states and liquid states (Płotka et al. 2014). SFC is nor-
mally operated similar to normal phase mode with carbon 
dioxide as the main mobile phase component enabling MS 
compatibility. Addition of organic modifiers to the mobile 
phase increases solvent strength. The viscosity and diffu-
sivity of carbon dioxide make enantioselective separation 
possible in comparatively short run times, i.e. less than 
10 min (Hamman et al. 2011; Płotka et al. 2014). However, 
the application of enantioselective SFC to environmental 
analysis is limited. Camacho-Muñoz et al. (2016) utilized 
an amylose tris-(3,5-dimethylphenylcarbamate) phase for the 
enantioseparation of carprofen, flurbiprofen, naproxen, ibu-
profen and its metabolite 2-hydroxyibuprofen (Table 2). The 
mobile phase consisted of a gradient between carbon dioxide 
and 0.2% (v/v) ammonium hydroxide in methanol. Simulta-
neous enantioseparations were achieved within 16 min.

Occurrence and fate of non‑steroidal 
anti‑inflammatory drugs at the enantiomeric 
level in wastewater and the environment

The development of robust analytical methodologies has 
facilitated the enantioselective study of chiral NSAIDs in 
complex environmental matrices. This includes wastewa-
ters, receiving surface waters and soil systems where the 
occurrence and fate of NSAIDs have been investigated at 
the enantiomeric level.

Wastewater

Influent wastewater

Influent or untreated wastewater typically contains ibuprofen 
and naproxen at µg L−1 concentrations and flurbiprofen and 
ketoprofen at sub-µg L−1 concentrations (Camacho-Muñoz 
et al. 2014; Gardner et al. 2013; Kasprzyk-Hordern et al. 
2009; Larsson et al. 2014; Petrie et al. 2015; Roberts and 
Thomas 2006). The enantiomeric composition of chiral 
drugs is typically reported as enantiomeric fraction (San-
ganyado et al. 2020). The enantiomeric fraction of chiral 
NSAIDs can be calculated using Eq. (1):

(1)Enantiomeric fraction =
S(+)

[S(+) + R(−)]

where S(+) is the S(+)-enantiomer and R(−) is the R(−)-
enantiomer. Therefore, a racemate, i.e. 50:50 mixture of two 
enantiomers, has an enantiomeric fraction of 0.5, whereas an 
enantiomerically pure substance has an enantiomeric frac-
tion of 0.0 or 1.0. There are several ways to calculate and 
report enantiomeric fraction (Tiritan et al. 2018). Therefore, 
to ensure consistency in presentation and data interpretation, 
all enantiomeric fraction data reported in this review are 
calculated using the above equation.

The ibuprofen enantiomeric fraction has been found to 
range from 0.63 to 0.94 (n = 11 studies) in Australia, China, 
Germany, Spain and UK influent wastewaters (Table 3). 
The enrichment of the pharmacologically active enantiomer 
S(+)-ibuprofen following its consumption as the racemate 
can be explained by the unidirectional inversion of R(−)-
ibuprofen to S(+)-ibuprofen in the body (Buser et al. 1999). 
The consumption of enantiomerically pure S(+)-naproxen 
resulted in enantiomeric fractions equal to or greater than 
0.88 (n = 13 studies) in influent wastewater (Table 3). Mam-
malian studies have shown S(+)-naproxen is not inverted 
into R(−)-naproxen (Sugawara et al. 1978; Wsol et al. 2004). 
The presence of comparatively low levels of R(−)-naproxen 
in influent wastewater could be a result of inversion of S(+)-
naproxen during wastewater transport in the sewer network.

Wastewater typically takes between 0.5 and 24 h to arrive 
at the wastewater treatment plant. Sewer pipes have a biofilm 
that can result in drug biotransformation (Choi et al. 2020; 
Gao et al. 2019; Li et al. 2019). Naproxen and ibuprofen 
have been found to be stable in pilot scale gravity and rising 
main pipes over 8 h (Gao et al. 2019). However, enanti-
oselective analysis was not undertaken to ascertain if inver-
sion took place or not. Enantioselective changes of other 
drugs have been observed in influent wastewater previously 
(Castrignanò et al. 2017). However, further work is needed 
to ascertain the enantioselectivity of NSAIDs under sewer 
transport conditions. Ketoprofen has been reported in influ-
ent wastewaters with enantiomeric fractions ranging from 
0.54 to 0.68 (n = 5 studies) in the UK, Spain and Australia 
(Table 3). The enrichment of S(+)-ketoprofen is likely to 
be a result of it being prescribed as both the racemate and 
enantiomerically pure S(+)-ketoprofen (Table 1). Only about 
10% of R(−)-ketoprofen is inverted to S(+)-ketoprofen in the 
body (Rudy et al. 1998). A single study reported the enan-
tiomeric composition of flurbiprofen in influent wastewater 
with an enantiomeric fraction of 0.54 (Wang et al. 2018).

Enantioselectivity during wastewater treatment 
and effluent wastewater composition

Conventional biological wastewater treatment plants such 
as trickling filters and activated sludge are designed for car-
bonaceous material removal and can be adapted for nutri-
ent removal. Removal of many pharmaceutical drugs is also 
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Table 3  Reported occurrence of non-steroidal anti-inflammatory drugs at the enantiomeric level in environmental matrices

Drug Country Analysis method Sampled matrix R(−)-enantiomer (µg  L−1) S(+)-enantiomer (µg  L−1) EF References

Ibuprofen UK LC–MS/MS Influent  wastewaterTF n.a n.a – A
Effluent  wastewaterTF 0.244 0.572 0.71
River water  < 0.009  < 0.009 –

China LC–MS/MS River water  < 0.009–0.101  < 0.011–0.325 0.70 B
China LC–MS/MS Influent wastewater 0.228 0.390 0.63 C

Effluent wastewater 0.036 0.075 0.68
River water 0.040 0.075 0.62

Europe UHSFC–MS/MS Influent wastewater  < 1.41 5.24  > 0.79 D
Effluent wastewater  < 1.46  < 1.45 –

Spain LC–MS/MS Influent  wastewaterAS 0.256–0.415 0.957–1.643 0.79–0.86 E
Effluent  wastewaterAS 0.042–0.098 0.072–0.210 0.63–0.68

UK UPLC–MS/MS Effluent  wastewaterTF 0.24 0.46 0.66 F
River water  < 0.263  < 0.114 –

Australia GC–MS/MS Influent  wastewaterFASOS discharge 0.065 0.179 0.73 G
Effluent  wastewaterMBR 0.007 0.007 0.50
Effluent  wastewaterAS 0.005 0.005 0.50
Effluent  wastewaterAS−BNR  < 0.001  < 0.001 –
Creek upstream of wastewater 

discharge
0.049 0.121 0.71

Creek downstream of wastewa-
ter discharge

0.015–0.026 0.023–0.086 0.60–0.77

Australia GC–EI–MS/MS Influent  wastewaterMBR 0.444–2.92 5.27–39.5 0.88–0.94 H
Effluent  wastewaterMBR 0.006–0.017 0.004–0.011 0.38–0.40

Spain GC–EI–MS Influent 
 wastewaterDeep and shallow HFCW

n.a n.a 0.73 I

Effluent  wastewaterDeep HFCW n.a n.a 0.76
Effluent  wastewaterShallow HFCW n.a n.a 0.65
Influent 

 wastewaterVFCW(unsaturated)
n.a n.a 0.90

Effluent 
 wastewaterVFCW(unsaturated)

n.a n.a 0.72

Effluent  wastewaterSF(unsaturated) n.a n.a 0.71
Influent  wastewaterVFCW(saturated) n.a n.a 0.90
Effluent  wastewaterVFCW(Saturated) n.a n.a 0.60
Effluent  wastewaterSF(saturated) n.a n.a 0.73
Influent  wastewaterAS n.a n.a 0.88
Effluent  wastewaterAS n.a n.a 0.64

Switzerland GC–EI–MS/MS Influent  wastewaterbiological 0.990–3.300a 0.85–0.89 J
Effluent  wastewaterbiological 0.002–0.081a 0.47–0.67
River/Lake water  < 0.0002–0.008a 0.41–0.81

Ketoprofen UK LC–MS/MS Influent  wastewaterTF 0.032 0.039 0.54 A
Effluent  wastewaterTF 0.003 0.006 0.65
Influent  wastewaterAS 0.012 0.016 0.58
Effluent  wastewaterAS  < 0.0005  < 0.0005 –
Influent  wastewaterSBR  < 0.013  < 0.013 –
Effluent  wastewaterSBR 0.114 0.200 0.64

Spain LC–MS/MS Influent  wastewaterAS 0.088–0.240 0.121–0.510 0.54–0.68 E
Effluent  wastewaterAS 0.024–0.086 0.038–0.177 0.61–0.68

Australia GC–EI–MS/MS Influent  wastewaterMBR 0.065–12.0 0.084–15.3 0.56–0.60 H
Effluent  wastewaterMBR 0.001–0.005 0.002–0.006 0.54–0.68

Naproxen UK LC–MS/MS Influent  wastewaterTF 0.311 24.3 0.99 A
Effluent  wastewaterTF 0.391 4.12 0.92
Influent  wastewaterAS  < 0.010 32.9  > 0.99
Effluent  wastewaterAS  < 0.004 0.116  > 0.97
Influent  wastewaterSBR  < 0.010 17.0  > 0.99
Effluent  wastewaterSBR  < 0.004 0.579  > 0.99
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Key: AS, activated sludge; AS-BNR, activated sludge-biological nitrogen removal; EF, enantiomeric fraction; FASOS, fuller avenue sewage 
overflow structure; GC–EI–MS, gas chromatography–electron impact–mass spectrometry; GC–EI–MS/MS, gas chromatography–electron 
impact–tandem mass spectrometry; GC–MS/MS, gas chromatography–tandem mass spectrometry; HFCW, horizontal subsurface-flow con-
structed wetlands; LC–MS/MS, liquid chromatography-tandem mass spectrometry; MBR, membrane bioreactor; n.a., not available; SF, sand 
filter; TF, trickling filter beds; UHSFC–MS/MS, ultra-high supercritical fluid chromatography-tandem mass spectrometry; UPLC–MS/MS, ultra-
performance liquid chromatography-tandem mass spectrometry; VFCW, vertical-flow constructed wetlands
a Total enantiomeric concentration; ACamacho-Muñoz et  al. (2019); BMa et  al. (2019); CWang et  al. (2018); DCamacho-Muñoz et  al. (2016); 
ECaballo et al. (2015a); FCamacho-Muñoz and Kasprzyk-Hordern (2015); GKhan et al. (2014); HHashim et al. (2013); I Matamoros et al. (2009); 
JBuser et al. (1999); KCamacho-Muñoz and Kasprzyk-Hordern (2017); LSuzuki et al. (2014)

Table 3  (continued)

Drug Country Analysis method Sampled matrix R(−)-enantiomer (µg  L−1) S(+)-enantiomer (µg  L−1) EF References

River upstream of wastewater 
discharge

0.09 0.35 0.92

River downstream of wastewa-
ter discharge

0.01 0.35 0.97

China LC–MS/MS River water  < 0.0004–0.002  < 0.0004–0.043 0.93 B
UK LC–MS/MS Influent  wastewaterAS  < 0.011 0.37  > 0.99 K

Effluent  wastewaterAS  < 0.014  < 0.013 -
River water  < 0.008  < 0.007 -

Europe UHSFC–MS/MS Influent wastewater  < 0.233 4.75  > 0.95 D
Effluent wastewater  < 0.539 0.95  > 0.64

UK UPLC–MS/MS Effluent  wastewaterTF 0.09 1.33 0.94 F
River water  < 0.008 0.136  > 0.98

Spain LC–MS/MS Influent  wastewaterAS 0.018–0.030 1.049–3.172 0.98–0.99 E
Effluent  wastewaterAS 0.009–0.022 0.175–0.481 0.93–0.96

Japan LC–MS/MS Influent  wastewaterAS 0.03–0.43a  > 0.99 L
Effluent  wastewaterAS 0.01–0.11a 0.88–0.91
River water 0.08a 0.84–0.98

Australia GC–MS/MS Influent  wastewaterFASOS discharge  < 0.001 0.024  > 0.96 G
Effluent  wastewaterMBR 0.001 0.008 0.90
Effluent  wastewaterAS 0.003 0.033 0.92
Effluent  wastewaterAS−BNR 0.007 0.013 0.65
Creek upstream of wastewater 

discharge
 < 0.001 0.025  > 0.96

Creek downstream of wastewa-
ter discharge

 < 0.001 0.055–0.604  > 0.98

Australia GC–EI–MS/MS Influent  wastewaterMBR 0.010–0.032 0.827–67.6 0.99 H
Effluent  wastewaterMBR 0.002–0.014 0.025–0.161 0.86–0.94

Spain GC–EI–MS Influent 
 wastewaterDeep and shallow HFCW

n.a n.a 0.89 I

Effluent  wastewaterDeep HFCW n.a n.a 0.82
Effluent  wastewaterShallow HFCW n.a n.a 0.72
Influent 

 wastewaterVFCW(unsaturated)
n.a n.a 0.90

Effluent 
 wastewaterVFCW(unsaturated)

n.a n.a 0.71

Effluent  wastewaterSF(unsaturated) n.a n.a 0.76
Influent  wastewaterVFCW(saturated) n.a n.a 0.90
Effluent  wastewaterVFCW(saturated) n.a n.a 0.78
Effluent  wastewaterSF(saturated) n.a n.a 0.79
Influent  wastewaterAS n.a n.a 0.88
Effluent  wastewaterAS n.a n.a 0.86

Flurbiprofen China LC–MS/MS Influent wastewater 0.079 0.088 0.54 C
Effluent wastewater  < 0.013  < 0.014 -
River water 0.032 0.04 0.55
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observed including chiral NSAIDs (Camacho-Muñoz et al. 
2012; Kasprzyk-Hordern et al. 2009; Petrie et al. 2015; 
Roberts and Thomas 2006; Verlicchi et al. 2012). Removal 
of NSAIDs can be variable between wastewater treatment 
plants and individual drugs. For example, higher removal of 
naproxen has been reported by activated sludge over trick-
ling filters (Kasprzyk-Hordern et al. 2009). Furthermore, 
five full-scale activated sludge wastewater treatment plants 
in Japan showed ibuprofen removals were greater than 90%, 
whereas average removals of both naproxen and ketoprofen 
were 45% (Nakada et al. 2006). The removal of NSAIDs is 
mainly attributed to biodegradation (Matamoros et al. 2009; 
Nakada et al. 2006; Onesios et al. 2009; Patel et al. 2019; 
Petrie et al. 2014; Verlicchi et al. 2012), whereby the par-
ent drugs are transformed into a metabolite or degradation 
product, or is mineralized (Patel et al. 2019). Importantly, 
microbial processes during wastewater treatment can result 
in enantioselectivity.

During activated sludge, trickling filter and membrane 
bioreactor treatment, removal favours S(+)-ibuprofen caus-
ing a reduction of enantiomeric fraction (Buser et al. 1999; 
Caballo et al. 2015a; Hashim et al. 2013; Khan et al. 2014; 
Matamoros et al. 2009) (Table 3). Ibuprofen enantiomeric 
fractions in effluent wastewater are in the range 0.50–0.71 
with concentrations less than 1 µg  L−1 (Table 3). Matamoros 
et al. (2009) also investigated the enantiomeric behaviour 
of ibuprofen during treatment by horizontal sub-surface and 
vertical flow constructed wetlands and sand filters. Under 
aerobic conditions, preferential removal of S(+)-ibuprofen 
was also observed. However, such systems operated under 
prevailing anaerobic conditions resulted in ibuprofen removal 
not being enantioselective (Matamoros et al. 2009). There-
fore, redox conditions are important as different bacterial 
consortia are active under aerobic and anaerobic conditions.

Only limited data exist on the enantioselective behaviour 
of ketoprofen during wastewater treatment (Table 3). No sig-
nificant changes to ketoprofen enantiomeric fractions were 
reported by activated sludge or membrane bioreactor treat-
ment despite considerable removal (Caballo et al. 2015a; 
Hashim et  al. 2013). However, Camacho-Muñoz et  al. 
(2019) reported an enrichment of S(+)-ketoprofen during 
trickling filter treatment. Influent and effluent enantiomeric 
fractions were 0.54 and 0.65, respectively (Table 3). Dif-
ferences in enantioselectivity during activated sludge and 
trickling filter treatment has been observed for other drugs 
such as 3,4-methylenedioxymethamphetamine due to dif-
ferent consortia of microorganisms between process types 
(Kasprzyk-Hordern and Baker 2012).

Enantioselectivity has been reported for naproxen during 
wastewater treatment by trickling filters, activated sludge, 
membrane bioreactors, constructed wetlands and sand filters 
(Caballo et al. 2015a; Camacho-Muñoz et al. 2019; Khan 
et al. 2014; Matamoros et al. 2009; Suzuki et al. 2014). An 

increase in the relative concentration of R(−)-naproxen 
resulted in enantiomeric fractions within wastewater effluents 
being in the range 0.65–0.98 (Table 3). Khan et al. (2014) 
reported R(−)-naproxen concentrations in wastewater efflu-
ents up to 0.007 µg  L−1, whereas no measurable concentra-
tion was present in influent wastewater. Due to this increased 
concentration, it was postulated that chiral inversion of S(+)-
naproxen took place (Khan et al. 2014). The enantioselectiv-
ity of naproxen is reported to be similar under both prevailing 
aerobic and anaerobic conditions (Matamoros et al. 2009). 
Therefore, it was also suggested that the change in enan-
tiomeric fraction observed for naproxen during wastewater 
treatment could be used to distinguish between treated and 
untreated sources of wastewater in the environment (Khan 
et al. 2014). Similar observations have been made for the 
beta-blocker propranolol (Fono and Sedlak 2005) and the 
stimulant amphetamine (Ramage et al. 2019).

Spiked wastewater microcosms for fate evaluation

Understanding the fate processes responsible for enanti-
oselectivity, i.e. degradation or inversion, during full-scale 
wastewater treatment is challenging. Batch and flow through 
microcosm studies using spiked enantiomer concentrations 
enable a greater understanding of these processes whereby 
operational variables can be closely controlled. Several stud-
ies have reported limited or no enantioselectivity of ibuprofen 
in batch studies of diluted activated sludge (Escuder-Gilabert 
et al. 2018) or laccase enzyme obtained from a culture of the 
white rot fungus Pleurotus ostreatus (Nguyen et al. 2017). 
Furthermore, no enantioselectivity was observed in con-
structed wetlands treating synthetic or real wastewater under 
predominantly anaerobic conditions at dissolved oxygen con-
centrations less than 0.5 mg L−1 (Matamoros et al. 2009).

In a continuous flow membrane bioreactor system treat-
ing synthetic wastewater containing R/S(±)-ibuprofen, an 
enrichment of R(−)-ibuprofen was observed (Hashim et al. 
2011). In this study, the enantiomeric fraction reduced from 
0.50–0.54 to 0.31–0.44 (Table 4). However, as ibuprofen 
was used as the racemate, it was not possible to establish 
the process(es) responsible for enantioselectivity, i.e. deg-
radation or inversion. Nguyen et al. (2017) investigated the 
behaviour of individual ibuprofen enantiomers separately 
in a continuous flow enzymatic membrane bioreactor dosed 
with laccase. The enantiomeric fraction increased from 0.01 
to 0.18 in studies of R(−)-ibuprofen only and reduced from 
0.99 to 0.75 in studies of S(+)-ibuprofen only (Table 4). 
These observations confirmed that ibuprofen enantiomers 
can undergo bidirectional inversion during wastewater treat-
ment (Nguyen et al. 2017).

The mechanism(s) of inversion or microbes respon-
sible for inversion during wastewater treatment remain 
poorly understood. Fungi including Verticillium lecanii are 
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1 3 Table 4  Bench and pilot-scale microcosm investigations on the enantioselectivity of non-steroidal anti-inflammatory drugs using spiked drug concentrations

Microcosm Incubation time Incubation conditions Drug Initial concentration EF (initial) EF (final) Observations References

Activated sludge (2 L) 24 h Dark conditions
Continually stirred
DO 8–18 mg L−1

pH 7–8.2
10–20 °C
Abiotic controls 

(1 g L−1 sodium 
azide) under same 
conditions

Sampling times: 0, 
0.5, 1, 1.5, 2, 3, 5, 8, 
12, 24 h

Duplicate bioreactors

R/S(±)-ketoprofen 1 µg L−1 0.54 0.50 No significant degra-
dation or enantiose-
lectivity observed. 
No change in abiotic 
controls

A

R/S(±)-naproxen 1 µg  L−1 0.76 0.84 (after 2 h) Initial EF > 0.5 due 
to background 
levels of S(+)-
naproxen. Moder-
ate enrichment 
of S(+)-naproxen 
during incubation. 
Both enantiomers 
removed to < MQL 
within 3 h. Under 
abiotic conditions 
S(+)-naproxen 
removed by 50% 
during 24 h. 
Increase of R(−)-
naproxen due to 
inversion

Activated sludge 
(0.1 mL diluted to 
3.1 mL using water)

28 days Natural light
20 °C
Mixed at 150 rpm
Sampling times: 0, 3, 

5, 11, 18, 21, 25 and 
28 days

Sacrificial reactors 
prepared in dupli-
cate

Controls using 0.1 mL 
water instead of 
activated sludge

R/S(±)-ibuprofen 15.6 mg L−1 0.5 0.6 (28 days) Slight enrichment 
of S(+)-ibuprofen. 
t1/2 values of 18 
and 25 days for 
R(−)-ibuprofen and 
S(+)-ibuprofen, 
respectively

B

R/S(±)-ketoprofen 18.0 mg L−1 0.5 0.5 Degradation of 
ketoprofen 
enantiomers (t1/2 
values = 12 days) 
to < MQL within 
25 days. No 
enantioselectivity 
observed
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Table 4  (continued)

Microcosm Incubation time Incubation conditions Drug Initial concentration EF (initial) EF (final) Observations References

Laccase enzyme 
solution (activ-
ity = 50–60 µM(DMP) 
 min−1)

48 h Dark conditions
28 °C
Mixed at 70 rpm
Sampling times: 4, 8, 

12, 24 and 48 h
Controls using water

R/S(±)-ibuprofen 1–3 µg  L−1  ~ 0.5  ~ 0.5 Little removal after 
48 h. No enantiose-
lectivity

C

S(+)-ibuprofen 1–3 µg  L−1  ~ 1.0  ~ 1.0 No chiral inversion. 
Removal < 30% after 
48 h

R(−)-ibuprofen 1–3 µg  L−1  ~ 0.0  ~ 0.0 No chiral inversion. 
Removal < 30% after 
48 h

R/S(±)-naproxen 1–3 µg  L−1  ~ 0.5  ~ 1.0 Enrichment of S(+)-
naproxen due to 
enantioselective 
degradation. How-
ever, not reflected in 
individual enanti-
omer studies

S(+)-naproxen 1–3 µg  L−1  ~ 1.0  ~ 1.0 No chiral inversion. 
Removal < 30% after 
48 h

R(−)-naproxen 1–3 µg  L−1  ~ 0.0  ~ 0.0 No chiral inversion. 
Removal < 30% after 
48 h

R/S(±)-ketoprofen 1–3 µg  L−1  ~ 0.5  ~ 0.5 Little removal after 
48 h. No enantiose-
lectivity

S(+)-ketoprofen 1–3 µg  L−1  ~ 1.0  ~ 1.0 No chiral inversion. 
Removal < 30% after 
48 h

R(−)-ketoprofen 1–3 µg  L−1  ~ 0.0  ~ 0.0 No chiral inversion. 
Removal < 30% after 
48 h
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Microcosm Incubation time Incubation conditions Drug Initial concentration EF (initial) EF (final) Observations References

Bench-scale EMBR 
(laccase enzyme 
solution (activ-
ity = 50–60 µM(DMP) 
 min−1))

8 h HRT 0.8 L reactor volume
Hollow fibre UF 

membrane
3 kDa molecular 

weight cut off
0.2  m2 surface area
28 °C
DO 3 mg  L−1

Operation for 72 days 
in total

S(+)-ibuprofen 2.4 µg  L−1 0.99 0.75 93% removal. Chiral 
inversion

R(−)-ibuprofen 2.1 µg  L−1 0.01 0.18 90% removal. Chiral 
inversion

S(+)-naproxen 2.4 µg  L−1 0.99 0.92 46% removal. Chiral 
inversion

R(−)-naproxen 2.2 µg  L−1 0.01 0.26 46% removal. Chiral 
inversion

S(+)-ketoprofen 2.7 µg  L−1 0.99 0.99 48% removal. Mini-
mal chiral inversion

R(−)-ketoprofen 2.8 µg  L−1 0.01 0.01 48% removal. Mini-
mal chiral inversion

HFCW (synthetic 
wastewater)

26 mm  d−1 HLR Operated for 20 days
0.55  m2 surface area
DO 0.05 mg  L−1

R/S(±)-ibuprofen 25 µg  L−1 0.50 0.50 52% removal. No 
enantioselectivity

D

HFCW (real waste-
water)

36 mm  d−1 HLR Operated for 9 days
55  m2 surface area
DO 0.5 mg  L−1

R/S(±)-ibuprofen 25 µg  L−1 0.50 0.50 80% removal. No 
enantioselectivity

MBR (synthetic 
wastewater)

24 h HRT 9 L reactor volume
0.04 µm membrane 

pore size
0.047  m2 surface area
DO 2 mg  L−1

70 day sludge age
pH 7.4–7.6
8.6–10 g  L−1 mixed 

liquor suspended 
solids

20 °C

R/S(±)-ibuprofen 1.7–1.9 µg  L−1 0.50–0.54 0.31–0.44  > 99% removal of 
both enantiom-
ers. Considerable 
enrichment of R(−)-
ibuprofen

E

R/S(±)-ketoprofen 1.4–1.7 µg  L−1 0.51–0.53 0.60–0.66 74–78% R(−)-
ketoprofen removal 
and 58–64% 
S(+)-ketoprofen 
removal. Consider-
able enrichment of 
S(+)-ketoprofen

S(+)-naproxen 2.0–2.4 µg  L−1  > 0.99 0.65–0.66 38–47% total removal. 
Chiral inversion

Activated sludge (10 g 
wet weight added to 
1L influent wastewa-
ter)

24 h Dark conditions
20 °C
Air bubbling
Sampling times: 0, 2, 

4, 8 and 24 h
Abiotic controls (auto-

claved)

S(+)-naproxen 10 µg  L−1  > 0.99 0.91 (after 24 h) 95% removal of S(+)-
naproxen in 24 h. 
t1/2 values of 14 h. 
Chiral inversion. No 
removal in abiotic 
controls

F
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Table 4  (continued)

Microcosm Incubation time Incubation conditions Drug Initial concentration EF (initial) EF (final) Observations References

River water (2 L) 30 days Dark and light condi-
tions

Continually stirred
DO 5–15 mg  L−1

pH 7.7–9.0
10–35 °C
Abiotic controls (1 g 

 L−1 sodium azide) 
under same condi-
tions

Sampling times: 1, 2, 
3, 5, 7, 19 12, 15, 
22, 30 days

Duplicate bioreactors

R/S(±)-ketoprofen 1 µg  L−1 0.50 (light) 0.59 (after 5 days) Moderate enrichment 
of S(+)-ketoprofen 
during incubation. 
Both enantiomers 
removed to < MQL 
within 7 days. 
Removal to < MQL 
within 7 days under 
abiotic conditions 
(no enantioselectiv-
ity)

A

0.50 (dark)  > 0.99 (after 30 days) Significant enrichment 
of S(+)-ketoprofen 
during incubation. 
R(−)-ketoprofen 
removed to < MQL 
and S(+)-ketoprofen 
by 96% within 
30 days. No signifi-
cant degradation or 
enantioselectivity 
observed under 
abiotic conditions

R/S(±)-naproxen 1 µg  L−1 0.50 (light) 0.59 (after 30 days) Moderate enrich-
ment of S(+)-
naproxen during 
incubation. ≥ 80% 
removal of naproxen 
enantiomers within 
30 days. Under abi-
otic conditions mod-
erate enrichment 
of S(+)-naproxen 
observed. Enan-
tiomer removals 
were ≥ 68% within 
30 days
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Microcosm Incubation time Incubation conditions Drug Initial concentration EF (initial) EF (final) Observations References

0.66 (dark) 0.99 (after 30 days) Significant enrich-
ment of S(+)-nap-
roxen during incuba-
tion. S(+)-naproxen 
removed by 98% 
and R(−)-naproxen 
removed < MQL 
within 30 days. 
Under abiotic condi-
tions no significant 
degradation or 
enantioselectivity 
observed

River water (1 L) 30 days Dark conditions
20 °C
Air bubbling
Sampling times: 0, 

1, 3, 5, 7, 14 and 
30 days

Abiotic controls (auto-
claved)

S(+)-naproxen 10 µg  L−1  > 0.99 0.99 43% removal of 
S(+)-naproxen in 
30 days. t1/2 values 
of 37 days. Limited 
inversion. No 
removal in abiotic 
controls

F

R(−)-naproxen 10 µg  L−1  < 0.01 0.02 15% removal of 
R(−)-naproxen in 
30 days. t1/2 values 
of 99 days. Limited 
inversion. No 
removal in abiotic 
controls

River water (15 L) 10 days Sampling times: 0, 
0.2, 6.9 and 10 days

Abiotic controls (auto-
claved)

19 °C
Stirred

R/S(±)-ibuprofen 100 µg  L−1 0.51 0.69 Considerable 
enantioselectiv-
ity. Enrichment of 
S(+)-ibuprofen. No 
removal in abiotic 
controls

G
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Table 4  (continued)

Microcosm Incubation time Incubation conditions Drug Initial concentration EF (initial) EF (final) Observations References

Lake water (2.5 L) 37 days Room temperature
Dark and light condi-

tions
Sampling times: 0, 4, 

10, 21 and 37 days
Abiotic controls (auto-

claved)

R/S(±)-ibuprofen 0.2 µg  L−1  ~ 0.50 (light) 0.09 Significant enan-
tioselectivity. 
Enrichment of 
R(−)-ibuprofen. t1/2 
value of ~ 20 days. 
No removal under 
abiotic conditions

H

 ~ 0.50 (dark) 0.38 Moderate enan-
tioselectivity. 
Enrichment of 
R(−)-ibuprofen. t1/2 
value of ~ 20 days. 
No removal under 
abiotic conditions

Soil (5 g) 56 days Dark conditions
pH 6.6
Incubation tempera-

tures of 4 °C and 
18 °C

Abiotic controls 
(autoclaved and 
200 µg g−1 sodium 
azide) under same 
conditions

Sampling times: 0, 1, 
3, 7, 14, 28, 42 and 
56 days

Moisture content 
maintained at 26%

Sacrificial micro-
cosms prepared in 
triplicate

R/S(±)-naproxen 10 and 1 µg g−1 0.52 (10 µg g−1 at 
18 °C)

0.67 (after 56 days) Considerable enrich-
ment of S(+)-
naproxen. t1/2 values 
of 9.7 and 11.8 days 
for R(−)-naproxen 
and S(+)-naproxen, 
respectively. Faster 
enantiomer degrada-
tion at 1 µg g−1. 
Enantiomer degra-
dation reduced by 
6–9 times at 4 °C. 
No degradation or 
enantioselectivity 
under abiotic condi-
tions

I

R/S(±)-ibuprofen 10 and 1 µg g−1 0.50 (10 µg g−1 at 
18 °C)

0.38 (after 3 days) Considerable enrich-
ment of R(−)-
ibuprofen. t1/2 values 
of 2.2 and 2.3 days 
for R(−)-ibuprofen 
and S(+)-ibuprofen, 
respectively. Faster 
enantiomer degrada-
tion at 1 µg g−1. 
Reduced enantiomer 
degradation at 4 °C. 
No degradation or 
enantioselectivity 
under abiotic condi-
tions
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Microcosm Incubation time Incubation conditions Drug Initial concentration EF (initial) EF (final) Observations References

Soil (5 g) 56 days Dark conditions
pH 6.6
Incubation tempera-

tures of 4  °C and 
18 °C

Sampling times: 0, 1, 
3, 7, 14, 28, 42 and 
56 days

Moisture content 
maintained at 26%

Sacrificial micro-
cosms prepared in 
triplicate

Soil stored for 60 days 
at 4 °C prior to start 
of the incubation 
period

S(+)-naproxen 5 µg g−1  > 0.99 (18 °C) 0.78 (after 28 days) Inversion of S(+)-
naproxen to R(−)-
naproxen. Very 
limited inversion 
observed at 4 °C

R(−)-naproxen 5 µg g−1  < 0.01 (18 °C) 0.54 (after 28 days) Inversion of R(−)-
naproxen to S(+)-
naproxen. Very 
limited inversion 
observed at 4 °C

S(+)-ibuprofen 5 µg g−1  > 0.99 (18 °C) 0.57 (after 7 days) Inversion of S(+)-
ibuprofen to 
R(−)-ibuprofen. 
Significant inversion 
observed at 4 °C

R(−)-ibuprofen 5 µg g−1  < 0.01 (18 °C) 0.39 (after 7 days) Inversion of R(−)-
ibuprofen to 
S(+)-ibuprofen. 
Significant inversion 
observed at 4 °C

DO, dissolved oxygen; DMP, 2,6-dimethoxyl phenol; EF, enantiomeric fraction; EMBR, enzymatic membrane bioreactor; HFCW, horizontal subsurface-flow constructed wetlands; HLR, hydraulic 
loading rate; HRT, hydraulic retention time; MBR, membrane bioreactor; MQL, method quantitation limit; t1/2, half-life; UF, ultra-filtration
A Camacho-Muñoz et al. (2019); BEscuder-Gilabert et al. (2018); CNguyen et al. (2017); DMatamoros et al. (2009); EHashim et al. (2011); FSuzuki et al. (2014); GWinkler et al. (2001); HBuser 
et al. (1999); IBertin et al. (2020)
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suggested to invert ibuprofen enantiomers in both directions, 
favouring the formation of S(+)-ibuprofen (Thomason et al. 
1997). Nocardia bacteria can invert S(+)-ibuprofen to R(−)-
ibuprofen (Mitsukura et al. 2002). Inversion in this instance 
is thought to involve several enzymes via a similar mecha-
nism observed in rat liver (Kato et al. 2004, 2003) (Fig. 2). 
However, considering the diversity in the microbial com-
munity present in wastewater, several inversion pathways 
are possible.

No enantioselectivity in the degradation of R/S(±)-
ketoprofen has been reported in activated sludge or lac-
case enzyme batch studies (Camacho-Muñoz et al. 2019; 
Escuder-Gilabert et al. 2018; Nguyen et al. 2017). How-
ever, minimal bidirectional chiral inversion was observed 
in a continuous flow enzymatic membrane bioreactor treat-
ing synthetic wastewater containing individual ketoprofen 
enantiomers (Nguyen et al. 2017). In a further membrane 
bioreactor study, R/S(±)-ketoprofen was enriched with S(+)-
ketoprofen whereby a racemic enantiomeric fraction was 
increased to 0.60–0.66 (Hashim and Khan 2011) (Table 4).

Studies using enantiomerically pure S(+)-naproxen have 
reported inversion to R(−)-naproxen in activated sludge 
and membrane bioreactor microcosms (Hashim et al. 2011; 
Suzuki et al. 2014). Suzuki et al. (2014) found no inver-
sion in autoclaved abiotic controls confirming the inversion 
process is driven biologically. Activated sludge microcosms 
spiked with R/S(±)-naproxen provided evidence of S(+)-
naproxen inversion (Camacho-Muñoz et al. 2019). Nguyen 
et al. (2017) postulated enantioselective degradation of 
R/S(±)-naproxen occurred in laccase enzyme batch stud-
ies. Within 4 h, R(−)-naproxen was removed to below the 
MDL, whereas S(+)-naproxen remained largely unchanged 
for 24 h (Nguyen et al. 2017). Enantioselective degradation 
was proposed to be responsible because no inversion was 
observed in single enantiomer microcosms incubated in the 
same way. However, in these single enantiomer studies lim-
ited degradation was observed (Table 4). Therefore, further 
studies are needed to confirm enantioselective degradation 
as the main driver to the changes in enantiomeric fraction 
observed in the racemic microcosm. Nguyen et al. (2017) 
also demonstrated that naproxen underwent bidirectional 
inversion in a continuous flow enzymatic membrane bioreac-
tor dosed with laccase. In single enantiomer studies, the for-
mation of S(+)-naproxen was favoured over R(−)-naproxen 
(Table 4). However, it is challenging to identify whether this 
is a result of the inversion process(es) being enantioselec-
tive, i.e. inversion rates of enantiomers are different, or it is a 
result of enantioselective degradation, i.e. degradation rates 
of enantiomers are different, or it is a combination of both 
processes being enantioselective.

Occurrence and behaviour in receiving 
environments

Aquatic environment

The R/S(±)-ibuprofen concentration in surface waters is less 
than 1 µg L−1 (Table 3). The enantiomeric fraction is typically 
in the range 0.60–0.81 (Buser et al. 1999; Khan et al. 2014; 
Ma et al. 2019; Wang et al. 2018), similar to those enan-
tiomeric fractions observed in effluent wastewater (Table 3). 
However, an enrichment of R(−)-ibuprofen with a corre-
sponding enantiomeric fraction of 0.41 has been reported 
(Buser et al. 1999). In river water microcosms, considerable 
enantioselectivity was observed for R/S(±)-ibuprofen over 
10 days (Winkler et al. 2001). Enrichment of S(+)-ibuprofen 
was observed with a change in enantiomeric fraction from 
0.51 to 0.69 (Table 4). No degradation or enantioselectivity 
was observed in abiotic controls. On the other hand, Buser 
et al. (1999) noted an enrichment of R(−)-ibuprofen in lake 
water microcosms incubated for 37 days (Table 4). These 
studies demonstrate the diverse enantiospecific behaviour of 
ibuprofen in the environment. In both studies, ibuprofen was 
spiked as the racemate and it was not possible to establish 
whether or not chiral inversion took place.

Currently, no data exist on the enantiomeric composi-
tion of ketoprofen in surface waters. R/S(±)-ketoprofen has 
been found to degrade rapidly in river water microcosms 
(Camacho-Muñoz et al. 2019). Both biodegradation and 
photolysis contributed to ketoprofen removal from river 
water microcosms. In biotic and abiotic microcosms under 
light exposure, the total ketoprofen removal after 5 days was 
98% (Camacho-Muñoz et al. 2019). Under biotic conditions 
(both light and dark exposure), an enrichment of the pharma-
cologically active enantiomer S(+)-ketoprofen was observed 
(Table 4).

Naproxen has been reported in surface waters up to 
0.36  µg  L−1 with enantiomeric fractions in the range 
0.84–0.98 (Table 3). Most studies report the presence of 
R(−)-naproxen due to the inversion observed during waste-
water treatment. River water microcosm studies spiked with 
R/S(±)-naproxen revealed an enrichment of S(+)-naproxen 
during incubation (Camacho-Muñoz et al. 2019). Suzuki 
et al. (2014) studied the enantiospecific behaviour of nap-
roxen in river water microcosms spiked with individual 
enantiomers. Very little inversion was observed for both 
enantiomers during 30-day incubation. However, removal 
was considerably different between S(+)-naproxen and R(−)-
naproxen microcosms (Table 4). The half-lives of S(+)-nap-
roxen and R(−)-naproxen were 37 and 99 days, respectively 
(Suzuki et al. 2014). The lack of inversion and considerably 
different removal rates between enantiomers demonstrates 
enantioselective degradation of naproxen in river water.
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Terrestrial environment

The application of biosolids as fertilizer or irrigation with 
reclaimed wastewater can result in the introduction of chiral 
NSAIDs to agricultural soils (Albero et al. 2014; Radjenović 
et  al. 2009a). Both naproxen and ibuprofen have been 
reported in amended soils (Biel-Maeso et al. 2018; Gibson 
et al. 2010). However, no data exist on the enantiomeric 
composition of these drugs in soil. Nevertheless, spiked 
microcosm studies have revealed important information on 
the behaviour of ibuprofen and naproxen here. Individual 
enantiomer microcosms revealed both naproxen and ibu-
profen are subject to bidirectional chiral inversion in soil 
(Bertin et al. 2020). S(+)-naproxen and R(−)-ibuprofen were 
found to be the more persistent enantiomers. For example, 
soil microcosms maintained at 18 °C and spiked with R(−)-
naproxen with an initial enantiomeric fraction less than 0.01 
increased to 0.54 after 28 days. Microcosms spiked with 
S(+)-naproxen, and an initial enantiomeric fraction greater 
than 0.99 reduced to 0.78 after 28 days (Fig. 3). However, 
it was not possible to conclude that this was due to differ-
ent rates of inversion or degradation between enantiomers 
as these processes can take place simultaneously. Naproxen 

enantiomers were found to persist in soil for at least 56 days, 
whereas ibuprofen degraded completely within 28 days (Ber-
tin et al. 2020). Enantioselectivity and enantiomer removal 
were significantly reduced in soils incubated at 4 °C (Fig. 3), 
which is an important consideration for cooler and temperate 
climates. No enantiomer removal or enantioselectivity was 
observed in abiotic controls.

Enantiospecific toxicity

The effects of drug enantiomers on target organisms such 
as humans are well understood. Yet, studies on the enantio-
specific effects of drugs to non-target organisms are limited, 
particularly for the NSAIDs. Mennillo et al. (2018) reported 
the toxicity of R/S(±)-ketoprofen and the pharmacologically 
active S(+)-ketoprofen to bacteria, algae and zooplankton. 
S(+)-ketoprofen was more potent to algae than the racemate 
at the same concentration. To demonstrate, median effect 
concentrations  (EC50—concentration that the toxicologi-
cal response is halfway between a normal and maximum 
response) towards the microalgae Pseudokirchneriella 
subcapitata (growth inhibition after 96 h) were 240 and 
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Fig. 3  Concentration of R(−)-naproxen and S(+)-naproxen and the 
corresponding enantiomeric fractions in soil microcosms spiked with 
individual naproxen enantiomers. Reproduced with permission (Ber-
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66  µg  L−1 for R/S(±)-ketoprofen and S(+)-ketoprofen, 
respectively (Mennillo et al. 2018) (Table 5). Furthermore, 
a no observed effect concentration (NOEC) of 4 µg L−1 has 
been reported for S(+)-ketoprofen towards P. subcapitata 
(7 days, growth) (Mennillo et al. 2018). This could be sig-
nificant considering ketoprofen in wastewater effluents is 
enriched with S(+)-ketoprofen with enantiomeric fractions 
in the range 0.54–0.68 (Table 4). However, no toxicity test-
ing was undertaken on the pharmacologically less active 
R(−)-ketoprofen.

Neale et al. (2019) investigated the toxicity of S(+)-
ketoprofen and R(−)-ketoprofen using a battery of eco-
toxicity bioassays including bacteria, algae and fish cells. 
The photosystem inhibition of P. subcapitata  (EC10, 24 h) 
was greater than 16.7 mg L−1 for both enantiomers. Great-
est enantiospecific differences were observed towards eth-
oxyresorufin-O-deethylase activity in fish cells (induction 
of cytochrome P450 1A enzymes which are important for 
xenobiotic metabolism (Fent 2001). The effect concentration 
causing an induction ratio of 1.5  (ECIR1.5, 6 h) was 4.3 mg 
 L−1 for R(−)-ketoprofen and greater than 27.2 mg  L−1 for 
S(+)-ketoprofen demonstrating at least 6.3 times potency 
difference between enantiomers (Neale et al. 2019). Here, 
the more potent enantiomer R(−)-ketoprofen was the less 
prevalent reported in the environment (Table 5).

Neale et al. (2019) also investigated the toxicity of indi-
vidual flurbiprofen, ibuprofen and naproxen enantiomers in 
their study. Of the studied organisms, ibuprofen enantiom-
ers exhibited toxicity towards the bacteria Photobacterium 
leiognathi. However, toxicity was not enantiospecific with 
 EC50 values (% inhibition, 30 min) of 3.1 and 2.8 mg  L−1 
for S(−)-ibuprofen and R(+)-ibuprofen, respectively (Neale 
et al. 2019). However, studies on zebra fish (Danio rerio) 
have reported significant differences on lipid metabolites in 
brain tissue induced by S(−)-ibuprofen and R(+)-ibuprofen 
(Zhang et al. 2020). In this study, the test fish were exposed 
to environmentally relevant enantiomer concentrations (5 µg 
 L−1) for 28 days. The authors concluded that ibuprofen can 
induce enantiospecific toxicity to aquatic organisms (Zhang 
et al. 2020).

Flurbiprofen showed greatest enantiospecific toxic-
ity towards P. leiognathi albeit only 1.7 times difference 
between S(+)-flurbiprofen and R(−)-flurbiprofen  (EC50 
1.2 vs 2.1 mg  L−1) (Neale et al. 2019). S(+)-naproxen was 
2.5 times more active than R(−)-naproxen in the ethoxyre-
sorufin-O-deethylase assay. However, the lowest  EC50 val-
ues were reported for P. leiognath albeit with only slight 
enantiospecificity  (EC50 0.93 vs 0.75 mg L−1) (Table 5) 
(Neale et al. 2019). Considerably more toxicity data are 
available on S(+)-naproxen (without comparative data for 
R(−)-naproxen) as it the ‘off-the-shelf’ standard available 
(Table 5). This includes chronic toxicity data whereby the 
lowest NOEC to the crustacean Moina macrocopa (7 days, 

reproduction) was 0.3 mg L−1 (Kwak et al. 2018) (Table 5). 
Although S(+)-naproxen is the dominant enantiomer in 
the environment with enantiomeric fractions 0.84–0.98, 
notable R(−)-naproxen concentrations are also present 
(Table 4). Therefore, toxicity assays also need undertaken 
on R(−)-naproxen.

Recommendations for enantioselective 
studies and future perspectives

In recent years, considerable improvements have been 
made on understanding the enantiospecific behaviour and 
effects of NSAIDs in the environment. Nevertheless, further 
research is needed to further our understanding and better 
appreciate the environmental risks posed by chiral NSAIDs. 
Therefore, future perspectives and recommendations for 
research in this area are outlined.

Analytical strategies

Significant progress has been made in analytical methods 
for enantioselective analysis of NSAIDs in environmental 
matrices over the past 10 years (Table 2). However, further 
developments are now needed to improve and ensure the 
quality of quantitative data, and to shorten analysis times. 
Although sample extraction processes, e.g. SPE, are not 
considered enantioselective in nature, sample storage can 
be. For example, enantioselective degradation of the stimu-
lant amphetamine has been observed in surface water during 
storage at 4 °C for 48 h (Ramage et al. 2019). Many authors 
report the storage of water samples for NSAIDs analysis 
at 4 °C to mitigate any analyte losses or enantiospecific 
changes (Table 2). However, the suitability of this approach 
needs investigated for NSAIDs considering chiral inversion 
and degradation could take place.

A further consideration needed to ensure accurate data are 
collected is the method of quantitation used. A well-known 
issue of environmental analysis using electrospray ioniza-
tion in LC–MS applications is the effect of co-extracted 
matrix components on analyte signal strength (Cappiello 
et al. 2008; Furey et al. 2013; Petrović et al. 2005). This 
can lead to enhancement or suppression of signal strength, 
which can also be enantioselective (Camacho-Muñoz and 
Kasprzyk-Hordern 2015, 2017; Camacho-Muñoz et al. 2016; 
Castrignanò et al. 2018; López-Serna et al. 2013). Such 
effects can be easily corrected using deuterated surrogates 
in the analysis process. However, several methods report the 
use of matrix matched calibrations without deuterated sur-
rogates/internal standards to account for these matrix effects 
(Li et al. 2019; Ma et al. 2019; Wang et al. 2018; Yuan et al. 
2018) (Table 2). This quantification approach needs care, 
particularly in monitoring studies where the composition of 
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Table 5  Enantiospecific toxicity data for non-steroidal anti-inflammatory drugs

Drug Testing 
organism 
group

Testing 
organism

Endpoint Toxicity 
measure

Exposure 
time

R(−)-
enantiomer
(mg  L−1)

S(+)-enanti-
omer
(mg  L−1)

Enan-
tiospecific 
 differencea

References

Naproxen Bacteria P. leiognathi Bacterial 
toxicity

EC50 30 min 0.75 0.93 1.2 A

Algae P. subcapi-
tata

PSII Inhibi-
tion

EC10 2 h 20.1  > 18.8 – A

Algae P. subcapi-
tata

PSII Inhibi-
tion

EC10 24 h 19.8 23.8 1.2 A

Fish liver 
cells

PLHC-1 EROD activ-
ity

ECIR1.5 6 h 12.6 5.1 2.5 A

Fish liver 
cells

PLHC-1 Cell viability EC50 48 h  > 18.8  > 13.2 – A

Invertebrate D. magna Immobility EC50 48 h – 85.3 – B
Invertebrate M. macro-

copa
Immobility EC50 48 h – 74.1 – B

Invertebrate D. magna Survival NOEC 21 days – 30 – B
Invertebrate D. magna Reproduc-

tion
NOEC 21 days – 10 – B

Invertebrate D. magna Growth NOEC 21 days – 10 – B
Invertebrate M. macro-

copa
Survival NOEC 7 days – 30 – B

Invertebrate M. macro-
copa

Reproduc-
tion

NOEC 7 days – 0.3 – B

Fish O. latipes Survival NOEC 40 days – 0.5 – B
Fish O. latipes Growth NOEC 40 days – 50 – B
Fish D. rerio 

(embryo)
Immobility/

Death
LC50 96 h – 115.2 – C

Fish D. rerio 
(larvae)

Immobility/
Death

LC50 96 h – 147.6 – C

Fish D. rerio 
(embryo)

Malforma-
tion

EC50 96 h – 98.3 – C

Fish D. rerio 
(larvae)

Malforma-
tion

EC50 96 h – 149 – C

Invertebrate D. magna Immobility EC50 48 h – 46.7 – D
Fish C. carpio Immobility LC50 96 h – 269.2 – D
Algae S. subspica-

tus
Growth EC50 72 h – 625.5 – E

Invertebrate D. magna Immobility EC50 24–48 h – 166.3 – E
Flurbiprofen Bacteria P. leiognathi Bacterial 

toxicity
EC50 30 min 2.13 1.22 1.7 A

Algae P. subcapi-
tata

PSII Inhibi-
tion

EC10 2 h 6.92 9.79 1.4 A

Algae P. subcapi-
tata

PSII Inhibi-
tion

EC10 24 h 5.47 9.07 1.7 A

Fish liver 
cells

PLHC-1 EROD activ-
ity

ECIR1.5 6 h 8.39  > 12.5  > 1.5 A

Fish liver 
cells

PLHC-1 Cell viability EC50 48 h  > 13.8  > 13.7 – A

Ibuprofen Algae C. pyrenoi-
dosa

Growth IC50 48 h 66.7 65.5 – F

Algae C. pyrenoi-
dosa

Growth IC50 72 h 64.4 53.8 1.2 F

Algae C. pyrenoi-
dosa

Growth IC50 96 h 61.0 54.5 1.1 F
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collected samples can change between samples. For exam-
ple, the signal suppression of the pesticide aldicarb for five 
different apple varieties varied by 42% (Kruve et al. 2008).

Considering LC is the preferred method of analysis and 
is likely to continue being so, it is important to note that 
existing methods use enantioselective columns with 5 µm 
stationary phase particle sizes (Table 2). Such columns are 
restricted to use in high-performance liquid chromatography 
operation. Commercially available columns particularly for 
the polysaccharide phases are now available with sub-2 µm 
particle sizes. The ability to operate at ultra-performance 
liquid chromatography pressures facilitates higher plate 
numbers, improved resolution and shorter analysis times.

Occurrence and fate studies

Several studies have reported enantioselective changes to 
NSAIDs during wastewater treatment and in the environment 

(Tables 3, 4). Both chiral inversion and enantioselective deg-
radation have been demonstrated (Bertin et al. 2020; Hashim 
and Khan 2011; Nguyen et al. 2017; Suzuki et al. 2014). 
These studies have shown that it is essential to conduct 
microcosm studies using individual enantiomers over the 
racemate where possible to better evaluate enantioselective 
fate processes. However, studies evidencing the mechanisms 
of inversion and degradation in an environmental context 
are lacking. This is challenging for complex environmental 
compartments including those encountered in engineered 
systems such as wastewater treatment plants. Nevertheless, 
studies need to be undertaken on individual microbial spe-
cies found in wastewater treatment plants to better our under-
standing of NSAIDs fate during wastewater treatment. This 
will also help explain the differences in enantioselectivity 
observed between the same process types, as well as differ-
ent processes (Tables 3, 4).

Key:  EC10, effective concentration, 10%;  EC50, half maximal effective concentration;  ECIR1.5, concentration that induces an induction ratio of 
1.5; EROD, ethoxyresorufin-O-deethylase;  LC50, lethal concentration, 50%; LOEC, lowest observed effect concentration; NOEC, no observed 
effect concentration; PSII, photosystem II
a  Enantiospecific difference = Higher concentration

Lower concentration
 ; ANeale et al. (2019); BKwak et al. (2018); CLi et al. (2016); DGheorghe et al. (2016); ECleuvers 

(2004); FWang et al. (2020); GMennillo et al. (2018)

Table 5  (continued)

Drug Testing 
organism 
group

Testing 
organism

Endpoint Toxicity 
measure

Exposure 
time

R(−)-
enantiomer
(mg  L−1)

S(+)-enanti-
omer
(mg  L−1)

Enan-
tiospecific 
 differencea

References

Bacteria P. leiognathi Bacterial 
toxicity

EC50 30 min 2.84 3.13 1.1 A

Algae P. subcapi-
tata

PSII Inhibi-
tion

EC10 2 h  > 18.5  > 29.5 – A

Algae P. subcapi-
tata

PSII Inhibi-
tion

EC10 24 h  > 18.5  > 29.5 – A

Fish liver 
cells

PLHC-1 EROD activ-
ity

ECIR1.5 6 h  > 11.9  > 19.0 – A

Fish liver 
cells

PLHC-1 Cell viability EC50 24 h  > 13.0  > 20.7 – A

Ketoprofen Bacteria P. leiognathi Bacterial 
toxicity

EC50 30 min 4.23 4.56 – A

Algae P. subcapi-
tata

PSII Inhibi-
tion

EC10 2 h  > 16.7  > 42.3 – A

Algae P. subcapi-
tata

PSII Inhibi-
tion

EC10 24 h  > 16.7  > 42.3 – A

Fish liver 
cells

PLHC-1 EROD activ-
ity

ECIR1.5 6 h 4.34  > 27.2  > 6.3 A

Fish liver 
cells

PLHC-1 Cell viability EC50 24 h  > 11.7  > 29.6 – A

Algae P. subcapi-
tata

Growth EC50 96 h – 0.066 – G

Algae P. subcapi-
tata

Growth NOEC 96 h – 0.004 – G

Algae P. subcapi-
tata

Growth LOEC 96 h – 0.008 – G
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The majority of enantioselective occurrence and fate 
investigations on NSAIDs are focused on aqueous environ-
mental matrices (Tables 3, 4). Chiral NSAIDs have been 
reported in particulate matrices such as treated and untreated 
sludge, soils and sediments, albeit not at the enantiomeric 
level (Albero et al. 2014; Kumirska et al. 2015; Martín et al. 
2012; Radjenović et al. 2009a). Although there is some 
enantiomeric information for ibuprofen and naproxen in 
soils (Bertin et al. 2020), little enantiospecific data exist for 
sediments or sludges. Yuan et al. (2018) reported enantio-
meric data for ibuprofen in sediment and sludge. However, 
the order of enantiomer elution is unknown and chroma-
tographic peaks could not be assigned S(+)-ibuprofen and 
R(−)-ibuprofen. Nevertheless, the data showed ibuprofen 
to be present in sludge in non-racemic form (Yuan et al. 
2018). Therefore, further studies on the enantioselective 
occurrence and behaviour of NSAIDs in particulate envi-
ronmental matrices are recommended. Methods which can 
support such studies are already available or can be adapted 
to do so (Bertin et al. 2020; Yuan et al. 2018).

Investigations on the enantiospecific occurrence and fate 
of metabolites during wastewater treatment and in the envi-
ronment can help better understand the fate of the parent 
compounds. Several methods exist which facilitate enan-
tioseparation of metabolites including carboxyibuprofen, 
2-hydroxyibuprofen and dihydroketoprofen (Camacho-
Muñoz and Kasprzyk-Hordern 2015; 2017; Camacho-
Muñoz et al. 2016) (Table 2). In such methods, the order of 
enantiomer elution is not known. Without the use of optical 
rotation detection to determine enantiomer elution order, 
the commercial availability of enantiomerically pure refer-
ence standards is essential. Such standards are also needed 
to conduct single enantiomer microcosm studies. However, 
at present such reference standards are not available for most 
NSAID metabolites expect for S(+)-O-desmethylnaproxen 
and R(−)-O-desmethylnaproxen. The availability of enan-
tiopure metabolite standards would also facilitate enantio-
specific toxicity studies. Many metabolites are themselves 
pharmacologically active and have been reported in river 
waters (Paíga et al. 2016; Zha et al. 2017; Zojaji et al. 2019).

Ecotoxicity studies

Existing data show that although enantiospecific differences 
exist, they were less than one order or magnitude (Neale 
et al. 2019). Nevertheless, there is need for additional enan-
tiospecific investigation for a greater range of organisms and 
endpoints considering the enantiomer enrichment observed 
in the environment (Table 3). Toxicity testing also needs 
to investigate chronic exposure as the majority of research 
undertaken to date has focussed on acute effects (Table 5). 
It is recommended that these are undertaken at environ-
mentally relevant concentrations as the majority of acute 

exposures use enantiomer concentrations considerably 
greater than those encountered in the environment (Table 5). 
This will improve the accuracy of environmental risk assess-
ments of chiral NSAIDs and establish the significance of 
considering stereochemistry for the environmental effects of 
such compounds. Metabolomic approaches are also benefi-
cial to provide information on organism function and health 
at the molecular level (Bundy et al. 2008). This will provide 
additional information which would otherwise be missed 
by traditional bioassays and endpoints. Once a greater body 
of knowledge is available on the enantiospecific effects of 
chiral NSAIDs and their modes of action, mixture effects 
can be considered.

It is suggested that effect studies are supported with 
appropriate enantioselective analysis to report actual con-
centrations over nominal concentrations in exposure media 
over the duration of studies. This analysis is important to 
undertake throughout the exposure period. Mennillo et al. 
(2018) reported no change to the concentration of S(+)-keto-
profen in P. subcapitata test media after 72 h. Zhang et al. 
(2020) also reported drug stability during exposure of D. 
rerio with ibuprofen enantiomers. Although they confirmed 
the ‘total’ ibuprofen concentration did not vary substantially, 
enantioselective analysis was not used to confirm the enan-
tiomeric composition and confirm inversion did not take 
place. On the other hand, the requirement to confirm drug 
enantiomeric composition is less critical for studies con-
ducted on cells over whole organisms. For example, Neale 
et al. (2019) who undertook toxicity assays using fish cells 
stated that any inversion that takes place is part of the cell’s 
response to the enantiomer and is still a relevant measure of 
its biological activity.

Conclusion

Investigating the stereochemistry of NSAIDs in wastewaters 
and the environment poses several challenges. This review 
demonstrates that considerable progress has been made in 
this research area. However, to fully assess the environmen-
tal risk posed by NSAIDs at the enantiomeric level, further 
work is needed as outlined in this review, e.g. fate stud-
ies using enantiopure standards, investigation of metabo-
lites and further enantiospecific toxicity studies. Once the 
risk is established, appropriate mitigation steps can then 
be undertaken, if needed. The essential use of NSAIDs 
by growing and aging populations is unlikely to result in 
any reduction of their entry into wastewater in the future. 
However, modifying existing wastewater treatment plant 
operation to target the removal of specific enantiomers is 
an opportunity to reduce any identified risks. This could be 
achievable whereby the microbial species that preferentially 
degrade or invert those more toxic enantiomers are known, 
and wastewater treatment plants can be operated to facilitate 
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their prevalence. For example, the microbial community in 
suspended biomass systems changes with sludge age which 
can be manipulated through process operation (Pala-Ozkok 
et al. 2013).
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