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Abstract. State-of-the-art methods of Human Activity Recognition (HAR)
rely on having access to a considerable amount of labelled data to train
deep architectures with many train-able parameters. This becomes pro-
hibitive when tasked with creating models that are sensitive to personal
nuances in human movement, explicitly present when performing exer-
cises. Also, it is not possible to collect training data to cover all persons
in the target population. Accordingly, learning personalised models with
few data remains an interesting challenge in HAR research. We present a
meta-learning methodology for learning to learn personalised HAR mod-
els for HAR; with the expectation that the end-user need only provides
a few labelled data. These personalised HAR models benefit from the
rapid adaptation of a generic meta-model using only a few end-user data.
We implement the personalised meta-learning methodology with two al-
gorithms, Personalised MAML and Personalised Relation Networks. A
comparative study shows significant performance improvements against
state-of-the-art deep learning algorithms and personalised algorithms in
multiple HAR domains. In addition, we show how personalisation im-
proved meta-model training, to learn a generic meta-model suited for a
wider population while using a shallow parametric model.

Keywords: Personalisation - Human Activity Recognition - Meta-Learning
- Few-shot Learning

1 Introduction

Machine Learning research in Human Activity Recognition (HAR) has a wide
range of high impact applications in gait recognition, fall detection, orthopaedic
rehabilitation and general fitness monitoring. A HAR dataset consists of sensor
data streams collected from multiple persons. Unavoidably, sensors capture per-
sonal traits and nuances in some activity domains more than others. Typically
with activities that involve greater degrees of freedom. Thus, learning a single

* This work was part funded by SELFBACK, a project funded by the European Union’s
H2020 research and innovation programme under grant agreement No. 689043. More
details available at http://www.selfback.eu
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reasoning model to recognise the set of activity classes using a HAR dataset can
be challenging, which calls for the personalisation.

We propose it is more intuitive to treat a “person-activity” pair as the class
label. Accordingly, each person’s data can be viewed as a dataset in its own right,
and the HAR task involves learning a reasoning model for the person. Learning
from only specific persons’ data has shown significant performance improvements
in early research with both supervised learning and active learning methods [13,
4]. But these methods require considerable amounts of data obtained from the
end-user, periodical end-user involvement and model re-training. Also, current
state-of-the-art Deep Learning algorithms require a large number of labelled data
instances to avoid under-fitting.

Here we explore the “person-activity” classes concept but attempt to learn
with a limited number of data instances per class. This can be viewed as a
few-shot classification task [14,10] where the aim is to learn a classifier with
one or few labelled data instances for each class. Meta-learning methods are
the state-of-the-art in few-shot classification for image recognition [2,6]. In a
nutshell, meta-learning is described as learning-to-learn, where a wide range
of tasks abstract their learning to a meta-model, such that, it is transferable
to any unseen task. Meta-learning algorithms such as MAML [2] and Relation
Networks (RN) [12] implement this methodology for few-shot classification, by
learning a generic models, and rapidly adapting to new tasks with only a few
instances of data.

The concept of learning-to-learn aligns well with personalisation where mod-
elling a person can be viewed as a single task; whereby the meta-model must
help learn a model that is rapidly adaptable to a new person. We propose “per-
sonalised meta-learning” to create personalised models, by leveraging a small
amount of sensing data (i.e. calibration data) extracted from a person. Accord-
ingly, in this paper, we make the following contributions,

1. formalise Personalised Meta-Learning and implement with two Algorithms,
Personalised MAML and Personalised RN;

2. perform a comparative evaluation in 9 experiments with 3 HAR datasets
representing a wide range of activity domains; and

3. visualise how personalisation methodology enhanced the training and testing
of meta-learners.

Importantly, we show that personalised meta-learning achieve significant perfor-
mance improvement with simple shallow parametric models that only require a
limited amount of labelled data compared to conventional DL models.

2 Related Work

Human Activity Recognition (HAR) is an active research challenge, where Deep
Learning (DL) methods claim the state-of-the-art in many application domains [7,
18,16, 15]. Learning a generalised reasoning model adaptable to many user groups
is a unique transfer learning challenge in the HAR domain. Given access to large
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quantities of end-user data, early research has achieved improved performance by
learning personal models [1]. Follow on work attempts to reduce the burden on
end-user, by adopting semi-supervised [4], active learning [4] and multi-task [11]
methods that rely on periodical model re-training and continuous user involve-
ment post-deployment. Recent advancements in few-shot learning are adopted
as an approach to personalisation in Personalised Matching Networks (M NP) |8,
14]. M NP learns a parametric model, that is learning to match, leveraging a few
data instances from the same user. This few-shot method avoids post-deployment
re-training but is restricted by the similarity metric used for matching.

Meta-Learning or “learning-to-learn” is the learning of a generalised classifi-
cation model that is transferable to new learning tasks with only a few instances
of labelled data. In recent research it is interpreted mainly in three approaches;
firstly, “learning-to-match” implemented by Relation Networks (RN) [12]; sec-
ondly, model-specific approach like SNAIL [5]; and finally, optimisation based
algorithms like MAML [2]. MAML including its variants (FOMAML [2], Rep-
tile [6]) and RN [12] are “model-agnostic”, where parametric feature learners are
interchangeable. In contrast to model-specific meta-learners, such as SNAIL [5]
and MANN [9], where meta-learning is achieved using specific neural network
constructs such as LSTM and Neural Turing Machine [3]. Model-agnostic meth-
ods are preferred in a HAR setting, where heterogeneous sensor modalities
may require different feature learners. While MN is an early interpretation of
“learning-to-match”, RN is not limited by a similarity metric which makes RN
more generalisable to many new tasks. In contrast to MAML, RN has the po-
tential to perform Open-ended HAR, by modelling the classification task as a
matching task, similar to Open-ended MN [17]. In this paper, we implement
personalised meta-learning for HAR with the two model-agnostic meta-learners;
MAML and RN.

3 Methods

Given a dataset, D, Human Activity Recognition (HAR), like any other super-
vised learning problem, is the learning of the feature mapping 6 between data
instances, x, and activity classes, y, where y is in the set of activity classes, C.
In HAR, each data instance in D belongs to a person, p. Given the set of data
instances obtained from person p is DP, D is the collection of data instances from
the population P (Equation 1). As before, all data instances in DP will belong
to a class in C.

D ={D" | p € P} where D = {(z,y) |y € C} (1)

Importantly, looking at individual DP performing the same set of exercises we
see how sensor data capture personal nuances, and display different data distri-
butions as in Figure 1.

3.1 Personalised Meta-Learning for HAR

Meta-learning for few-shot classification can be seen as optimisation of a generic
parametric model over many few-shot tasks (i.e. meta-train), and rapid adap-
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Fig. 1: Data distribution visualisation with PCA for 3 persons from MEx dataset
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Fig. 2: Personalised Meta-Learning Tasks design for HAR

tation of the generic model for an unseen few-shot task (i.e. meta-test). More
formally, a few-shot classification task has a “support set”, D?, and a “query
set”, DY4. The support set act as training data, with one or few representatives
data instances for each class, and query set act as test data.

Personalised meta-learning for HAR is the learning of a meta-model 6 from a
population P while treating activity recognition for a person as an independent
few-shot classification task. We propose the task design in Figure 2 for Person-
alised Meta-Learning. Given a dataset D, of population P, we create tasks such
that, each “person-task”, P;, only contain data from a specific person, p. We
randomly select a K*® x |C| number of labelled data instances from person p
stratified across activity classes, C, such that there are K® amount of represen-
tatives for each class. We follow a similar approach when selecting a query set,
D1, for P;. Typically D? has no overlap with D* similar to a train/test split in
supervised learning. Given that existing HAR dataset are not strictly few-shot
learning datasets, there can be a few to many data instances available to be sam-
pled for the query set, D?. Each resulting “person-task” is learning to classify
the set of ”person-activity” class labels.

At test time, the test person, p, provides a few seconds of data for each
activity class while being recorded by recommended sensor modalities, which
forms the support set, D*, of the person-task, P. Thereafter, the meta-model, in
conjunction with the support set, predicts the class label for each query data in-
stance, 7, in DY. It is noteworthy that, contrary to conventional Meta-Learning,
all personal models and the meta-model are learning to classify the same set of
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activity classes C, but of different persons (i.e. “person-activity”). Therefore, it
is seen as a few-shot classification problem with a |C| X |P| number of classes.
Personalised meta-learning is a methodology adaptable with any meta-learner
to perform personalised HAR, and next we show how with two meta-learners,
MAML and RN.

3.2 Personalised MAML

Algorithm 1 Personalised MAML Training
Require: p(P): HAR dataset; distribution over

persons
Require: «, 8, n, gs, meta_gs: step sizes, batch Algorithm 2  Personalised
size and gradient-steps hyper-parameters MAML Testing

1: randomly initialise 6

9. while not done do Require: D? for test person P ob-

tained via micro-interactions,

3 S 1 -tasks P; ~

. ample n person-tasks Pi ~ p(P) Require: 6; Meta-model
4:  for all P; do 1- Initialise  — @
5 DS = {(x,y) c 'Pz . |Ds| = K% x |C|} clm 1.a 1se U =

. . 2: for i =0 to meta_gs do
6: for i =0 to gs do 5 C 9.l (0
T Compute VoLp,(0) w.r.t. D° : c;mpute oL (6) wrt.

D
8: Compute updated parameters: 6; =
0 —aVelp, (0) 4:  Compute updated parame-
9: end for . tderfs: 0" =0—aVyLp,(0)
10: D! = {(xz,y) € P; : D°ND? = 2: :n lcl)qu q
0, D = K?*x |C|} for a i qo N

11: Compute Lp,(0;) w.r.t D? 7. predict yi = 0'(D)
12:  end for 8: end for
13:  Meta-update: 0 — 0 -

590 %y £, (60)
14: end while

MAML [2] is a versatile meta-learner applicable to any parametric model op-
timised with Gradient Descent (GD). Personalised MAML (M AMLP) for HAR
is optimised to learn the generic parametric model (i.e. meta-model), 6, such
that it is adaptable to any new person encountered at test time. Task design
for MAMLP is as follows. For a person-task P;, a support set, D®, and a query
set D1 is selected. The number of instance in the support set, |D?|, determines
the number of instances that need to be requested from a new person, p, during
testing. Thus, we keep K* small, similar to a few-shot learning scenario. We use
all remaining data instances from each class, in D9. More formally, given there
are K instances per “person-activity”, K? = (K — K®) and | D9 |= K% | C |.

We present the training of Personalised MAML in Algorithm 1. At each
training epoch, a set of person-tasks are sampled where each optimises its person-
task-model, 6;. 6; is trained with D*® using one or few steps of GD (gs). The
meta-modal 6 is then trained using GD with the losses computed by the trained
person-task-models, 6;, against their respective D%s. This is referred to as the
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meta-update. This process is repeated for many epochs with many person-tasks,
to learn a generic model, 6 that can be rapidly adapted to a new person. The
meta-model learning, is influenced by the categorical cross-entropy loss generated
by the D9 as in Equation 2.

Lo, 0:)= Y y"logi(x?) + (1 —y*)log(l — 0;(z7)) (2)

2,y1~Dy

A meta-test person p, not seen during training, uses its support set, D° to
train a parametric model 0, initialised by the meta-model 0, for few gradient
steps (meta_gs). Thereafter, the personalised, 0 is used to classify instances
in its query set, D¢ as in Algorithm 2. We note that we prefer First-Order
MAML [2] when implementing Personalised MAML, which is computationally
less intensive, yet achieves comparable performances in comparison to MAML [2].

3.3 Personalised RN

Algorithm 3 Personalised RN Training

Require: p(P): HAR dataset; distribution over
persons
Require: a: step size hyper-parameter
1: randomly initialise 64 and 6,
2: while not done do
3:  Sample n person-tasks P; ~ p(P)

Algorithm 4 Personalised RN

4: for all P; do Testing
5: D® ={(z,y) € P; : |D°| = K° x |C|]} Require: Support set D° for test
6: D! = {(z,y) € Pi : |D! = K9 x person P,
|C|, D* N D? = ()} Require: 0,,05
T for all z] do 1: for all z] do
8: Create train data instance (zf,D®) 2:  predict y = 0y, 0, (DI, D°)
9: end for 3: end for
10:  end for
11:  Compute VLp,(0y,0,) w.r.t. train data

instances of size n x K? x |C|
12:  Update (6y,0,) — (07,6-) —
aVe, L, (05,6,)
13: end while
Relation Network (RN) [12] is a Few-shot Meta-Learning algorithm that
“learns-to-match”. RN has a similar goal to other Meta-Learners, of generalis-
ing over many tasks. Personalised Relation Networks RNP learns a matching,
generalisable to new persons encountered at test time. The meta-task design for
RNP is similar to M AM LP, where the the support set, D*, and the query set
D1, is selected from the same person. Meta-training instance for person-task, P;,
is created by combining each data instance z}, in D?, with the support set, D*.
During training (Algorithm 3), RN? learns to match z] to a matching in-
stance in D®. A parametric model, 6; learns feature representations for every
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instance; next each instance, in D* is paired with the x{ to create | D® | number
of pairs. The parametric model, 6, then learns to estimate the similarity of the
paired instances. With the personalised approach, the similarity is always esti-
mated against ones own data in the support set. The network is trained end to
end using mean squared error loss as in Equation 3. Here the output of 6, is of
size 1 which is expected to be 1 if a matching pair or 0 if not matching pair. A
meta-test person p, not seen during training, can use trained RNP to match a
query instance to an instance in it’s own support set D® provided during calibra-
tion, and therein use the class of the matched support instance as the predicted
class label (Algorithm 4).

Lp,(0:)= D 07,60.(27,D%) =y |3 (3)

z9,y9~Dy

4 Evaluation

We compare the performance of personalised MAML (M AM LP) and per-
sonalised RN (RN?) against a number of baselines as listed below;

DL: Best performing DL algorithm from benchmarks published in [16]
MN: Few-shot Learning classifier Matching Networks from [14]

MNP: Personalised Matching Networks from [8]

MAML: Model-Agnostic Meta-Learner [2]

MAML?: Personalised MAML from

RN: Relation Networks [12]

RNP?: Personalised RN from Section 3.3 Section 3.2

4.1 Datasets and Pre-processing

We use three data sets to create 9 single modality sensing experiments. Feature
learners in both MAMLP and RNP are model agnostic, such that the feature
representation learning models are interchangeable to suit any modality combi-
nation. MEx ! is a Physiotherapy Exercises dataset complied with 30 participants
performing 7 exercises. A depth camera (DC), a pressure mat (PM) and two ac-
celerometers on the wrist (ACW) and the thigh (ACT) provide four sensor data
streams creating four experiments. PAMAP?2 2 dataset contains 8 Activities of
Daily Living recorded with 8 participants. Three accelerometers on the hand (H),
the chest (C) and the ankle (A) provide three sensor data streams creating 3
experiments. SELFBACK 2 is a HAR dataset with 9 activities. These activities
are recorded with 33 participants using two accelerometers on the wrist (W) and
the thigh (T), creating 2 experiments.

! https://archive.ics.uci.edu/ml/datasets/MEx
2 http://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
3 https://archive.ics.uci.edu/ml/datasets/selfBACK
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A sliding window method is applied on each sensor data stream to obtain data
instances. Window size of 5 seconds is applied for all 9 datasets and an overlap
of 3, 1 and 2.5 for data sources MEx, PAMAP2 and SELFBACK, resulted in
30, 76 and 88 data instance per person-activity on average. A few pre-processing
steps are applied on data instances, adapted from previous work [16]. Resulting
input sizes for §; of RN and 6 of MAML are (5 x 12 x 16), (5 x 16 x 16) and
(5 x 3 x 60) for DC, PM and AC modalities respectively.

4.2 Experiment Design

We use the DL results for MEx from previous work [16] and for comparability
we implement the same network architectures for PAMAP2 and SELFBACK
datasets. We use a 1 layer dense network with 1200 units as the feature learners
in MN, MNP, MAML, MAMLP algorithms. RN and RNP use a 1 layer 2D
convolutional network as the feature learner and a 3 layer network with 1 2D
convolutional layer, and 2 dense layers as the relation learner. All networks
use batch normalisation for regularisation. Importantly, these architectures are
significantly shallower compared to feature learners used in original M AM L and
RN architectures. We present results in a 5-shot setting where all algorithms are
trained with early stopping.

We follow Leave-One-Person-Out (LOPO) evaluation where the data from
one person is used to create meta-test tasks the rest to create meta-train tasks.
We note that during testing, even M N, M AM L and RN preserve the personal-
isation aspect because only one user is present in the meta-test task when using
LOPO. The meta-train and meta-test tasks are created while maintaining class
balance; accordingly we report the accuracy of each experiment averaged over
the number of person folds. We use the Wilcoxon signed-rank test for paired
samples to evaluate the statistical significance at 95% confidence and highlight
the significantly improved performances in bold text.

4.3 Results

Table 1: Performance comparison with MEx for exercise recognition
Algorithm MExacr MExacw MExpe MExpum

DL 0.9015 0.6335 0.8720 0.7408
MN 0.9073 0.4620 0.5065 0.6187
MNP 0.9155 0.6663 0.9342 0.8205

MAML 0.8673 0.6525 0.9629 0.9283
MAMLP 0.9106 0.6834 0.9795 0.9408
RN 0.9327 0.7279 0.8189 0.8145
RN? 0.9436 0.7719 0.9205 0.8520

Table 1 presents the comparative performances for 4 experiments on the ex-
ercise recognition task using the MEx dataset. We remind that MEx experiments
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create few-shot classification settings, where one “person-activity” class has only
30 data instances and there are 30 x 7 = 210 classes. Overall, personalised meta-
learning models significantly outperformed conventional DL and meta-learning
models. Notably with visual data; MExpc and MExpjs, best performance is
achieved with the optimisation based personalised meta-learner MAMLP, in
contrast, accelerometer data prefer learning to compare method RNP. It is
noteworthy that the personalised few-shot learning algorithm M NP, achieves
comparable performance against M AM LP with MEx 4o data and outperform
RNP with MExpc data, yet fails to outperform best personalised meta-learner.
Overall, with ExRec we confirm the importance of personalisation and demon-
strate that personalised meta-learners successful adapt to new unseen persons
with few-data.

Table 2: Performance comparison with SELFBACK and PAMAP2 for general
human activity recognition
Algorithm  SBr SBw PMPyp PMPc PMPy4

DL 0.7880 0.6997 0.7505 0.7878 0.8075
MN 0.8392 0.7669 0.6625 0.7536 0.7361
MNP 0.9124 0.8653 0(.7484 0.8548 0.8330

MAML  0.8398 0.7532 0.7593 0.7626 0.6830
MAMLP 0.8625 0.8075 0.8037 0.7822 0.7256
RN 0.9334 0.8276 0.7818 0.8170 0.7527
RN? 0.9487 0.8528 0.7868 0.8294 0.7761

In comparison to MEx experiments, PAMAP2 and SELFBACK experiments
do not create strictly few-shot classification settings with 76 and 88 data in-
stances per “person-activity” class. We compare their performance on our per-
sonalised methodology against conventional DL and few-shot learning methods.
These experiments helps to understand if improvements we observe in MEx ex-
periments can be re-produced in a not-strictly few-shot classification settings.

Results show that personalised meta-learners have outperformed conven-
tional meta-learners in all 5 experiments and outperformed conventional DL
models in 4 out of 5 experiments. It is noteworthy that in experiment with
PMPpy data, RNP performance is comparable with RN. While two of the five
experiments significantly outperform personalised M NP, three experiments fail
to outperform M NP. But all experiments achieve their best performance with a
personalised algorithms further confirming the significance of personalisation in
different domains of HAR. The failure to outperform DL methods in one occasion
is as expected given the larger amount of data available for training. In addition,
all 5 experiment use accelerometer data, where M NP’s simpler similarity metric
is proven to be sufficient to discriminate significant similarity relations between
different classes.
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Considering all 9 experiments, we find that visual data prefer the optimisation
based meta-learning algorithm (i.e. M AM L?) and experiments with time-series
data prefer learning to compare methods (i.e. MNP and RNP). It is notewor-
thy that MAMLP and M NP use a 1-dense layer network and RNP uses a 1-
convolution layer network for feature learning while achieving significant perfor-
mance improvements. Overall, personalisation strategy introduced in this paper
has elevated the conventional meta-learners significantly when using few-data
and shallow network architectures. Personalisation has positively contributed
towards eliminating the need for parametric models with many deep layers that
require a large labelled data collection for training. This is highly significant out-
come in the domain of HAR, where even a comprehensive data collection fails
to cover all possible personal nuances that a reasoning model may encounter
during deployment.

5 Conventional vs. Personalised Meta-Learners

Here we look closer at training of meta-learners to understand how personalisa-
tion methodology improved performance using an experiment with the MExp ;s
data.

5.1 MAML vs. MAMLP

We first investigate the performance improvements achieved by M AM LP against
MAML. Here we compare three variants, M AM L where meta-train and test
tasks are created disregarding any person identifiers; M AMLP, as described in
Section 3.2; and person-aware M AM L. Here person-aware M AM L can be seen
as a lazy personalisation of MAML where a meta-train task is sampled from a set
of persons, where one person contributes data for only one exercise class in the
support set. The query set will have data from a single person who may not have
been selected to form the support set. This method still preserves the concept
of “person-activity” only at the class label level, but not over the entire support
set level. We visualise the impact of model adaptation at test time using the
three different algorithms in both, K* =1, and K* = 5, settings on the MExp,
dataset in Figures 3 and 4.

Here we plot test-person accuracy (y-axis) evaluated at every 10 meta-train
epochs (2"¢ row of the x-axis); at each of these evaluation points, the meta-test
support set is used to adapt the current meta-model for a further 10 steps (1°¢
row of the x-axis). During each adaptation steps we record accuracy using the
meta-test query. Through this process we can observe the impact on the par-
tially optimised general meta-model when being adapted at the test time at
increasing adaptation steps. M AM LP and person-aware M AM L significantly
outperformed M AM L in both settings. When comparing M AM LP and person-
aware MAML, MAMLP algorithm achieves a more generic meta-model even
without performing meta-gradient steps for meta-model adaptation (every 0 on
1% row of the x-axis); this is most significant in the K* = 1 setting. These
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Fig.4: MAML vs. person-aware MAML vs. MAMLP with MExp); when K* =5

observations verify the advantage of creating personalised tasks; that even with
the person-aware M AM L algorithm where a task contains data from multiple
people. But a “person-activity” class only contains data from one person has
allowed learning a more generic meta-model as seen with MAML, MAMLP.

MAMLP where all “person-activity” data belongs to the same person, pro-
vides further generalisation with faster adaptation. Another indication of the
significance of personalisation is found when investigating M AM L performance
over the training epochs. While M AM L overall performance is indifferent as the
meta-model train, M AM L meta-test accuracy before adaptation (every 0 on 1¢
row of the x-axis), declines consistently. This is most significant when K* = 5,
which indicates that the meta-model learned with M AM L is not generalised
when an activity class in a meta-train task support set contains data from mul-
tiple people. In comparison, meta-model learned with M AM L?, performs well
on meta-test tasks, even before adaptation.

5.2 RN vs. RNP

Similarly we compare the performance between the two algorithms Relation
Networks (RN) and personalised RN (RNP) to understand the effect of person-
alisation on training and testing. For this purpose we create experiments with
the MExp)s dataset in two settings K° = 1 and K* = 5 and evaluate the model
at every 10 epochs using meta-test tasks, which we plot in Figures 5a and 5b.
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Fig.5: RN vs. RN? with MExp); meta-model tested at every 10 meta-train
epochs

It is evident that personalisation has stabilised the meta-training process,
where meta-testing performance consistently improve with RN? models. In con-
trast meta-test evaluation on the RN is erratic, especially evident in the K® =5
setting. When training RN in the K® = 5 setting, a task is created by disregard-
ing the person parameter, as a result, an activity class contains data instances
from more than one person and learning similarities to many people has ad-
versely affected the learning of the RN meta-model. Similarly, in the K*® =
setting, when a task contains only one data instance per class, learning from
ones own data with RN? is advantages in comparison to RN where the data
instance for a class is from another person. Overall these results confirm the
strong presence of personal nuances in sensor data, that need to be considered
when creating classification models for exercise recognition.

6 Discussion

While RN does not require model-retraining, obtaining the activity class label
for a given query involves a more complex inference process; each data instance in
the end-user provided support set and the query instance is converted to feature
vectors and later concatenated to obtain the relation scores and the predicted
class. We calculate the average time elapsed for obtaining a prediction on the
MEx 4o query data instance, using both algorithms in a computer with 8GB
RAM and 3.1 GHz Dual-Core processor. While M AM LP takes 0.0156 millisec-
onds for a single prediction, RN? takes 2.4982 milliseconds when K* = 1 and
3.7218 milliseconds when K° = 5. A HAR algorithm should be able to recognise
activities as they are performed in real-time for the best user experience, and
the processor and memory requirements along with the response time are crucial
considerations for edge device deployment. In comparison, M AM LP inference
is a simple classification task but requires post-deployment model re-training
which calls for deployment in a development-friendly environment.

A limitation of M AMLP is the inability to perform open-ended HAR. Orig-
inally both MAML and RN perform zero-shot Learning for image classifica-
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tion [2,12] with a fixed class length. Specifically, M AML is restricted to per-
forming multi-class classification with a conventional soft-max layer; for instance
5 outputs for a 5-class classification task. Open-ended HAR requires dynamic
expansion of the decision layer as the person adds new activities in addition to
the activities that are already included. Few-shot classifiers such as Matching
Networks (MN) [14] does not have a strict decision layer which inspired Open-
ended MN [17] for Open-ended HAR. Similarities of Relation Networks (RN) to
MN presents the opportunity to improve Open-ended HAR using RN, which we
will explore in future.

When a Personalised Meta-Learning model is trained and embedded in the
fitness application, there is an initial configuration step that is required for
collecting the calibration data(i.e. support set) of the end-user. The end-user
will be instructed to record a few seconds of data for each activity using the
sensor modalities synchronised with the fitness application. This is similar to
demographic configurations users perform when installing new fitness applica-
tions (on-boarding). Thereafter this support set will be used by the algorithm
either to re-train the model (M AM LP) or for comparison (RN?). Importantly,
both MAML®Y and RNP provide the opportunity to provide new calibration
data if the physiology or preferences of the user change over time.

7 Conclusion

In this paper, we presented “personalised meta-learning”, a methodology op-
timised for personalisation of Human Activity Recognition (HAR) using only
a few labelled data. This is achieved by treating the ”person-activity” pair in
a HAR dataset as an activity class, where each class now has only a few in-
stances of data for training. We implement personalised meta-learning with two
meta-learners for few-shot classification personalised MAML ( M AMLP) and
personalised Relation Networks (RNP) where a meta-model is learned, such
that it can be rapidly adapted to any person not seen during training. Both
algorithms require only a few instances of calibration data from the end-user to
personalised the meta-model. At deployment, M AM L? uses calibration data for
model re-training and RN? uses calibration data directly for matching (with-
out re-training). Our evaluation with 9 experiments shows that both algorithms
achieve significant performance improvements in a range of HAR domains while
outperforming state-of-the-art deep learning and conventional meta-learning al-
gorithms. We highlight that personalisation achieves higher meta-model gen-
eralisation, compared to conventional methods, allowing rapid adaptation. Im-
portantly we find, real-time inference with M AM LP? is significantly faster with
fewer memory requirements compared to RNP where calibration data need to
be retained in memory.
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