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ABSTRACT 

Purpose: To quantify and describe relationships between subjective and external measures of 

training load in professional youth soccer players. Methods: Data from differential ratings of 

perceived exertion and seven measures of external training load were collected from 20 

professional youth soccer players over a 46-week season. Relationships were described by 

repeated measures correlation, principal component analysis and factor analysis with oblimin 

rotation. Results: Significant positive (0.44 ≤ r ≤ 0.99; p< 0.001) within-individual correlations 

were obtained across dRPE and all external training load measures Correlation magnitudes 

were found to decrease when training load variables were expressed per minute. Principal 

component analysis provided two components that described 83.3% of variance. The first 

component, which described 72.9% of variance, was heavily loaded by all measures of training 

load, whilst the second component which described 10.4% of the variance, appeared to have a 

split between objective and subjective measures of volume and intensity. Exploratory Factor 

Analysis identified four theoretical factors with correlations between factors ranging from 0.5 

to 0.8 These factors could be theoretically described as; objective volume, subjective volume, 

objective running and objective high intensity measures. Removing dRPE measures from 

analysis altered the structure of the model, providing a three factor solution. Conclusions: 

Differential RPE measures are significantly correlated with a range of external training load 

measures and with each other. More in-depth analysis showed that dRPE measures were highly 

related to each other, suggesting that, in this population, they would provide practitioners with 

similar information. Further analysis provided characteristic groupings of variables 

 



INTRODUCTION 

Training load monitoring is common practice in elite sport to develop and prepare athletes1-2. 

Data collected via technology such as GPS can be transformed to create metrics to monitor 

external training load. The ability to collect valid and reliable field based data has also 

generated a large amount of applied research that can be used by practitioners to collect and 

analyse training load data, and also to predict and prescribe future training 1. Monitoring 

positional measures of training load such as total distance, velocity, and distance covered at 

specific speed thresholds are now common in professional team sports 2-4 as well as 

accelerometer based metrics such as PlayerLoadTM 3.  

 

In contrast to external measures of training load, rating of perceived exertion (RPE) has been 

shown to be useful as a tool to measure load 5. It has been suggested that a global measure of 

internal training load such as session RPE (sRPE) may lack sensitivity due to large variations in 

intensity between and within individuals during training and competition 6. Differential ratings 

of perceived exertion (dRPE) have been proposed to distinguish between muscular and 

cardiovascular exertion, thereby providing additional and more detailed information to monitor 

load 7-9. Previously, clear between-protocol differences, in relation to dRPE scores have been 

found during cycling and treadmill based activity 9. These findings were also supported by 

between-protocol differences in objective measures of physiological load. Weekly scores of 

perceived breathlessness (sRPE-B) has been shown to be higher in players who improved Yo-

Yo Intermittent Recovery Test Level 1 and countermovement jump, with 18 ± 11% and 15 ± 

16% difference between ‘responders’ and ‘non-responders’ respectively 7. McLaren et al 10 

showed that dRPE could isolate specific demands of training. The results showed that 

differential ratings of breathlessness (sRPE-B) was greatest during field based repeated high-

intensity effort training, skills and speed-based sessions, whilst upper body muscle exertion 

(sRPE-U) was highest in resistance training-based sessions. Overall, dRPE explained 77% of 

the variance within sRPE training load and the strongest association between the differential 

markers and sRPE was with measures of leg muscle exertion (sRPE-L). These findings support 

the notion that different modalities of training will elicit unique training responses, encouraging 

the use of dRPE in team sports. 

Recent research has provided further evidence to support the use of RPE in team sports and as a 

cost-effective alternative to methods such as GPS monitoring and heart rate analysis. A recent 



meta-analysis across team sports reported positive linear associations between sRPE and 

various external training load measures 11. In soccer specifically, whilst sRPE correlates well 

with external training load measures 12, correlations tend to be weaker with measures of 

intensity such as distance covered at high-speeds11,12. These lower correlations may reflect the 

difficulty in obtaining a single measure of intensity to represent the  intermittent demands of 

field sports 11. Previous research has tended to focus on bivariate correlations that provided 

limited insight into underlying structure between groups of variables. In contrast, more 

advanced analyses such as principal component analysis (PCA) and exploratory factor analysis 

(EFA) may identify structure of relationships between perceived measures of training load and 

objective measures. Weaving et al 13 included PCA analysis when  exploring the relationships 

between internal and external measures of load in rugby league players. The authors concluded 

that across the five variables collected, PCA analysis identified that the structure was different 

across training methodologies and could often be well explained by two principal components 

aligning to either internal or external load measures. For example, during skills training the 

highest loading for the first principal component, which explained almost half the variance was 

best represented by body load and total impacts. The highest loadings for the second principal 

component, which explained a further 20.7% of the variance, was best represented by iTRIMP 

and sRPE, with component loadings of 0.88 and 0.77 respectively. Additional insights may be 

obtained employing EFA which provides opportunity to rotate solutions and uncover groupings 

of measures.   

The aim of the current study was to quantify and describe relationships across multiple RPE 

variables and commonly used measures of external training load in soccer players. Statistical 

approaches were adopted to provide the most meaningful and useful summary of these 

relationships. Such understanding would benefit practitioners that only have access to simple 

RPE measures and provide information to effectively reduce the number of variables that 

require monitoring to influence decisions on loading.   

 

  



METHODS 

Subjects 

Twenty male professional youth soccer players (age: 17.4 ± 1.3 yrs, height: 178.0 ± 8.1 cm and 

weight: 71.8 ± 7.2 kg) were recruited to take part in this study. A total of 3324 individual 

recordings were taken across the season, consisting of training and match-play. Mean durations 

(± SD) of training and match play are presented in Table 1. The group comprised multiple 

positions, with data collected from goalkeepers removed. Rehabilitation sessions were also 

removed from the analysis leaving a total of 3221 sets of observations. Data collected and the 

prospective nature of the study conformed to the University of Glasgow research policies in 

accordance with the declaration of Helsinki. 

Design 

The study featured a prospective longitudinal design across an entire 46-week season with 

professional youth soccer players. The data collection period consisted of a 6-week pre-season 

and two competitive phases (20-weeks and 19-weeks) split by a 2-week break. Subjective 

measures of training load were collected via a range of RPE measures, whereas objective 

measures of training load were collected via GPS units worn during training and match play. 

The primary aim of the study was to assess the relationship between subjective and objective 

measures of training load using a range of statistical techniques. 

 

Methodology 

Each player’s global RPE, ratings for breathlessness and ratings for leg muscle exertion were 

collected, in isolation, approximately 30 minutes after each training session using a 

standardised scale which has previously been used in soccer (Borg CR10) 5. All players had 

previous experience using the scale as part of their training monitoring. Each RPE score was 

multiplied by session duration to calculate session loads 14. During training and match-play, 

players wore commercially available GPS units (Optimeye X4, Catapult Sports, Melbourne, 

Australia, Firmware version 7.27).These units have been utilised previously in analyses 

involving team sports 15-17. Velocity and acceleration dwell times were set at 0.6s and 0.4s 

respectively. The units include a GPS receiver and a triaxial accelerometer which collect data at 

10Hz and 100Hz respectively. To avoid interunit error, each player wore the same GPS device 

for each session. After recording, data were downloaded to a computer and analysed via the 



software package Openfield (Software version 1.19, Catapult Sports, Melbourne, Australia). To 

minimise differences in data processing, the same software version was used to export training 

load data1. The average satellite count was 10.73±1.71, the average horizonal distribution of 

position was 0.78±0.2. The variables selected to quantify external load were total distance (TD, 

m), PlayerLoadTM (PL, au), low intensity running (LIR, < 14.4km.h-1, m), running (HIR, 19.8 - 

24.98km.h-1, m), sprinting (SPR, > 24.98km.h-1, m), accelerations (ACC, >2m.s-2 count) and 

decelerations (DEC <-2m.s-2, count) expressed in their absolute units and per minute. 

PlayerLoadTM is derived from the 100Hz tri-axial stored within the receiver and is a measure of 

external load experienced by players18. Running based variables, TD, LIR, SPR, and 

accelerations and decelerations were included due to their general use practically3 and are all 

measured at 10Hz.  

 

 

Statistical Analysis 

Complete data were obtained for almost 90% of sessions. Where data were missing, these were 

treated as missing at random and were primarily due to technical errors such as battery failure. 

Initial assessment of relationships between variables was made using repeated measures 

correlation to reduce bias 12,19. The thresholds <0.10 (trivial), 0.1 - 0.3 (small), 0.3 - 0.5 

(moderate), 0.5 - 0.7 (large), 0.7 - 0.9 (very large) and > .9 (almost perfect) were used 20. 

Comprehensive assessments of relationships across all variables were made using PCA and 

EFA. PCA is a data reduction technique used to reduce the dimensionality of a dataset whilst 

maintaining variability 13,21,22. PCA is an explorative technique that is effective in describing 

structure among highly correlated variables. PCA produces a set of principal components 

(linear combinations of the original variables), each containing a set of variables that are 

correlated with each other; however, the principal components themselves are not correlated. 

Based on the assumption that data were missing at random, imputation of missing data was 

made using  the imputePCA function from the missMDA package 23 in the statistical 

environment R. Suitability of data to perform PCA was assessed using the Kaiser-Meyer-Olkin 

(KMO) measure of sampling adequacy and the Bartlett test of sphericity 24. Number of 

components retained in the analysis was determined by visual inspection of the scree plot and 

the ‘elbow’ of the data. Final assessment of underlying structure of relationships between 

variables was made with EFA. EFA is also a data reduction technique, however whilst PCA 



simply creates linear combinations of the variables, EFA assumes that the measures observed 

are manifested by latent variables which can be allowed to correlate with each other. 

Additionally, solutions can be rotated to assist with useful interpretation of latent variables and 

as a result the underlying structure. EFA with oblimin rotation was carried out using lavaan 

version 0.5-23 25 in the statistical environment R. Sensitivity analyses were conducted using the 

complete cases data set and did not provide any substantive changes, and so all results 

presented include those generated with the imputed data.  

 

 

  



RESULTS 

Within-individual correlations across dRPE and external load measures are presented in Table 

2.  All variables measured were positively related to each other (p< 0.001), with correlations 

from 0.44 to 0.99 (�̅�𝑟 = 0.71 ± 0.16). Correlations were quantified between perceptual and 

external variables with measures expressed either per session or per minute (Table 3).  

Correlations were similar for each of the RPE measures and values were consistently lower 

when measures were expressed per minute. 

PCA provided two readily interpretable principal components with eigenvalues greater than, or 

equal to, 1 (PCA1eig = 7.3, PCA2eig = 1.0) and cumulatively described 83.3% of the variance 

within the dataset (Table 4). The first principal component, which explained 72.9% of variance, 

demonstrated substantive contributions from all subjective and objective load variables. The 

second principal component, which explained 10.4% of variance, was best represented by 

contrasting RPE measures and LIR with high intensity activities such as HIR, SPR and ACC 

(Figure 1).  

EFA was conducted, the most appropriate model produced four latent factors (Table 5) with 

correlations between 0.5 and 0.8. The correlations between factors ranged from 0.5 to 0.8. The 

model had a Tucker-Lewis Index (TLI) of 0.97 and a root mean square error of approximation 

(RMSEA) of .10 (90% CI 0.10 – 0.11).  TLI and RMSEA are measures of model fit, with a TLI 

value of equal to or greater than 0.95 considered very good, and an RMSEA between 0.08 to 

0.1 considered marginal26. Four factors produced were identified as: 1) Objective volume (TD, 

PL, LIR); Objective running (HIR and SPR); Subjective measures (sRPE, sRPE-L and sRPE-

B); and 4) Objective high intensity (SPR, ACC, DEC) based on loadings. EFA was carried out 

with only sRPE from the subjective measures and the most appropriate model included three 

latent factors (TLI = 0.967 and RMSEA 0.12 [90%CI 0.11 - 0.13]) identified as: 1) Volume 

(sRPE, TD, PL and LIR); 2) Intense running (HIR and SPR); and 3) Intense actions (ACC and 

DEC) (Table 6).  

 

  



DISCUSSION 

Understanding the relationships between subjective training load measures and external 

training load measures can provide practitioners with information to better understand training 

and match play load. This study aimed to assess the relationship between subjective measures 

of training load and commonly used objective metrics measured via GPS. Whilst the various 

measures are positively correlated with each other PCA and EFA provided distinctions between 

characteristics of metrics. Therefore, there is potential to obtain more useful information by 

collecting data on multiple variables. However, for the population and physical loads 

investigated in the present study, the results suggested that RPE measures (sRPE, sRPE-L and 

sRPE-B) are not distinct and that they are more closely related to objective volume measures of 

training load than measures of intensity.  

The results from the repeated measures correlation suggest that dRPE was related to all 

measures of external training load and , in line with previous findings 12, this relationship was 

weaker when expressed as ‘per minute’. Gaudino et al 12 previously investigated the 

relationship between sRPE and external measures of training load in professional soccer 

players. They found that sRPE was significantly related to high speed distance (r = .61, 95%CI 

.58 - .64), impacts, a combination of collisions and step impacts whilst running, (r = .73, 

95%CI .71 – .75) and accelerations (r = .63, 95%CI .60 - .66). This relationship was weaker 

than when variables were expressed as ‘per minute’ for RPE and high-speed distance per 

minute (r = 0.26, 95%CI 0.21 - 0.30), impacts per minute (r = 0.23, 95%CI 0.19 - 0.27) and 

accelerations per minute (r = 0.30, 95%CI 0.26 - 0.34). These results are similar to our findings 

where we showed moderate to very large correlations, ranging from 0.44 to 0.86, between each 

dRPE reading and external measures of training load, which were then lower, 0.13 to 0.67, 

when expressed per minute. Previous research has suggested that this may be due to the 

multifactorial nature of precepting session intensity12. However, we would suggest it is also 

likely due to the large component of duration in sRPE calculation, and the ‘count’ nature of the 

GPS metrics commonly included in studies. 

Stronger relationships (Very Large) were measured for sRPE, sRPE-L, and sRPE-B with TD, 

PL and LIR. These findings are similar to results published by McLaren et al 11 in team sports 

which showed “Likely Large” to “Possibly Very Large” inferences between sRPE and 

accelerometer load and TD respectively. They also showed “Likely Moderate” and “Unclear” 

relationships between sRPE and high speed running distance (≥13.1 - 15.0km.h-1) and very 



high speed running distance (16.9 - 19.8km.h-1) respectively.  McLaren and colleagues11 

surmised that these differences may be due to a number of factors including; measurement error 

of GPS devices 4,27, individual differences in the velocity at which physiologically high 

intensities are attained28,29 or the non-linear relationship between running velocity and internal 

exercise intensity30. 

Attempts to move beyond bivariate relationships and assess more in-depth relationships were 

initiated with PCA. The analysis has been suggested to provide useful information to 

practitioners as it more clearly indicates the uniqueness between sets of variables.13,31. PCA 

provided two readily interpretable components that cumulatively described 83.3% of the 

variance within the dataset. The PCA biplot (Figure 1) displays the eigenvector arrows for each 

training load variable. The first principal component accounted for 72.9% of the total variance 

in the data and represented a relatively simple and equal weighted sum of all the measures. This 

was expected due to the large positive correlations obtained between all measures and 

identified that whilst there were aspects of uniqueness, the variables tended to provide similar 

information and thereby represented a measure of total training load. The second principal 

component accounted for 10.4% of the total variance and contrasted RPE measures and LIR 

with SPR and HIR. This second component could be interpreted as providing differential 

information between volume and high intensity, or high intensity and perceptions of effort. 

These findings are similar to those reported by Weaving et al13 with professional rugby league 

players. The authors also identified more than one principal component for various modes of 

training with an initial component representing a balanced sum and that subsequent 

components tended to contrast internal and external load measures.  

Weaving et al13 proposed that the intermittent nature of small-sided games leads to a prolonged 

external-load component, ultimately leading to a high internal load response. As small-sided 

games were used frequently in the training of the players investigated in the present study, 

possibly explaining the similarity in results obtained. Conversely, previous research in football 

showed no correlation between RPE and external load variables, except for a small correlation 

with PlayerLoadTM 32. The findings of Weaving et al.13 suggest that during small-sided games, 

the load measures account for a similar amount of the variance explained by the single 

principal component suggesting a single measure of training load may be sufficient to monitor 

training load. Conversely the findings of Casamichana and Julen 32 suggest that, due to low 

correlations between measures, a range of indicators are required to best understand training 

load. Our findings appear to support both arguments for global training. The large amount of 



variance explained by the first principal component support the findings of Weaving et al. 13, 

however if practitioners wish to further understand the volume and intensity of training then 

complementary measures may be required. 

 

The initial EFA identified four latent factors that were interpreted as: 1) objective volume; 2) 

objective running based; 3) subjective measures; and 4) objective high-intensity measures. 

Combined with the very high correlations amongst the three RPE measures (r > 0.93), these 

grouping suggest that there was minimal distinction between different RPE measures and that 

for the population and physical loads investigated there would be limited benefit measuring all 

three.  Removing sRPE-B and sRPE-L from the analysis and only using sRPE as a subjective 

measure changed the structure of the factor analysis, reducing the model to three-factors, with 

sRPE aligning with objective measures of volume. Collectively, these findings indicate that for 

the population and physical loads investigated sRPE-L and sRPE-B providing essentially the 

same information as sRPE and that this information reflects primarily the training volume 

completed. Findings regarding dRPE across the literature have been contradictory. McLaren et 

al 7 reported moderate (10% ± 90%CL 8.4) differences between weekly sRPE-B and sRPE-L in 

Championship Rugby Union players. Whereas,  Los Arcos 33 and colleagues found only trivial 

differences (ES = -0.17 ± SD 0.63) between sRPE-B and sRPE-L in  young professional soccer 

players during full match-play. However, further research by McLaren et al 9 found clear and 

large differences between sRPE-B and sRPE-L  at  all time points during incremental treadmill 

and cycling laboratory based tests. These differences may be due to a number of factors, 

including the activity assessed, participant demographic and participant familiarity with test 

protocols. The results from the present findings indicate that in a cohort of youth soccer 

players, dRPE is unnecessary and does not provide unique information compared with RPE 

There are limitations to our study which should be considered. Firstly, we did not include 

rehabilitation or gym sessions within the analysis. Whilst this does provide an incomplete view 

of training load across a season, it won’t affect the relationship between variables. However, 

use of different training modalities, such as those used in rehabilitation, may affect the 

relationship between dRPE measures and support its use. The lack of HR data also didn’t allow 

comparisons between RPE and an objective measure of internal training load, which may 

provide a better relationship with RPE-B. It could also be argued that RPE is too simplistic a 

measure to assess diverse physiological goals, however due to its ease of use and relationship 



with internal load it is commonly used in team sports. A recent paper has also suggested its use 

to monitor biochemical and mechanical stresses, thus again supporting the use of dRPE34. This 

should be considered by practitioners looking to assess global training load, or more specific 

load to assess resultant adaptations. 

 

PRACTICAL APPLICATIONS 

• Many internal and external training load measurements provide data that are highly consistent 

with each other and therefore collection and monitoring of all variables is likely to be 

inefficient and potentially create unwanted noise.  

• Where practitioners have access to GPS or similar technology, unique information can be 

obtained regarding training load through commonly measured variables. 

• In youth soccer players, there does not appear to be unique information provided between 

sRPE, sRPE-L and sRPE-B, and therefore, with this cohort it appears sufficient for 

practitioners to monitor sRPE only to attain a measure of training load.   

• RPE in youth soccer players appear to be more closely related to external measures of volume. 

Therefore, if a practitioner does not have access to GPS or similar technology, to best monitor 

the training load additional measures that more closely link to intensity should be sought.  

 

CONCLUSIONS 

There are strong correlations between sRPE, sRPE-L and sRPE-B, and external training load 

variables. Variables which could be considered as measures of volume had the strongest 

correlations. Further analysis showed that 2 principal components explained 83.4% of the 

variance in the dataset. The first principal component had large component loadings from all 

variables, whilst the second had contributions from variables related to high intensity. The large 

component loadings in the first principal component suggest that these metrics may be 

providing practitioners with similar information regarding load. Exploratory factor analysis 

provided four themes, one of which was represented by all dRPE measures. When only 

including sRPE in the analysis the structure of the factors changed, with sRPE aligning to 

objective measures of volume. 
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