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With the development of new energy sources becoming the mainstream of energy development 

strategies, the role of electric vehicle-powered lithium-ion batteries in the field of automobile 

transportation is becoming more and more obvious. An efficient the Battery Management System is 

necessary for the real-time usage monitor of each battery cell, which analyzes the battery status to ensure 

its safe operation. A complex equivalent circuit model is proposed and established. the Improved 

Equivalent Circuit Model is used to realize the precise mathematical expression of the power lithium-

ion battery packs under special conditions. The State of Charge estimation method which is based on 

Unscented Kalman Filter has a good filtering effect on the nonlinear systems. Based on the State of 

Charge estimation of Support Vector Machine, the samples in the nonlinear space of lithium-ion battery 

are mapped to the linear space. It can be seen from the experimental analysis that a joint Unscented 

Kalman Filter and Support Vector Machine algorithms for State of Charge estimation has higher 

accuracy. The experimental results show that the tracking error is less than 1.00%.  

 

 

Keywords: Battery Management System; State of Charge; Improved Equivalent Circuit Model; 
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1. INTRODUCTION 

Under the severe situation of global energy shortage, the energy supply model cannot last for a 

long time. Seeking a sustainable economic development and developing new energy industry has 

become the fundamental means to solve the problem. In the new energy industry, Electric Vehicles (EVs) 

have become the hotspot of social research because of their environmental characteristics to meet the 

high-efficiency and low-carbon economy of human society. In recent years, due to the excellent 
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performance of the Lithium-Ion Battery (LIB) itself, it has become the preferred power supply for new 

EVs. The researchers reviewed LIBs for EVs at low temperatures [1]. During the entire life cycle of the 

LIB, the monitoring and adjustment of the core parameter State of Charge (SOC) by the Battery 

Management System (BMS) will affect the effectiveness and safety of the emergency power output. The 

BMS is a necessary part of the power LIB packs, in which the SOC is a very important factor that affects 

its performance. Because the working characteristics of the LIB pack are highly nonlinear, the SOC 

value cannot be measured directly. Therefore, the accurate SOC estimation has become the focus and 

difficulty of the BMS design.  

To build a precise SOC estimate for the BMS, the researchers conducted model-based real-time 

SOC and State of Health (SOH) evaluations [2-12]. The LIB state estimation of EVs based on the Neural 

Network (NN) method [10, 13-15]. The real-time SOC estimation was achieved by constructing a robust 

adaptive sliding mode observer [13, 16-18]. Based on the State of Balance (SOB) estimation, the online 

dynamic balance management of the LIBs were realized [19]. Joint estimation of the EV power battery 

SOC was constructed by using the least squares method and the Kalman Filter (KF) algorithm [20]. In 

the SOC estimation process, a dynamic system model was obtained based on the Extended Kalman Filter 

(EKF) algorithm to avoid estimating the occurrence of failure phenomena. Many researchers based on 

the KF algorithm and improved it to achieve EV SOC estimation [20-23]. The optimal transmission 

strategies were introduced for the two-user energy harvesting device networks with limited SOC 

knowledge [24].Analysis of Power LIB packs affected by environmental and aging factors [25-27]. An 

advanced machine learning method was proposed for the LIB state estimation of the EVs [28, 29]. 

Combining the data-driven and model-based system residual life prediction methods, a hybrid 

framework was constructed  [30]. 

SOC estimation of LIBs allows the BMS to run accurately and efficiently [31]. For the research 

of this subject, the SOC estimation research scheme combining Unscented Kalman Filter (UKF) and 

SOC algorithm is creatively constructed. From another angle, the SOC estimation of LIBs is compared 

with the independent UKF algorithm. The experimental results show that after the introduction of 

Support Vector Machine (SVM) algorithm, the combination of UKF and SVM algorithm can effectively 

improve the accuracy of SOC estimation and provide a new idea for estimating SOC. 

 

 

 

2. EQUIVALENT CIRCUIT MODELING 

Aiming at the accurate mathematical simulation expression of the operating characteristics in the 

power LIB pack, the equivalent circuit modeling (ECM) analysis was explored to study the construction 

method of its equivalent model [32]. The LIB packs consist of multiple cells cascaded to achieve high 

power applications and provide the needed energy. Analysis of issues of integrating LIB pack into EVs 

[27, 33]. In order to adapt to the challenging environment of EV safety power supply applications, a 

novel ECM construction method is proposed. Assuming that all cells in the LIB module are the same, 

by introducing SOB into the internal LIB cells and considering the inconsistency of the batteries, an 

equivalent model of the improved equivalent circuit model (IECM) is proposed and applied to the SOC 

estimation process of the power LIB packs. 
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2.1. Internal resistance model construction 

Considering the working characteristics of the battery, the internal resistance model of the battery 

is established and applied to the experimental SOC estimation method [34]. This model not only has the 

characteristics of simple structure, but also can be used as the basis of other equivalent models. In this 

model, the internal equivalent structure of the battery is characterized by voltage source and internal 

resistance. the internal equivalent structure as shown in Figure 1. 

RO

UOC UL

I(t)

 

 
Figure 1. Internal resistance equivalent diagram 

 

In the Figure 1, UOC represents the open circuit voltage of the battery, which is a constant value; 

RO represents the ohmic resistance of the battery; UL represents the terminal voltage at both ends of the 

battery. In this model, both UOC and RO were set as fixed values, which was too simplified to be 

consistent with the change of parameters in the actual operation of the battery, and ignored the fact that 

the internal resistance of the battery changed with the change of electrolyte concentration. Therefore, 

this model is not suitable for SOC estimation of actual lithium ion batteries because of its low accuracy. 

 

2.2. Thevenin model construction 

An improvement over the Internal resistance model is the addition of a RC circuit, which is used 

to characterize the polarization effect of lithium-ion batteries in operation. the Thevenin model structure 

[35] as shown in Figure 2 

RO

UOC UL

I(t)

Icp(t)

CP

Rp

 

 

Figure 2. Thevenin equivalent diagram 

 

Where UOC represents the open circuit voltage of the battery, RO represents the ohmic internal 

resistance of the battery, and RP and CP respectively represent the polarization internal resistance and 

polarization capacitance inside the battery. The Thevenin model can better represent the dynamic 

response of the battery. RO can represent the instantaneous change of the battery voltage response at the 
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moment of charge and discharge, and RC circuit can reflect the gradual change of battery voltage during 

and after charge and discharge, such as sliding or lifting. The simulation accuracy of Thevenin model is 

much higher than that of internal resistance model, and the complexity of the model is not high. 

 

2.3. PNGV model construction 

PNGV model adds a large storage capacitor Cb to Thevenin model [36], as shown in Figure 3. Cb 

represents the change in the open circuit voltage of the battery resulting from the accumulation of load 

current. 

RO

UOC

UL

I(t)

Icp(t)

CP

Rp

Cb

 

 
Figure 3. PNGV model diagram 

 

The nonlinearity of PNGV model is very typical, and it also has the characteristics of Thevenin 

model. At the same time, the energy storage capacitor is also added, which enables the PNGV model to 

reflect the steady-state changing battery voltage, so that the battery characteristics can be more accurately 

represented and the accuracy improved accordingly. Because the structure of the PNGV model is more 

complex, the number of parameters to be identified in the model is more difficult than that of Thevenin 

model. 

 

2.3. Improved equivalent circuit model 

An improved equivalent circuit model method, IECM, is proposed. This method considers the 

accuracy of the feature description and the computational complexity, and can accurately describe the 

working state of the LIB pack of EVs. The first proposed IECM equivalent model adds parallel resistance 

to the first-order RC equivalent to characterize the self-discharge effect. Secondly, based on the PNGV 

equivalent model, the IECM model introduces a reverse diodes resistance parallel circuit to characterize 

the difference in internal resistance during charging and discharging. Finally, based on the Thevenin 

equivalent model, the IECM equivalent model adds a series power supply and resistance to the 

electromotive force to characterize the influence of the equilibrium state, and comprehensively and 

accurately describes the working process of the LIB pack. The structure is shown in Figure 4. 
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Figure 4. The improved equivalent model of IECM 

 

In the IECM model shown in Figure 4, the meaning of each parameter is as follows. UOC 

represents the OCV value of the power LIB pack. The RS resistance is large and is intended to 

characterize the self-discharge effect. Ro represents Ohmic resistance of the battery, which characterizes 

the voltage drop between the positive and negative electrodes during the Discharging and Charging 

Maintenance(DCM) process. The proposed IECM model uses a first-order RC network to simulate the 

relaxation effects of the LIB pack, and attains its transient response characteristics of the LIB pack. The 

RP and CP parallel circuit reflects the generation and elimination of polarization effects, where RP is 

polarization resistance and CP is polarization capacity. Rd is the discharge resistance of the discharge 

period, which characterizes the resistance difference during the discharging process of the power LIB 

pack. Rc is a charging resistor that characterize the difference in resistance during discharging. Uδ and 

Rδ are used to characterize the effect of the equilibrium state between the interconnected monomers. UL 

represents the terminal voltage between the positive and negative terminals of the power LIB pack 

connected to the external circuit during the charge and discharge process. IL represents the inflow or 

outflow current value of the power LIB pack connected to the external circuit. In the model, the OCV is 

represented as a constant voltage source in which the Ohmic internal resistance, capacitance, and 

resistance are connected in parallel to describe the potential of the circuit. Indicates the load voltage of 

the battery, indicating the load current of the battery pack. According to the model and Kirchhoff's law, 

the relationship between the voltages of the various components of the circuit can be described. 

 

2.4. State-space mathematical description 

When the LIB pack is in a charging or discharging state, the specified discharge current direction 

is positive. According to the equivalent circuit model of the battery of Figure 4, the following equations 

can be obtained. 

( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

=

1

- +

s p p

OC s s

T R C

p p

L OC o p cd

U t I t R

U t I t R e

U t U U R R I t U I t R 

−




= −


= − − −  

Where Rcd characterizes the internal resistances Rd and Rc at the time of charge and discharge. 

When the power lithium battery pack is in the discharge process, the value of Rcd is set to Rd; when it is 

charged, Rcd =Rc. The   is the time constant of the RC parallel circuit in the equivalent circuit model, 

and its calculation expression is  =RPCP. Ts is the sampling time interval constant. 
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Considering the influence of the self-discharge internal resistance Rs, the state-space equation in 

the continuous time-state-space equation is established, as shown in Equation 2-1. 

( ) ( )
( ) ( )

0 0
0

t t
I T s

n n

I I
SOC t SOC d d

Q Q

   
 = − −    (2-1) 

In the above expression, SOC(t) represents the SOC value at time t, and SOC(0) represents the 

SOC value at the initial time. ηI denotes the coulombic efficiency at different current I. ηT shows the 

effect of different temperature T on the coulomb efficiency η. Qn is the rated capacity of the LIB pack. 

Since the data acquisition and processing are in discrete time form during the actual calculation 

process, the state equation is discretized. Combining the state equation with the observation equation, 

the state space equation required to construct the SOC estimation is shown in equation (2). 

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

| 1 1

- + 1 s p p

I T s

s s

n

T R C

L OC o p cd

I k T
SOC k k SOC k K T

Q

U k U U R R I k I k R e I k R 

 

−


− = − − −


 = − − − −
  

 

 

 

3. RESEARCH ON SOC ESTIMATION METHOD  

3.1. The definition of SOC 

Currently, SOC estimation is achieved through a basic ampere-time integration method. The 

method is mainly used for the external feature representation of the system, that is, mainly monitoring 

the remaining power inside the battery at different times, which is very sensitive to the initial value of 

the SOC, and closely related to the SOC value of the previous moment. The working principle model of 

Ampere-hour(Ah) integral[37] is as follows:  

( ) ( ) ( )
1

1
k

k
SOC k SOC k I t dt

+

+ = +          (3-1) 

Where ( )SOC k  is the charge and discharge state of the previous moment; ( )1SOC k +  is the 

remaining charge of the LIB at the current time; I  is the instantaneous current of the LIB (the discharge 

state is negative, the state of charge is positive);   is the coulomb efficiency coefficient. 

 

3.2. SOC estimation method based on UKF 

UKF is a process that combines hidden Markov model with Bayes' theorem. For the nonlinear 

model, the Unscented Transformation (UT) is used to approximate the Gaussian distribution through a 

series of fixed number of sampling points, and the mean and variance of each probability distribution of 

the output variable are obtained. EKF needs to translate the problem into a linear Gaussian model [38, 

39], while UKF can directly deal with nonlinear systems, eliminating the effects of linear errors and 

reducing computational complexity. Since the approximation accuracy of the UT to the statistical 

moment is high, the error only exists in the second order and above, and the influence can reach the 

influence of the second order EKF. Therefore, the UKF is used to realize the SOC estimation of the LIB. 

Using Taylor series expansion, pointless transformation and function fitting approximation, the 

mathematical description methods under different working conditions are explored, and the SOC 
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estimation model with parameter correction and adaptive adjustment ability is constructed. The basic 

idea of the establishment process is obtained after several cycles of testing, and the relationship between 

terminal voltage and time is obtained, as shown in Figure 5. 
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Figure 5. SOC estimation model construction of the power LIB pack 

 

According to the SOC estimation accuracy target, the nonlinear characteristics of the power LIB 

pack are described based on UT process, which effectively avoids the estimation error caused by the 

Taylor series expansion and the abandonment of the high-order terms [40] . Compared with the Taylor 

series expansion method, the processing based on the UT has at least second-order precision, especially 

for the Gaussian distribution method to achieve third-order accuracy. The selection of the unscented 

transformed sampling points is based on the correlation sequence of the a prior mean and the square root 

of the a priori covariance matrix. 

The UT exhibits good performance during the SOC estimation process, but if the stability of the 

linear processing in a small period cannot last for an effective period, it will result in a relatively poor 

estimation effect. According to the proportional symmetric sampling strategy, the transformed Sigma 

data points are obtained by nonlinear function transformation, and the transformed mean and covariance 

are obtained by weighting the data points, and then the weighting factors are obtained [41]. Assume that 

the system function is: 

( )y f x=
                                             (3-2) 

The system inputs the random vector x, the dimension is n, x  and Px  are the mean and covariance 

of the system input respectively; the system outputs the random variables y, y  and yP  are the mean and 

covariance of the system output, respectively. 

① Obtain the transformed Sigma data points. 

0x x=
                                               (3-3) 

( )( )
( )( )

0

0

x , 1,...,

x , 1,...2 1

x
i

i

x
i

n P i n

x

n P i n n





 + + =


= 
 − + = + +
  (3-4) 

② Sigma data points weighting. 
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( )

( ) ( )

2

0

2

1

1

n

i

i

m m c

o i i

c

o

w

w w w n

w n

 

   

=


=


= = = +


= + + + −





            (3-5) 

Among them,   is the proportional coefficient, which determines the distance between the 

Sigma point and the input mean of the system; 
mw  and 

cw  are the weighted coefficients required for the 

mean and variance of the Sigma point;   is the proportional scaling factor of the positive value, which 

is used to determine the distribution of the Sigma point;   is the parameter introducing the higher order 

information of the state transition equation of the nonlinear system, which is generally set to 2. 

③ Get the mean and covariance of y. 
2

0

n
m

i i

i

y w y
=

=
                                     (3-6) 

( )( )
2

0

n
Tc

y i i i

i

P w y y y y
=

= − −
               (3-7) 

Based on the Kalman estimation method with feedback regulation ability [40], in a nonlinear 

system, the real-time observations are superimposed to correct it. As shown in Figure 6.  

 

 

Unit lag

+ +

kw

( ),f  
k kx SOC=
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Figure 6. SOC estimation model framework for power LIB 

 

In the estimation process, the equation of state and the equation of observation are shown as 

follows. 

( )

( )

1,

,

k k k k

k k k k

x f x u w

y g x u v

−= +


= +                           (3-8) 

In the formula, ku
 is the input of the system, kx

 is the state variable of the system, ky
 is the 

measurement signal. kw
 and kv

 are the process noise and observation noise at k time, respectively, the 

covariances are kQ
 and vR

, respectively. 

1) Initial value calculation: 

( )

( )( )

0

0 0 0

T

x E x

p E x x x x

=


= − −              (3-9) 
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2) Establish Sigma Point: 

( )

( )

1 1

1

1 1

, 1,...,

, 1,..., 2 1

k k
ii

k

k k
i

x L p i L

x

x L p i L L





− −

−

− −

  + + =
 

= 
  − + = + +
     (3-10) 

3) State renewal equation: 

( )

( )( )

( ) ( )
1

2

11 1
0

2

1 1 1
0

2 2

1 1 1 1
0 0

,

,
k
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i i m i
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i

L T
c i i

i k k kk k k k k k
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L L
i i m i i m i

k i ik k k k k k k k
i i

x f x x x

p x x x x Q

y g x y g x v y





 
−

−

−− −
=

− −

− − −
=

−

− − − −
= =


= =




= − − +



 = = + =  





 
(3-11) 

  
1k k −

 in the formula is an estimate of k-time based on 1k − -time. 

4) The measurement update equation is as follows: 

( )( )

( )( )

( )

2

, 1 1
0

2

, 1 1
0

1

, , ,1
, x x ,

L T
c i i

y k i k k kk k k k
i

L T
c i i

xy k i k kk k k k
i

T

xy k y k k k k k y kk k k k

p y y y y Q

p x x y y

K p p K y y p p Kp K





− −

− −
=

− −

− −
=

− − −

−


= − − +




= − −

 = = + − = −







(3-12) 

5) Repeat the above four steps. 

 

3.3. SOC estimation method based on SVM 

The function of SVM that is a kind of two classification model is to find a hyperplane to segment 

samples. The principle of segmentation is to maximize the interval, which is finally transformed into a 

convex quadratic programming problem to solve. The models from simple to complex include: (1) When 

the training samples are linearly separable, a linear separable support vector machine is learned by 

maximizing the hard interval; (2) When the training samples are approximately linearly separable, a 

linear support vector machine is learned by maximizing the soft interval; (3) When the training samples 

are not separable linearly, a nonlinear support vector machine is learned by kernel technique and soft 

interval maximization. 

Structural risk minimization (SRM) is a strategy to prevent over fitting. It refers to the 

construction of function set into a sequence of function subsets, so that the subsets are arranged according 

to the size of VC dimension. The minimum empirical risk is found in each subset, and the empirical risk 

and confidence range are considered in the trade-off between subsets to minimize the actual risk. 

Formula by generalization error bounds: 

( ) ( ) ( )Re nR w mp w
h

 +
                 (3-13) 

Among them, ( )R w  is the real risk, Re ( )mp w  is the experience risk and ( )n h  is the 

confidence risk. Knowing the actual error ( )R w  is: 

( )
1

1 [ l n( 2) 1] l n( 4)
1 [ , ( , ) ]

l

i i
i

n l
R w Lf y f x w

l l




=

+ −
−   +

(3-14) 
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Where 0 1   and 
1

1
[ , ( , ) ]

l

i i
i

Lf y f x w
l =

  are empirical risk formulas, n is VC dimensions 

of learning machines and l is sample numbers. Confidence risk is related to two quantities. One is the 

sample size. Obviously, the larger the given sample size, the closer our learning results approximate the 

correct value, the smallest the confidence risk. The other is the VC dimension of the classification 

function. Obviously, the larger the VC dimension, the poorer the generalization ability, the greater the 

confidence risk. 

The so-called VC dimension refers to a set of index functions. If there are h samples that can be 

separated by all possible types of functions in the function set, then the function set can scatter h samples; 

the VC dimension of the function set is the maximum number of samples that it can break up h. If there 

are functions that can scatter any number of samples, the VC dimension of the set of functions is infinite, 

and the VC dimension of bounded real functions can be defined by converting it into an indicator 

function with a certain threshold value. In order to estimate the indication function, it is transformed into 

a regression problem, and the ε insensitive loss function is used to SVM classification algorithm to 

predict the empirical risk [42] . By loss function: 

( , ( ) ) (1 ( ) )L y f x yf x
+

= −             (3-15) 

Then, 
0, ( , )

[ ( ) , ] ( )
( , ) ,

y f x w
c y f x x y f x

y f x w ot her s





 − 
− = − = 

− − (3-16) 

Introduce a nonlinear mapping function, map the original model space to the higher-dimensional 

feature space Z, construct the optimal classification hyperplane in the feature space, and use the linear 

function set in the feature space. 

 ( ) ( )f x w x b= +                       (3-17) 

The linear problem in high-dimensional space corresponds to the non-linear problem in low-

dimensional space and is transformed into a regression problem. The effect of non-linear regression in 

original space is obtained, thus realizing the classification of the original mode space. 

For a given training data set, its constrained optimization problem is: 

2

1 2
1

1
mi n ( )

2

l

i i
i

w c  
=

+ +          (3-18) 

And satisfy 

( )

( )
1

2

1 2
0, 0

1, 2
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    (3-19) 

Known by Lagrange Multiplication (LM): 

( , )z f x y=  possible extreme point under condition ( , ) 0x y = , constructor 

( , ) ( , ) ( , )F x y f x y x Y= +       (3-20) 
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If it is established, ( , )x y  is the best possible extremum. Therefore, 
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   (3-22) 

When 0
L

w


=


, the extreme value is available. 

1 2
1

( ) ( )
l

i i i
i

w x  
=

= −               (3-23) 

Substituting w into the estimation function yields a regression estimation expression of:  

1 2 1 2
1

( , , ) ( ) ( ) ( )
l

i i i i i j
i

f x x x b     
=

= − +   (3-24) 

Let ( , ) ( ) ( )
i j i j

k x x x x =  be a Kernel Function (KF). 

2

( , ) exp( )
i j i j

k x x y x x= − −           (3-25) 

The KF is to be able to map samples in a nonlinear space into a linear space. LIB is a highly 

nonlinear system that can be transformed into a linear problem by KF and solved by calculation [37]. It 

is an important solution of SVM for nonlinear inseparable problems. The necessary condition for an 

effective KF k is that the KF matrix k is symmetrically positive semidefinite. If it satisfies Mercer 

theorem, it can generally be selected as a KF. 

After the test process, it is known that there are current, voltage and other factors affecting the 

SOC value of LIBs. Therefore, these variables with nonlinear changes are taken as input parameters. 

However, after a large amount of experimental data calculation, it is found that the error is gradually 

increasing. Slowly, it is found that the historical parameters of the SOC of LIBs have a great impact on 

the estimation, so it is included in the selection of input variables. 

 

3.4. Estimation of SOC Based on UKF and SVM Joint Algorithms 

The output of UKF algorithm is used as the input of SVM algorithm to estimate SOC twice, to 

improve the estimation accuracy. The system structure block diagram is shown in Figure 7.  
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Figure 7. The structural of the UKF and SVM joint algorithm 

 

 

As shown in the figure above,   is the weight of the corresponding kernel function in the SVM 

algorithm. The SOC value estimated by the UKF algorithm is taken as an initial condition of the SVM, 

that is, the SOC of the previous moment. Through the above described method, the working 

characteristics of the LIB are obtained, which has high practical value. 

 

 

 

4. EXPERIMENTAL ANALYSIS 

4.1. Battery test bench 

The battery test bench structure is shown in Figure 8, which is consists of: (1) The experimental 

battery; (2) The battery testing system (NEWARE BTS-4000) used to load the battery controlled by the 

host computer with programmable current. And this apparatus can detect the voltage, current and 

temperature of the battery with the sampling interval is 1s; (3) The temperature chamber (TT-5166TH-

7) that programed by the host computer to provide the constant temperature environment (25℃) for the 

battery; (4) Host computer that is used to control and communicate with other apparatuses with TCP/IP 

protocol. 

Host Computer

Temperature 
Chamber

TT-5166TH-7

Battery

TCP/IP

Power Connect

Battery Test
System NEWARE

BTS-4000

Temperature 
Setting

 
 

Figure 8. Battery test bench 
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4.2. The HPPC test of parameter identification 

The hybrid pulse power characteristic(HPPC) test is used for parameter identification. The test 

is carried out with LiMn2O4 battery with a nominal capacity of 12Ah. The parameters of the battery are 

given in Table 1. 

 

Table 1. Parameters of the LiMn2O4 battery 

 

Parameters Nominal 

capacity  

Lower cut-off 

voltage 

Upper voltage 

limits 

Operating 

temperature 

Value 12Ah 2.75 4.25 -20℃to40℃ 

 

The parameters that need to be identified in the equivalent circuit model include UOC, RS, Ro, RP, 

CP , Rd, Rc and OCV-SOC characteristic curves. The experimental conditions and process were as 

follows: 0.2 C constant current discharge at ambient temperature of 25 ° C for 3 min, and then allowed 

to stand for 40 min until the battery SOC was 0. The specific process is shown in Figure 9, and the OCV-

SOC curve is shown in Figure 10. 
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Figure 9. Current profile of OCV-SOC 
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Figure 10. The curve of OCV-SOC 
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The state equation of lithium-ion battery is expressed by polynomial fitting based on the data of 

voltage drop at the moment of power-off or the voltage at the moment of power-on by curve fitting. By 

comparing and analyzing the fitting effect of polynomials of different degrees, the quantic polynomials 

are selected for fitting, and the corresponding ohmic internal resistance values under different SOC are 

obtained [36]. The ohmic internal resistance identification curve is shown in Figure 11. 
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Figure 11. The identification curve of Ro 

 

The parameters of the RC network can be identified by nonlinear fitting of the zero input data of 

the battery stationary stage and the closed loop analysis of the battery output voltage. The RP and CP is 

shown in Figure 12 and Figure 13. 
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Figure 12. The identification curve of RP 
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Figure 13. The identification curve of CP 
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Through the analysis of the parameter identification process and principle, the model is 

constructed, and the general knowledge of covariance and noise is pre-set as known conditions, and 

taken into the additional consideration in the belonging sub-module. After the state space equation 

structure of the LIB pack is established, its coefficients need to be determined experimentally. The 

parameter identification equations and processes are implemented in a separate parameter identification 

module [39], as shown in Figure 14. 
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Figure 14. The parameter identification model 

 

 

In Figure 14, the input parameter Δt in the model IECM is the parameter detection period, and 

then the closed-circuit voltage ULk and its tracking error Err of the output parameter are obtained by 

model operation through the open-circuit voltage [43], current and SOC parameters in the experimental 

process. According to the joint identification process, a parameter identification model is established to 

identify the parameters of the IECM model in the integrated SOC estimation process of the power LIB 

pack, and obtain the estimated values of the voltage and current parameters. According to the multi-

input case, the unit element network module is used to obtain the battery status information, and the 

comprehensive SOC value can be calculated for the power LIB pack. By using the associated BMS 

equipment, combined with the Battery Maintenance and Testing System (BMTS) platform operating 

conditions simulation, the effective energy management objectives can be achieved along with the SOC 

value detection and evaluation process. The parameter values of the IECM model can be obtained by 

using the identification process, which are used to initialize the basic parameters of the power LIB pack 

state space equation. 

 

4.3. Experiments and verification 

In order to verify the validity of the UKF and SVM joint algorithm. Through the selection of LIB 

type and measurement method, the specific parameters required for LIB pack are determined as basic 

parameters and stopping conditions. The measurement and calculation are realized by the process from 

full discharge to discharge cut-off voltage, and the process of data acquisition by cyclic charging and 

discharging. 
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The Ternary LIB pack samples are selected as experimental samples for experimental research. 

According to the experimental requirements of parameter identification in the state space equation of the 

IECM model, the Hybrid Pulse Power Characterization(HPPC) experiment in the intermittent discharge 

process is performed by the power battery test system to obtain various model parameters and their 

determination rules. In order to obtain the required change rule of closed-circuit voltage output response 

of the power lithium ion battery pack, the power lithium ion battery pack is first fully charged through 

the CC-CV charging and maintenance process to make its SOC value reach 100.00% And then left to 

stand for half an hour to stabilize its internal electrochemical reaction, and then experimental tests are 

carried out. The experimental steps are as follows [44]. Charge and discharge with a constant current of 

1C, first discharge the LIB for 10s, then let stand for 40s, and then charge for 10s. In the cycle test, the 

LIB was subjected to HPPC experiments at equally spaced (i.e., 1h) SOC points. Let the SOC be 0.1, 

0.2, ... 0.9, respectively. 

After several cycles of testing, the relationship between terminal voltage and time is obtained, as 

shown in Figure 15. 
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Figure 15. HPPC voltage response curve 

 

The figure above shows the curve of the back-end voltage of the HPPC cycle charge and 

discharge experiment. The data of a period of time is selected for amplification, and the relationship 

curve of 0U
 with time is obtained. Due to the effect of ohmic internal resistance, the voltages in the 

1 2U U→
 and 3 4U U→

 processes voltages appear and rise. The reason for the 2 3U U→
 process is 

because the RC circuit characterizes the results of the polarization effect. The 4 5U U→
stands for the 

shelving process. By analyzing the HPPC experimental data of the IECM model, the voltage parameter 

value of the equivalent circuit of the LIB at a certain SOC node can be obtained, and then the theoretical 

value of various parameters in the model is obtained by the characteristic equation. 
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After the experimental test is completed, the experimental data is imported into the simulation 

model, and the UKF algorithm is used to estimate the SOC. Then combine SVM with UKF algorithm. 

The SOC estimation effect diagram is shown in Figure 16. 

 

 

 
a) Overall contrast curve 

 
b) Partial magnification curve 

 

Figure 16. SOC estimation comparative curves 

 

 

In Figure 16, it can be seen from the figure that the error of SOC based on UKF estimation is 

within 3%. Then the SVM estimation method is integrated into the UKF estimation method, and the 

SOC estimation error is within 1%.  

From the comparative analysis of Figure 16, it can be found that when SVM and UKF jointly 

estimate the SOC value, it greatly reduces the estimation error and can achieve high-precision estimation 

of SOC. 

 

5. CONCLUSIONS 

This paper mainly studies the construction method of the IECM equivalent circuit model of the 

power lithium battery and completes the construction of the experimental platform. By the experimental 

result analysis, the SOC estimation error of the designed BMS is within 1.00%. A novel equivalent 

model of IECM is constructed for the power LIB pack by the model equivalence analysis and 

characterization. According to the experimental analysis, the CCV tracking results of the equivalent 

model parameters for the proposed IECM battery model are verified. In the SOC estimation algorithm, 

a new algorithm, SVM and UKF estimation algorithm, is adopted. According to the experimental results, 

this method has higher estimation accuracy, and its estimation error is less than 1%, which brings 
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practical value to electric vehicle battery and has good reference significance for high-precision 

estimation of SOC. 

 

 

NOMENCLATURE: 

The symbols used in this research can be described as shown in Table 2. 

 

 

Table 2. List of symbols 

 

Symbol Description Symbol Description 

Ah Ampere-hour LIB Lithium-Ion 

Battery 

AD Altium Designer NN Neural Network 

BMS Battery Management System OCV Open Circuit 

Voltage 

BMTS Battery Maintenance and Testing System PCB Printed Circuit 

Board 

DCM Discharging and Charging Maintenance SOB State Of Balance 

EKF Extended Kalman Filter SOC State Of Charge 

ECM Equivalent Circuit Model SOH State Of Health 

EVs Electric Vehicles SVM Support Vector 

Machine 

HPPC Hybrid Pulse Power Characterization UKF Unscented 

Kalman Filter 

KF Kalman Filter UT Unscented 

Transformation 

KVL Kirchhoff Voltage Law   
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