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Abstract Naive Bayes (NB) is a well-known probabilistic classification algorithm. It is
a simple but efficient algorithm with a wide variety of real-world applications, ranging
from product recommendations through medical diagnosis to controlling autonomous
vehicles. Due to the failure of real data satisfying the assumptions of NB, there are
available variations of NB to cater general data. With the unique applications for each
variations of NB, they reach different levels of accuracy. This manuscript surveys the
latest applications of NB and discusses its variations in different settings. Furthermore,
recommendations are made regarding the applicability of NB while exploring the
robustness of the algorithm. Finally, an attempt is given to discuss the pros and cons of
NB algorithm and some vulnerabilities, with related computing code for implementation.

Keywords Naive Bayes - Probabilistic Classification - Machine Learning Vulnerabili-
ties - R Code Snippets

1 Introduction

Recent advances in low-cost computing and data explosion have democratized machine
learning and data analytic (MLDA), allowing developers to apply these technologies
almost everywhere in real-world applications. Data classification plays a key role in
MLDA. The use of some of the conventional statistical techniques in data classification
became plausible as a result of low-cost computational power. Statistical approaches
to MLDA problems have become major alternatives to well-known algorithms used in
MLDA (George et al., 1995). Though sophisticated statistical techniques are used in
numerous applications, some appealing and effective outcomes have been revealed with
the use of much simpler and basic statistical approaches (George et al.,1995). Most
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importantly, these alternative techniques to conventional machine learning algorithms
have been outperformed by the statistical approaches.

Broadly, any classification algorithm can be classified as either probabilistic or non-
probabilistic. Probabilistic data classification relies on the approximating a distribution.
Data classification techniques based on probabilistic approach work well as most of
the distributions of related features follow probabilistic nature. Garg and Roth (2001)
answer the fundamental question of why probabilistic approach works well theoretically
in various real world applications. Some of the probabilistic classifiers include NB,
Logistic Regression, and Multilayer Perceptrons. Support Vector Machines, K-Nearest
Neighbours are examples for the non-probabilistic classifiers.

Out of the above stated algorithms, NB has an important place in data classification
due to many reasons. The simplicity and the accuracy of the algorithm are two of
the main reasons. As the name implies, NB algorithm is based on the popular Bayes
theorem and is one of the prominent probabilistic classification techniques used in
MLDA. The popularity of NB is not only due to the simplicity of it, but also due to
the effectiveness and the robustness of the algorithm (Arar and Ayan, 2017). According
to the literature, NB is one of the top performing algorithms use in data mining (Wu
et al.,2008; Settouti et al.,2016). Clark and Niblett (1989) reveal that NB generates
similar and accurate results to rule-induction approaches in medical domains, while
Thompson (1992) finds that basic statistical approaches outperform some of the other
machine learning algorithms.

The accuracy of classification model can depend on various factors. One of the key
main factor is the set of assumptions attached to each classifier. Similar to majority of
parametric procedures, NB also makes some assumptions about the underline data in
order to produce the optimal result. Furthermore, Rish (2001) assesses that NB competes
well compared to more sophisticated classification techniques. Rish (2001) investigates
the impact of the characteristics of data on the performance of the accuracy of NB using
entropy feature distribution. Though the success of the algorithm is appealing in practice
(Garg and Roth, 2001; Domingos and Pazzani,1997; Elkan,1997), these assumptions
become unrealistic in some applications. Rish (2001) finds that NB performs reasonably
well, even with feature dependencies. Rennie et al.(2003) see the main assumption of
the NB is very straight forward and simple which has helped it to become an easy to
use algorithm. At times, these assumptions can adversely affect the output’s quality.
They address problem of the selection of poor weights for decision boundary when
the training sample sizes have different instances for each class. Furthermore, they
investigate about the issue of independent assumption and find that if there is a higher
dependency among the features, the magnitude of the assigned weights for those classes
are higher than that of classes with lower dependency. In addition, there are some
variations of NB achieving different levels of accuracy.

The rest of the paper is organized as follows. Section 2 discusses the theoretical
background of the NB and section 3 discusses the existing variations of NB. Applications
of NB classifier is discussed in section 4, and section 5 discusses the instances when
NB performs well and poorly. In section 6, we discuss how to use NB classifier in
various data classification problems and to implement Bayesian poisoning attack using
R language. Finally, section 7 concludes the paper.
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2 Naive Bayes Classifier

Let X1,X2,...,Xn be a n-dimensional vector of random variables (features) from
a domain Dx and z1,x2,,.., Xxn be their corresponding instances. Let Y be an
unobserved random variable from domain Dy = 0,1. Though it is unknown, let’s
assume that there is a function from Dx to Dy . The aim is to estimate the target
value y; of Y for a given instance x; of X. In another words, the aim is to select the
class Y that maximizes the posterior probability, P(Y = y|X = z). Here, P(Y = y),
and P(X = z|Y = y) are prior and class-conditional probabilities. As the NB assumes
conditional independence, P(X1 = x1, X2 = 22,..., Xn = an|Y =y) =[[]_, P(X =
z;|Y = y). Let C be the number of classes of Y. According to the Bayes’ theorem,

P =yX =z) = L =X =12)

P(X =x)
_ PV =y)P(X =alY =y)
P(X =x)

_P(Y = y)P(Xi =21, Xo =2, Xn=2aY =y)
2EP(y;, X =)
_ P =) I[, PIY =Y =)
EEP(y;, X = x)

In practice, it is not interested about the P(X = z). Instead of estimating P(X = z), it is
normalized in order to have the P(Y = y|X = z) = 1. Usually, in practical point of view,
P(X = z|Y =y) is assumed to follow a Gaussian distribution, though the literature
shows some exceptions. George et. al (1995) replace the flexible Gaussian assumption
with a kernel density estimation. In addition to the above Gaussian assumption, one
of the main assumptions is that the value of any given feature is independent of the
value of any other feature. Though there are different opinions about the practicality
of this assumption, which has created the algorithm more viable. Moreover, one can
exploit the Naive assumption to speed up the execution of the algorithm. For example,
attribute probabilities can be calculated in parallel using different CPUs, machines or
clusters in the real world deployment of NB based applications. This success of NB
algorithm has motivated research community to search for variations of NB (Langley
and Thompson, 1992; Kononenko, 1991;Pazzani et al.,1996).

3 Variations of Naive Bayes

As pointed out earlier, real world applications may not follow the associated assumptions
of the NB. Features in practical data sets can be interrelated by violating the independent
assumption. For an instance, Naive Bayes classifiers are a popular statistical method of
spam filtering, in which occurrences of terms like “online”, “meds”, “pharmacy” would not
be independent from each other. Therefore, assuming the independence can introduce
adverse effects for the accuracy of the classification.

Another major issue with the use of independent feature assumption is the difficulty
for the learner to extract available hidden patterns within the data (Arar and Ayan, 2017).
If someone attempts to apply the NB ignoring the feature dependency, this can cause a
considerable detriment in performance. Arar and Ayan (2017) state how performances
are hindered due to the violation of naive Bayes assumptions. As an alternative approach,
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authors propose a novel feature dependent NB approach to overcome above issue. By
applying this novel approach to a problem of predicting software defects, they receive
appealing results compared to the conventional NB. Literature indicates the various
attempts to circumvent above issue by seeking for alternatives. Researchers approach
this problem in two directions to rectify the violation of “independent” assumption (Zaidi
et al.,2013). The first method uses reduced conditional independent assumption, which
is considered as Semi-Naive Bayes (Langley and Sage ,1994; Friedman and Goldszmidt
,1996; Zheng et al.,1999; Zheng et al.,2012; Cerquides and M’antaras,2005). The aim
of the second approach is to use feature-weighting techniques in order to enhance the
influence of highly predictive feature (Hilden and M’antaras, 1976; Ferreira et al., 2001;
Hall, 2007; Zaidi, 2013). Let’s discuss above approaches in the following section.

3.1 Semi-Naive Bayes

The aim of these algorithms is to improve the accuracy of NB by weakening the
conditional assumption. The term “semi-naive Bayes” was introduced by Kononenko
(1991) and aimed to discuss a semi-naive Bayes classifier. In this study, the author
computes conditional probabilities of joint features using training data and use them
to test cases instead of original. Author’s work on data sets in medical domains shows
slight improvements over the regular NB. In another study, Jin et al. (2004) develop a
novel semi-naive Bayes model for automatic image annotation for content-based image
retrieval, using clustering with pair wise constraints. According to their experimental
results, the novel model has performed considerably better than the conventional NB
model. In a different study conducted by Carvajal et al. (2015), use semi-naive Bayes
models in their research to study the pathogen reduction and operating conditions used
in waste water treatment. They point out that the use of these semi NB models could
reduce the costs for pathogen monitoring and reduction. Flores et al. (2014) discuss
several semi-naive Bayes approaches such as Averaged one-dependence estimators
(AODE), Tree augmented naive Bayes (TAN), and k-Dependence Bayesian classifier
(KDB). Robles et al. (2004) in their research paper propose semi naive Bayes structures
via estimation of distribution algorithms.

3.2 Weighted Naive Bayes

Usually, the aim of attribute weighting is to add more weight on highly predictive

attributes and to place less weight on less predictive attributes. Note that in NB, we have
P(Y= T P(X=z,;|Y= .

PY =yl X =z) = ( y)zg};(lyh(ng Y=Y Though, P(Y =y, X = z) is assumed

to be independent in NB, in Weighted NB this value is estimated by P(Y =y, X = z)

by P(Y =y)[[;=, P(X = z;]Y = y). The latter expression is usually estimated by,

P(Y:y|X=I):P(Y:y)HP(X:xi‘y:y)wi D)

i=1

, where w; represents the weights assigned for each attribute. Zaidi et al. (2013)
propose a novel approach with the argument of alleviating conditional dependence
assumption by attribute weighting. Furthermore, they state that violation of NB
assumption can be minimized by selecting the suitable weights w;. In another study,
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Frank et al. (2003) use a locally weighted version of NB by relaxing the independence
assumption. According to their experimental results, the proposed method performs
better than the NB in empirically for the data sets they considered. Furthermore, they
show this method exhibits robustness behaviour and reduces the computing complexity.
Zhang and Sheng (2005) investigate further into weighted NB method in order to rank
data accurately. In this study, they utilize different techniques such as the gain ratio
method, the hill climbing method, and the Markov Chain Monte Carlo method. Authors
find that the hill climbing method outperforms its counterparts. One of the most
important steps in weighted NB is the selection of weights that go with attributes. Lee
et al.(2011) propose a novel approach for calculating the weights corresponding to the
feature set using KullbackLeibler measure. As empirical results indicate that this feature
weighting method gives better performance than the traditional NB for numerous data
sets. As the name implies in local learning approach, NB model is formed by taking
the neighborhood instances in the test data set instead of considering the entire data
set. This training data selection technique weaken the impact of attribute dependency
that exists in the entire data set (Jiang,2011;Jiang et al.,2012). With the expectation of
weakening the conditional independence assumption, Jiang et al. (2013) combine NB
learning with locally weighted learning technique for text classification. According to
their experimental results, this locally weighted approach show a significantly better
classification accuracy than the original NB text classifiers.

4 Applications of Naive Bayes Classifier

This section introduces a few selected uses of NB. Due to the popularity of NB, its
applications can be seen in a variety of different other fields not listed in this article.
Characteristics of the NB algorithm such as, the simplicity, speed of the execution, and
the accuracy are the main reasons to see researchers applying NB in a variety of fields.
This section presents some published work in the disciplines of Software Development,
Healthcare, Cyber Security, and Education. It should be noted that this list is not
exhaustive, the aim of this paper is to provide a general overview of NB, its variations,
applications and vulnerabilities rather than reporting an exhaustive list of application
domains.

4.1 Software defect prediction

Modern software has become very versatile and sophisticated. Due to this, identifying
bugs in software before releasing is done in several stages and given high priority. The
prediction of software defects is widely studied because of the enormous importance
of it for the software industry. Naive Bayes is considered as the most (47.4 % of all
studies) widely used learner group in software defect prediction (Arar and Ayan,2017).
Menzies et al. (2007) research on defect predictors using static code attributes, which
are easier to find compared to other labor-intensive methods. They expel some of
the prior believes against the defect prediction by emphasising the importance of the
selection of attributes to build predictors. Furthermore, they obtain appealing results
by using log-filtering pre-processor before applying NB algorithm on the data. Arar
and Ayan (2017) use an algorithm called "Feature Dependent Naive Bayes (FDNB)"
to predict software defects. Implementing their proposed algorithm using a NASA
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PROMISE data sets, they obtain outstanding results that beat the results given by
the conventional approach of NB. In their study, they question the linearity of the
independent assumption of NB by evaluating the performance when handling features
in pairs instead of individual features. Queirozi et al. (2016) examine how different
machine learning techniques can be used to identify the defective features in open-source
software development. Their aim is to study the defect prediction models in order to
identify defective features in software production. In this study the researchers use
three machine learning classifiers namely J48, Random Forest, and NB and they find
NB as the best classifier compared to the other counter parts in accurately predicting
defects. In another study about software fault prediction, Catal and Diri (2009) use
nine classifiers and find NB as the best prediction algorithm when using for data sets
of smaller size. Furthermore, Veni and Srinivasan (2017) classify the type of defect as
minor, moderate, or major defects using NB classifier.

4.2 Healthcare

Machine learning differs from conventional statistical procedures as the former lets the
data to talk. With the digital recording of health related data and patient’s information,
it creates a wonderful opportunity for researchers in machine learning to exploit hidden
sophisticated associations and interactions among the data. Literature indicates the
application of NB classifier in various areas related to health. Pattekar and Praveen
(2012) develop a decision support system to predict heart disease based on NB classifier.
The purpose of this system is to extract the unseen patterns and knowledge from
heart disease database to make prediction for novel patients about the status of heart
disease in an effective manner. A similar study is conducted by Vembandasamy et al.
(2015) to use NB classifier to predict heart disease and they experience higher success
rate of accurate prediction over the traditional approaches. Apart from identifying
heart diseases using NB classification, use in the area of liver diseases is another major
application of NB in health related fields. According to the published works related to
liver disease, majority attempts are about the prediction of the disease. In order to
predict three main liver diseases with the help of their distinct symptoms Dhamodharan
et al. (2014) use NB and FT tree algorithm. By comparing the above two algorithms,
authors find NB performs better than its counterpart to predict the three liver diseases,
Liver cancer, Cirrhosis and Hepatitis. In a similar study, Vijayarani and Dhayanand
(2015) use both NB and Support Vector Machines (SVM) to predict liver diseases using
related attributes such as patients’ age, gender, and certain liver enzymes such as TB,
DB, ALP, Sgpt, Sgot, TP, ALB and A/G Ratio. According to their experimental results,
authors find SVM performs better than NB though the latter is faster in the prediction.
Application of NB has not limited only for the detection of a specific disease. Marucci-
Wellman et al. (2015) develop human-machine semi-automated system based on NB
algorithm to classify injury narratives with the help of large administrative database.
They find that the developed system shows overall accuracy of 87%. In another study
Liu et al. (2016) develop a patient-centered clinical decision support system using NB
and cloud computing technology to diagnose deceases. A comprehensive overview of the
use of NB in medical data mining is discussed by Al-Aidaroos et al. (2012). Furthermore,
these authors use the experimental data to illustrate that how NB technique is better
suited for the problems in medical domain.
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4.3 Cyber Security

An intruder typically aims to violate the integrity, availability or confidentiality of the
target system which can be a computer resource, computer network or any other valuable
information asset. Intrusion detection can be broadly classified as signature-based and
signatureless. NB offers great advantages for modern cyber security. Its applications
can be found in both offensive and defensive aspects in security. Bayesian based spam
filtering, phishing attack detection, malware & ransomware detection and network traffic
monitoring (kalutarage et al., 2015) are popular applications among them. Machine
learning can be considered as popular approach to address signatureless intrusion
detection due to the ability of generalizing both malware families and polymorphic
strains that have never-before seen (Anderson et al., 2017). The malware detection
can be considered as mathematical function in which the domain being the set of
executable programs and the range being the status of the program (malicious, or
benign) (Vinod et al., 2009). Though the initial focus of malware detection algorithms
was mainly towards the computers, after the mobile devices became more popular and
sophisticated, the malware detection became a major concern for mobile devices as
well. Detection of malware is not an easy task due to the vulnerabilities of malicious
programs as they can bypass security measures implemented by the user (Ravi and
Manoharan, 2012). Comprehensive discussion about the applications of machine learning
to improve malware detection is presented in Geigel (2013) and Geigel (2014). Sayfullina
et al.(2015) apply both Bernoulli Naive Bayes and Normalized Bernoulli Naive Bayes
to classify Android Malware. They experience that Normalized Bernoulli NB performs
better than its counterpart in malware classification by giving an improved class
separation with a higher accuracy. In another study, Shang et al. (2018) propose a
novel algorithm based on improved NB classification for Android malware detection.
Using new malware permissions together with training permissions as the weight of
the weighted NB algorithm, their experimental results indicate higher detection rates.
By utilizing frequent patterns and weighted NB, He et al. (2015) propose Android
malware detection method to obtain improved results in malware detection. Chaba
et al. (2017) in their study apply three algorithms namely, NB algorithm, Random
Forest Algorithm and Stochastic Gradient Descent algorithm in malware detection.
They focus on studying the behavior of malicious software while it is actually running
on a host system. Kalutarage et al.(2017) utilise NB in detecting colluding attacks on
Android applications. The unique features of the NB, such as the simplicity and speed
of execution, have made it as the first choice for developers who developing security
solutions for resource constrained ubiquitous devices such as [oT devices.

4.4 Education

Education is no longer limited to text-book based teaching, memorizing the material,
and testing in examinations. Ignorance of testing student’s ability to comprehend
the information they are taught and apply the concepts in real-life situations (Nafea,
2017), is one of the major accusation over the traditional education. Furthermore, the
traditional education system does not cater all levels of students as it is more instructor-
driven and the student has little chance to control the phase of learning. With the
dynamic development of the computer technology, there is a drastic change even in the
education sector as well. The impact of the technology has influenced various sectors in
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education including the process of planning, implementing, evaluating, following-up and
developing objectives Lv and Li (2015). The influence of advanced machine learning
algorithms have changed the education process by introducing a personalized learning
environment where student has a more control over the education process. This has
facilitated close monitoring of student’s understanding, which has helped the student to
comprehend concepts by leaving no student behind. Prediction of students’ academic
success is very important as it gives the educators the opportunity to give extra attention
towards students, who predicts unsatisfactory performance in the future. Razaque et al.
(2017) attempt to predict the students graduate point average (GPA) based on students’
prior performance in quiz, discussion, assignments, attendance and lab work. In another
study, Devasia et al. (2016) develop a web based system to predict student’s end of
the semester performance by taking student’s academic history such as the details of
admission, course, grades, attendance in to consideration. Their results indicate that NB
algorithm provides higher accuracy over other techniques namely, multiple regression,
decision tree, neural networks etc. for comparison and prediction. Identifying dropouts
in education process also have a major importance. The aim of the study conducted by
Yukselturk et al. (2014) is to make prediction about the dropouts in an online program
based on the attributes they collected over students. They use several machine learning
techniques including NB in this process.

5 Strengths and Weaknesses of Naive Bayes, and Some Guidelines
5.1 Robustness of Naive Bayes

A good classification algorithm features with less errors in data classification. A classifi-
cation algorithm can exhibit errors mainly due to three reasons: noise, statistical bias,
and variance (Friedman and Goldszmidt, 1996). Robustness of a classification algorithm
refers to the tolerance of the algorithm for errors, during the execution (Carbin et
al.,2010; Danglot et al.,2017). One of the main features of NB classification technique is
the robustness. Though the data deviates from the underline assumptions of NB model,
still NB can perform really well. As majority of naturally occurring data sets don’t have
independent features, researchers at times tend to choose more complected models over
NB due to violation of assumptions. Surprisingly, basic model comparison studies show
that this model performs extremely well irrespective of the violation of assumptions
(Hand, 2001).

Using a data from medical domain about severe head injuries, Titterington et al.(
1981) find independent model performed better than other counterparts. Practical data
sets like these, usually consist of dependencies and missing values, but their outcomes
do not show any hindrance in the performance with NB. More studies in medical
domain such as: breast cancer (Mani et al.,1997), heart disease (Russet et al., 1983 ;
Vembandasamy et al.,2015) thyroid (Nordyke et al., 1971), liver disease (Dhamodharan,
2014; Croft and Mitchol, 1987), abdomen (Gammerman and Thatcher, 1991; Todd
and Tamper, 1994; Ohmann et al.,1996) confirm that NB as the best model compared
to their counterparts. In other applications such as email spam filtering, though the
selected features are not independent the NB work exceptionally well.

Though many studies seek for explanations to understand the robustness of NB,
none of them have been able to establish a necessary and sufficient conditions for the
optimal behavior of the model (Kuncheva , 2006). Even though it is not generalized for
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more than two binary features, using a two-class two-binary feature problem Kuncheva
(2006) shows that when the dependencies on both classes are same with both features,
NB reaches optimal. According to the studies (Hand ,2001; Domingos and Pazzani,1996;
Zhang, 2004; Rish, 2001) an interesting yet an important outcome suggests that the
conditional independence is only a sufficient condition for the optimal of the NB, but
not a necessary condition.

Nevertheless, there are several more reasons behind the success of NB. First reason
is the process of pre-selection of features. In this process as the correlated features are
eliminated, the impact of the assumption violation becomes minimal. It is a fact in
data analytic, the selection of highly correlated features can degrade the accuracy of
the prediction. Secondly, the NB model is less prone to over-training, mainly for small
sample data (Kuncheva, 2006). Hand(1992) states that the NB needs relatively less
parameters to be estimated compared to other alternative methods.

5.2 How does Naive Bayes perform well with missing values?

Missing values in a data set can hinder the classification performance. Fortunately, this
issue is negligible for NB. In order to understand how this takes place in NB, let’s
consider the feature set X = (X1, Xo, ..., Xk, ....., Xn). Furthermore, let’s assume the
value of X}, is missing as well. Consider the conditional probability, P(X|y) = P(X1 =
1, X2 = T2, .o, X =7, ..., Xn = zpnly). Without knowing the value of Xy, it is very
difficult to calculate the above conditional probability. As an alternative, one needs
to consider all possible cases of X} in order to complete the probability calculation.
Consider Xy, € {zk1,Zk2, .-y Tim } for some m € N. Then we can calculate the above
conditional probability as follows.

P(X|y) = P(X1 =x1,X2 =22, ..., Xn = znly)
= P(X1 =zly) - P(X2 = z2ly) - - - P(Xn = znly)
= XL P(X1 = z1ly) - P(X2 = x2|y) - - - P(X}, = apjly) - - - P(Xn = wnly)
= P(X1 = z1|y) P(X2 = w2ly) - - - XL P(Xy = wp5ly) - - - P(Xn = xnly)
= P(X1 = 21|y)P(X2 = @2ly) - - - P(Xn = wnly) ZjL1 P(X), = xp5ly)
= P(X1 =z1|y)P(X2 = x2ly) - - - P(Xn = znly)

n

P(X = zily).
1

7

5.3 When does the Naive Bayes perform well and poorly?

Using an artificial domains and following a theoretical approach, Domingos and Pazzani
(1997) study the NB algorithm, the optimally and other related conditions of it. This
detailed study shows that in order to perform optimal under zero-loss, attribute indepen-
dence is not required. Furthermore, the study shows that NB becomes an optimal learner
for conjunctive and disjunctive concepts, in spite of the violation of the independence
assumption. In addition, Kohavi (1996) observes that Bayesian classifier outperforms
on smaller data sets in the range of hundreds to thousands of examples. This goes to
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confirm the early findings of Domingos (1997). Using Monte Carlo simulations, Rish
(2001) studies about the NB and the state of the best and the worst performance criteria.
According to the above study, the author confirms that NB performs best when features
are completely independent and functionally dependent, though the latter is surprising.
In the mean time, the author points out that the classifier has its worst performance
between the above extremes.

If zero observations problem occurs, NB will not be reliable. In general, the problem
of zero observation is that your training data lacks certain cases that are actually
possible. In this case, it is recommended to assign some low probabilities to such cases,
as it does not seem appropriate to assign a probability of zero elements (Cover and
Thomas, 2012). If the feature set contains highly correlated features, the performance
of NB may also be affected as correlated features voting twice in the model. In such
cases, it is recommended to remove strongly correlated features.

5.4 Naive Bayes is vulnerable to attacks

Recent research demonstrate that MLDA algorithms are vulnerable to attacks. NB
has no exception. An adversary can launch several attacks against these systems by
examining weaknesses of learning algorithms. If an adversary can determine a particular
behavior of the learning algorithm that its developers do not know then she can use
that behaviour to get a potential return. Bayesian poisoning is such a technique used
by email spammers to reduce the effectiveness of spam filters based on Bayesian spam
filtering. To this end, for example, attackers attempt to create a series of spam e-mails
that are identified as ham and endanger the integrity of the system. The spammer hopes
that adding random (or carefully selected) words that are not likely to appear in a spam
message will cause the spam filter to consider the message legitimate (Type II error).
As the literature indicates, Bayesian-based spam filters are particularly vulnerable to
these types of attacks. Therefore, NB based classifiers are expected to have rigorous
robustness that allows them to be robust enough to deal with these type of hostile forces.
Demonstration of Bayesian Poisoning attack with relevant code snippets can be found
in section [6.4] of this paper. As the security systems have became more sophisticated,
attackers are continuously attempting to intrude security systems in many ways. One of
the main ways a machine learning based security system becomes vulnerable is due to
the misinterpretation of inputs into the system, it behaves supportive to attackers. As
discussed before, the accuracy of the NB classifier depends on the conditional probability
of,

P(email is a spam or a non-spam | email has a set of specific words).

Spammers frequently attempt to bypass the spam filters by abusing the above conditional
probability. According to Xiao (2017), spammers attempt to obfuscate the spam filter
by deliberately adding more legitimate words in their spams. Their aim is to increase
the probability of good words so that the likelihood of classifying the email as non-spam
(ham). Another approach is to alter the words that filters are searching to classify the
email as a spam. For an instance, Lowd and Meek (2005) point out that spammers
use “vi@gra” instead of “viagra”, in order to sneak through the system. A similar study
is explored by Wittel and Wu (2004), where the researches consider the replacement
of spam words with a list of common English words. According to the outcomes of
Wittel and Wu (2004), spammers can get 50% of the blocked spams through the filter
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by adding a number of easily found words. Further studies about the issues of spam
filtering can be found in (Xiao, 2017).

6 Code Snippets for Implementation

Up to now, we have discussed about various applications of NB and its vulnerabilities.
This section aims to provide code snippets to demonstrate to the reader how NB
classifiers can be trained for selected applications and to show that how vulnerabilities
can occur in practice. It should be noted that building and deploying NB-enabled
systems in industry settings would be more complicated than these simplified examples
(toy examples), and such a discussion is out of the scope of this work.

Here we present three examples from different areas of application and also demon-
strate a Bayesian poisoning attack. These examples have been written in R language.
Due to the space constraint, no intermediate outputs generated by each code snippets are
shown in the paper. Only the confusion matrix and performance statistics are presented
at the end of each example. However, complete documentation with all intermediate out-
puts can be accessed via https://github.com/HarshaKumaraKalutarage /Naive-Bayes-
Applications-and-Vulnerabilities. It also provides both R scripts and data sets so that
readers can easily clone and run these examples on their systems if necessary.

6.1 Example 1 - Iris Data Set

In this example, we use well-known Iris data set (included with R) to train a NB
classifier. The data set consists of four features (measurements): sepal length, sepal
width, petal length, and petal width of 150 Iris flowers. It contains information about
three types of iris plants: Setosa, Versicolor and Virginica. We are going to train a NB
model to identify (classify) the specie of an Iris flower, based on the values of the four
features of a given Iris flower. Note that in this example all the features are numerical
variables. In R language, likelihoods for numerical features (e.g. measurements) in the
Naive Bayes formula are calculated using probability distributions. Listings 1-3 provide
necessary code snippets to complete this classification task as described below.

set .seed (12345) #set a seed value to ensure results are reproducible
data(iris) #attach the data set to the R environment

myData <— iris #rename the data set as myData

dim (myData) #check dimensions of myData

sapply (myData, class) #check the data types of each feature

levels (myData$Species) #different levels (values) in label column
head (myData) #look at top data points in mydata

summary (myData) #produce descriptive statistics

Listing 1 R code snippet: Load the Iris data and produce summary statistics

Partitioning the data set and training a NB classifier: We're going to follow
the convention of 80:20 samples ratio in partitioning the data set to the training
(traintSet) and testing (testSet) sets. For this purpose we use the createDataPartition
function in the Caret package. Then we train our NB classifier with the trainSet. TestSet
is used to evaluate the performance of the fitted model. For this task we use the e1071
package in R language and Listing 2 contains the necessary code.
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library (caret) #load the library
tr _index <— createDataPartition (myData$Species, p=0.80, list=FALSE)
tlist of 80% of the rows

trainSet <— myData|tr index,| #select 80% of the data

testSet <— myData[—tr index ,| #select the remaining 20% of data
library (el1071)

NBclassfier=naiveBayes(Species™ ., data=trainSet) #train a NB model

print (NBclassfier) #check model details

Listing 2 R code snippet: Partition the data set and train a NB classifier

Making predictions: Let’s apply the above model to assign labels for test cases.
Then we create the confusion matrix, a table that is often used to describe the perfor-
mance of a classifier. Listing 3 presents necessary code to perform this task.

testPrediction=predict (NBclassfier , newdata=testSet , type="class") #
assign labels for test cases

confusionMatrix (testPrediction , testSet$Species) #print the
confusion matrix

Listing 3 R code snippet: Make predictions and produce the confusion matrix

## Confusion Matrix and Statistics

#i#t

## Reference

## Prediction  setosa versicolor virginica

##  setosa 10 0 0

##  versicolor 0 10 1

##  virginica 0 0 9

#i#

## Overall Statistics

#i#t

#it Accuracy : 0.9667

#i# 95% CI : (0.8278, 0.9992)

#i#t No Information Rate : 0.3333

#it P-Value [Acc > NIR] : 2.963e-13

#i#

## Kappa : 0.95

#i#t

## Mcnemar’s Test P-Value : NA

#i#

## Statistics by Class:

#i#t

## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 0.9000
## Specificity 1.0000 0.9500 1.0000
## Pos Pred Value 1.0000 0.9091 1.0000
## Neg Pred Value 1.0000 1.0000 0.9524
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.3000
## Detection Prevalence 0.3333 0.3667 0.3000
## Balanced Accuracy 1.0000 0.9750 0.9500
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As can be seen in the confusion matrix, the accuracy of the fitted model in this
example is 96.67%.

6.2 Example 2 - Breast Cancer Detection

Early detection of breast cancer is crucial for successful treatment. Conventional methods
such as breast biopsy are more invasive and must be performed by a human specialist,
which would be time consuming and not scalable. However, samples obtained with
less invasive techniques like fine needle aspiration can be easily digitized and used for
computer-aided diagnosis. To this end, the use of machine learning methods can signifi-
cantly reduce the cost and time for the diagnostic process. This code snippet shows the
reader how to train a Naive Bayes (NB) classifier for breast cancer detection. We utilise
the Breast Cancer Wisconsin (Diagnostic) data set available at http://archive.ics,
uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/, Our aim in
this application is to classify a tumor as benign or malignant, hence Machine Learning
(ML) task in this problem would be a classification. Listings 4-6 provoide necessary
code snippets to perform this task. Comments are only provided for the newly appeared
syntax in each listing. Readers should refer to the previous listings for comments on
repetitive syntax.

set.seed (12)

myData <— read.csv("CancerData.csv", header=T)

dim (myData)

sapply (myData, class)

levels (myData$label)

head (myData)

summary (myData )

prop.table (table (myData$label)) #look at ratio between classes

library (corrplot) #load libraries to plot correlation

library (RColorBrewer)

corrVal <—cor (myData|,3: ncol (myData) ]|)#plot correlations

corrplot (corrVal, type="upper", order="hclust", col=brewer.pal(n=10,
name="RdYIBu"))

Listing 4 R code snippet: Load the data set and produce a correlation matrix

## Ratio between two classes
## B M
## 0.6274165 0.3725835
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Fig. 1 Correlation matrix: Breast cancer diagnostic data set
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We noticed that the data in this example is slightly imbalanced and there are some
highly correlated features (see figure . As mentioned in section highly correlated
features can be badly affected on the performance of a NB model and therefore should
be treated accordingly. In order to keep our code short and simple, however, in this
example, we do not remove correlated features nor deal with the problem of class
imbalance. We use the entire data set to train and test the NB model for the purpose
of demonstration the code.

Partitioning the data set and training a NB classifier: As in the previous
example, we’re going to construct a 80:20 partitioning for the training (trainSet) and
validation (testSet) sets. After partitioning the data set, we will train a NB classifier.
Listing 5 provides the code snippet for this task.

library (caret)

tr_index <— createDataPartition (myData$label , p=0.80, list=FALSE)
trainSet <— myData|tr index,]

testSet <— myData[—tr index,]|

library (el071)

NBclassfier=naiveBayes(label™., data=trainSet|[,2:ncol(trainSet)])
print (NBclassfier)

Listing 5 R code snippet: Partition the data set and train a NB classifier

Making predictions: Listing 6 applies the newly fitted model to the test cases
and creates the confusion matrix for performance comparison.
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testPrediction=predict (NBclassfier , newdata=testSet[,2:ncol(testSet)
|, type="class")
confusionMatrix (testPrediction , testSet$label, positive = "M")

Listing 6 R code snippet: Make predictions and produce the confusion matrix

## Confusion Matrix and Statistics

##

## Reference

## Prediction B M

## B 68 4

## M 3 38

##

## Accuracy : 0.9381
## 95% CI : (0.8765, 0.9747)
## No Information Rate : 0.6283
## P-Value [Acc > NIR] : 1.718e-14
##

## Kappa : 0.8667
##

## Mcnemar’s Test P-Value : 1

##

## Sensitivity : 0.9048
#i# Specificity : 0.9577
## Pos Pred Value : 0.9268
## Neg Pred Value : 0.9444
## Prevalence : 0.3717
## Detection Rate : 0.3363
## Detection Prevalence : 0.3628
## Balanced Accuracy : 0.9313
##

## ’Positive’ Class : M

##

In this example, we can see that the accuracy is 93.81%. It was a small test set,
however, whether this accuracy is sufficient or not depends on the problem context and
is based on many other factors, such as the costs of misclassification. For example, the
cost of false positives and negatives in medical diagnosis can be fatal to the patient.

6.3 Example 3 - Malware Classification

This example explains how to apply NB to a problem in the Cyber Security domain,
which is malware classification. Here we show you how to train the NB algorithm using
various features in malware. It contains features that obtain from static code analysis
and analysis of the dynamic behavior of the malware. The data set used for this analysis
can be accessed via https://data.mendeley.com/datasets/w2w8gjsgnt/1. It contains
a total of 1944 features that were obtained from static and dynamic code analysis of
~ 19400 malware samples, including malware related to Advanced Persistent Threat
(APT) attacks. These malware were labelled as worm, back door, other type, rootkit,
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spyware, trojan and unknown. In our analysis, we preprocess the data set by removing
the first three columns and the last seven columns and adding a label column to the
end of the data set. The ML task in this example is also a classification. Listings 7-13
contain the code snippets required to accomplish this task using a NB model.

set.seed (1234)

myDataOrg <— read.csv("malware.csv", header=T)
dim (myDataOrg)

levels (myDataOrg$label)

Listing 7 R code snippet: Load the data set and produce summary statistics

Checking the balance of the data set: As mentioned in the previous example,
class imbalance can be negatively affected on the performance of an NB algorithm.
Class imbalance is a very common problem in Cyber Security data sets. Due to the
scarcity of attack data, a ratio of 1:100000 between attack and normal classes is very
common in these data sets. Listing 8 shows the ratio between classes in our data set.

print (table (myDataOrg$label))

Listing 8 R code snippet: Look at the ratio between classes

## Backdoor OtherType Rootkit  Spyware Trojan  Unknown Worm
## 53 1275 789 709 11034 3957 1640

Addressing the class imbalance issue: Obviously, our data set is an enormous
imbalance, especially Backdoor:Trojan. This can affect the model performance. For
example, we tried a NB model for this original imbalanced data set and the maximum
accuracy we could achieve was ~ 34%. To reduce the impact of class imbalance, various
methods have been proposed. For example, a mix of oversampling and undersampling
methods could be used, i.e., by increasing the size of Backdoor class and reducing the
size of Trojan class. However, this can be resulted information lost from the larger
(Trojan) class. Therefore, we will split the data set into two subsets and train two NB
models separately (ensemble technique). Of course, if NB doesn’t work very well with
one data set, you can train another model (e.g. random forest) for that data set and
combine NB with the other model for better performance. Listing 9 provides the code
snippet for splitting the data set.

myDataSetl<—rbind (subset (myDataOrg, label =— "Backdoor") ,subset (
myDataOrg, label = "OtherType") ,subset (myDataOrg, label —
Rootkit") ,subset (myDataOrg, label = "Spyware"))

myDataSet2<—rbind (subset (myDataOrg, label = "Trojan") ,subset (
myDataOrg, label = "Unknown") ,subset (myDataOrg, label =— "Worm"

))

n

Listing 9 R code snippet: Split the data set into two subsets

We split the original datset into two subsets with similar class sizes in each subset.
Let’s continue with myDataSet1l. You can follow the same approach for myDataSet2 or
fit a different model as mentioned above. The code in Listing 10 makes class sizes equal
in myDataSet1.

sample.df <— function(df, n) df[sample(nrow(df), n,replace = T), ,
drop = F| #function to sample data from a data frame
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classSize<—500 #sample size for each class

myData<—rbind (sample. df (subset (myDataSetl, label = "Backdoor"),
classSize) ,sample.df(subset (myDataSetl, label =— "OtherType"),
classSize ) ,sample.df (subset (myDataSetl, label = "Rootkit"),
classSize ) ,sample.df(subset (myDataSetl, label = "Spyware"),

classSize))

Listing 10 R code snippet: Make class sizes equal via oversampling and undersampling

NB model for malware classification: In order to fitting a NB model to this
data set, we want to represent the presence or absence of a certain static/dynamic
feature in the malware. Hence we code our data set as shown in Listing 11.

convert counts <— function(x) {#define a function to code the data
x <— ifelse(x > 0, "Y", "N")

myData <— data.frame(apply (myData|,1:1934], MARGIN = 2,convert
counts) ,myData[1935] ) #apply above function across columns

Listing 11 R code snippet: Code the data set

Creating training and validation data sets: Even in this example we’re going
to follow the convention of 80:20 samples ratio to partition the data set to the training
and validation sets. Listing 12 uses the createDataPartition function in caret package
for this purpose.

library (caret)

tr_index <— createDataPartition (myData$label , p=0.80, list=FALSE)
trainSet <— myData|tr index,|

testSet <— myData[—tr index,]|

Listing 12 R code snippet: Partition the data

Training a NB classifier and making predictions: Now we will train our NB
classifier using the above trainSet and apply it to the test set. Listing 13 provides the
necessary code for this purpose.

library (el1071)

NBclassfier <— naiveBayes(trainSet[,1:1934], trainSet$label)
testPrediction <— predict (NBclassfier, testSet[,1:1934])
confusionMatrix (testPrediction , testSet$label)

Listing 13 R code snippet: Train a NB classifier and make predictions

## Confusion Matrix and Statistics

#H#

#it Reference

## Prediction Backdoor OtherType Rootkit Spyware Trojan Unknown Worm
##  Backdoor 86 13 15 14 0 0 0
##  OtherType 0 50 2 4 0 0 0
##  Rootkit 13 24 68 21 0 0 0
##  Spyware 1 13 15 61 0 0 0
## Trojan 0 0 0 0 0 0 0
##  Unknown 0 0 0 0 0 0 0
##  Worm 0 0 0 0 0 0 0
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#i#

## Overall Statistics

#i#

## Accuracy : 0.6625

#i# 95% CI : (0.6138, 0.7087)

## No Information Rate : 0.25

#i#t P-Value [Acc > NIR] : < 2.2e-16

##

#it Kappa : 0.55

#i#

## Mcnemar’s Test P-Value : NA

#i#t

## Statistics by Class:

#i#t

## Class: Backdoor Class: OtherType Class: Rootkit
## Sensitivity 0.8600 0.5000 0.6800
## Specificity 0.8600 0.9800 0.8067
## Pos Pred Value 0.6719 0.8929 0.5397
## Neg Pred Value 0.9485 0.8547 0.8832
## Prevalence 0.2500 0.2500 0.2500
## Detection Rate 0.2150 0.1250 0.1700
## Detection Prevalence 0.3200 0.1400 0.3150
## Balanced Accuracy 0.8600 0.7400 0.7433
#i# Class: Spyware Class: Trojan Class: Unknown

## Sensitivity 0.6100 NA NA

## Specificity 0.9033 1 1

## Pos Pred Value 0.6778 NA NA

## Neg Pred Value 0.8742 NA NA

## Prevalence 0.2500 0 0

## Detection Rate 0.1525 0 0

## Detection Prevalence 0.2250 0 0

## Balanced Accuracy 0.7567 NA NA

# Class: Worm

## Sensitivity NA

## Specificity 1

## Pos Pred Value NA

## Neg Pred Value NA

## Prevalence 0

## Detection Rate 0

## Detection Prevalence 0

## Balanced Accuracy NA

So far in this example we have trained and tested a NB model for the first subset
(myDataSet1) in our original data set. Readers can repeat the same approach by fitting
a NB model for the second subset (myDataSet2) and then combining both models using
an ensemble method.
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6.4 Example 4 - Bayesian Poisoning Attack

The purpose of this code snippet is to demonstrate to the reader how a NB classifier
is vulnerable to Bayesian poisoning attacks. Bayesian poisoning is a technique used
by email spammers to compromise the effectiveness of Bayesian-based spam filters by
adding non-spamming (ham) like words at the end of a spam message. The aim of
spammers is to hamper the probability calculation associated with the NB algorithm.
In other words, this increases the type II probability. In hypothesis testing, type II error
is referred to as “false negative”, which means not rejecting the null hypothesis when it
is false. Therefore, as a result of the Bayesian poisoning, the spammers make the spam
filtering system to consider a non-legitimate message a legitimate one.

For the implementation of this code, we use the R language and a data set which can
be accessed via https://www.kaggle.com/venky73/spam-mails-dataset. This data
set consists of a collection of spam and non-spam email messages. For the purpose
of demonstration, we will first develop a NB based spam filter using the above email
repository (raw emails) and then conduct a Bayesian poisoning attack to circumvent the
security control. To this end, we poison the test data into the spam filter and bypass the
security control. Listings 14-19 present code snippets required to develop a NB based
spam filter while Listings 20-24 present the necessary steps to perform the Bayesian
poisoning attack. As in other examples, comments are only provided for the new syntax.
Readers should refer to the previous Listings for comments on the repeating syntax.

library (tm) #load the necessary libraries

library (wordcloud)

library (el071)

library (gmodels)

library (SnowballC)

library (caret)

myData <— read.csv("spam ham dataset.csv'")
myData<—myData[,c("label" "text")] # select two columns
myData$text<—substring (myData$text ,9) #remove constant words

Listing 14 R code snippet: Load the data and remove constant words

Code snippet in Listing 14 loads the data set to the R environment, and remove
the terms like “Subject:”. There is no point of keeping common constant terms like
“Subject:” as they don’t have discrimination power, since appearing in both ham and
spam messages.

spamMsg<—subset (myData, label=="spam")

hamMsg<—subset (myData, label=—"ham")

wordcloud (spamMsg$text , scale=c(4,.5) ,min. freq=5) #plot if the word
appears more than 5 times in spam messages

wordcloud (hamMsg$text ,scale=c(4,.5) ,min. freq=>5) #plot if the word
apperas more than 5 times in the ham messages

Listing 15 R code snippet: Produce word clouds

Listing 15 checks the word distributions (a.k.a. document terms) in each class. For
this purpose we use word clouds in which the size of the word is proportional to its
frequency in the text. If the word clouds are different, we can conclude that words that
appear frequently in spam differ from words that appear in ham. Therefore, we can use
words as features when training a NB model to classify spam from ham.
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Fig. 2 Word cloud outputs: ham (left) and spam (right) messages

As we can see in word cloud outputs (see figure , the term distributions differ
between spams and hams, so we can train an ML model (in our case, NB) by using
words as features.

Building a NB based spam filter: Listings 16-19 contain the necessary steps
to train a spam filter using the above data set. To do this, we first need to create
a Document Term Matrix (DTM) - a matrix that describes the frequency of terms
that appear in every message in our collection, and then use it to train and test our
models. DTM is usually a sparse matrix with most of its entries are filled with zeros.
Therefore, in this example, we will only use terms whose frequency is >= 5, so that we
can significantly reduce the number of columns in our DTM matrix, which would lead
to a manageable size DTM when training our NB model.

myCorpus <— VCorpus(VectorSource (myData$text)) # create a corpus
myDIM <— DocumentTermMatrix (myCorpus, control = list (

tolower=T,

removeNumbers=T,

removePunctuation=T,

stopwords = T,

stem=T

freqWords <— findFreqTerms (myDIM,5) #remove low frequent words
myDIM <— myDIM] , freqWords |

Listing 16 R code snippet: Create a Document Term Matrix (DTM)

Once DTM is ready, we need to split it into train and test sets. We’re going to
use usual 80:20 partitioning for this purpose. Listing 17 provides code snippet for this
purpose.

tr_index <— createDataPartition (myData$label , p=0.80, list=FALSE)
trainSet <— myData[tr index,]
testSet <— myData[—tr index,|

Listing 17 R code snippet: Partition the data set

As the NB model is created with DTM entries, we should find the corresponding
DTM entries for the data in training and test sets. Then we want to represent the
presence or absence of a particular word (feature) in a particular message so that we
code our DTM entries as shown in Listing 18.
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myDTMTrain <— myDIM|[tr index ,| #corresponding DIM entries for
training

myDTMTest <— myDIM[—tr_index ,| #corresponding DIM entries for
testing

convert counts <— function(x) { #function to code DIM entries
x <— ifelse(x > 0, "T", "F")

myDTMTrainNew <— apply (myDTMTrain, MARGIN = 2,convert counts) #apply
above function across columns
myDTMTestNew <— apply (myDTMTest, MARGIN = 2, convert counts)

Listing 18 R code snippet: Partition the DTM and coding its entries

Finally, Listing 19 train and test the NB based spam filter.

NBbasedSpamFilter <— naiveBayes (myDTMTrainNew, trainSet$label)
testPredictMsgLabel <— predict (NBbasedSpamFilter, myDTMTestNew)
confusionMatrix (testPredictMsgLabel , testSet$label, positive = "spam

H)

Listing 19 R code snippet: Train and test a NB based spam filter

## Confusion Matrix and Statistics

##

#t Reference

## Prediction ham spam

## ham 704 67

## spam 30 232

##

## Accuracy : 0.9061

## 95% CI : (0.8867, 0.9232)
## No Information Rate : 0.7106
##t P-Value [Acc > NIR] : < 2.2e-16
##

## Kappa : 0.763

##

## Mcnemar’s Test P-Value : 0.0002569
##

#it Sensitivity : 0.7759

## Specificity : 0.9591

## Pos Pred Value : 0.8855

## Neg Pred Value : 0.9131

## Prevalence : 0.2894

#t Detection Rate : 0.2246

## Detection Prevalence : 0.2536

## Balanced Accuracy : 0.8675

##

## ’Positive’ Class : spam

##
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As can be seen in the confusion matrix, the accuracy of the fitted model is 90.61%,
and 67 false negatives are also generated. In the rest of this example, we will attempt
to increase the false negative number by poisoning the test cases.

Poisoning test data: Let’s poison the test data to bypass the above spam filter.
To this end, randomly selected non-spam messages are amended at the end of spam
messages in our test data set as shown in Listing 20.

spamTestCases <— subset (testSet ,label=—"spam") #select spams in test
cases

hamTestCases <— subset(testSet, label="ham") #select ham in test
cases

hamMsgInmyData<—subset (myData, label=—="ham") #select ham in our

original data set

hamMsg2ammend<—hamMsgInmyData [ sample (nrow (hamMsgInmyData) , nrow (
spamTestCases)), | #select number of ham messages equal to the
spam messages in test cases

spamTestCases$text <—paste (spamTestCases$text ,hamMsg2ammend$text ,sep
= " ") #amend selected ham at the end of spams in test cases

poisTestData<—rbind (hamTestCases ,spamTestCases) #create the poisoned
test set

myData|—tr index ,|<—poisTestData #replace the test entries in
original data set with poisoned test cases

Listing 20 R code snippet: Poisoning test data

Create the new DTM with poisoned data and select high frequency words. Note
that we have to create the DTM and split it as we did with original data in the above.
Listing 21 provides the necessary code for this task.

myCorpusPoisoned <— VCorpus(VectorSource (myData$text))
myDTMPoisoned <— DocumentTermMatrix (myCorpusPoisoned, control = list
(

tolower=T,

removeNumbers=T,

removePunctuation=T,

stopwords = T,

stem=T

freqWords <— findFreqTerms (myDTMPoisoned,5)

myDTMPoisoned <— myDTMPoisoned |, freqWords |

myDTMTestPoisoned <— myDTMPoisoned|—tr index ,] #new test set, note
that we don’t need a training set as we use the same model
created in Listing 19

myDTMTestNewPoisoned <— apply (myDTMTestPoisoned, MARGIN = 2, convert
_counts) #use the same convert counts function, we code our
poisoned test DIM as did in Listing 18 above.

Listing 21 R code snippet: Create a test DTM with poisoned test data

Listing 22 predicts labels for poisoned test cases, note that we use the same NB
model (NBbasedSpamFilter) trained in Listing 19.

poisonedTestPredictMsgLabel <— predict (NBbasedSpamFilter,
myDTMTestNewPoisoned)

confusionMatrix (poisonedTestPredictMsgLabel , testSet$label , positive
= "spam")

Listing 22 R code snippet: Predict labels for poisoned test data
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## Confusion Matrix and Statistics

##

## Reference

## Prediction ham spam

## ham 641 256

#it spam 93 43

##

## Accuracy : 0.6621
## 95% CI : (0.6324, 0.691)
## No Information Rate : 0.7106
## P-Value [Acc > NIR] : 0.9997
##

## Kappa : 0.0204
##

## Mcnemar’s Test P-Value : <2e-16
##

## Sensitivity : 0.14381
## Specificity : 0.87330
## Pos Pred Value : 0.31618
#i# Neg Pred Value : 0.71460
## Prevalence : 0.28945
## Detection Rate : 0.04163
## Detection Prevalence : 0.13166
#i# Balanced Accuracy : 0.50855
##

## ’Positive’ Class : spam
##

As you can see in the confusion matrix, the misclassification of spam as ham (false
negative) increases from 67 to 256. By adding more ham-like words to the end of
spam messages, the attacker can further increase the false negative number. As you
see in this example, identifying Bayesian poisoning is imperative. The impact of the
misclassification depends on the domain of the data set. Especially, applications in
medicine and security, the costs of false alarms (specially false negatives) would be very
high. Therefore, special care should be given to mitigate the risk of Bayesian poisoning
attacks in your NB application development.

7 Conclusion

This article discussed novel applications of Naves Bayes in variety of different fields. It
is evident that various novel applications in variety of fields including software defect
prediction, health, cyber security, and education. Naive Bayes performs exceptionally
well compared to other classifiers when the assumptions are satisfied. Furthermore, NB
shows the robustness due to the higher level of accuracy even with the violation of
assumptions. As the literature indicates, NB performs better than the other counterparts
under the same circumstances. Empirical research findings suggest that for data sets in
smaller size, NB outperforms other alternative techniques. It is evident that most of
natural occurring data may not follow the assumptions of NB. In situations like these,
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one can stick in to NB due to its robustness. Alternatively, one can use the variations of
NB such as semi-naive Bayes and weighted naive Bayes as the classification techniques.
Finally, we hope the reader of this manuscript will be able to gather both theoretical
and practical aspects of topics of NB and Bayesian poisoning.
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