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Abstract. Use of blended learning system in a structured manner results in achiev-

ing higher order skills in cognitive domain. However, there is a need to quantify skills 

improvements as the students go through lower level skills to higher level skills. To 

ascertain this progression, it is necessary to develop a mathematical model of learning 

which can indicate the effectiveness of teaching and learning methods on skills im-

provement. In this study, mathematical learning model has been developed, which 

predicts the students’ knowledge, depending on the amount of instruction they re-

ceive. It is expected that this model will enable development of direct correlation 

between teaching and learning methods, and the skills level attained by the students. 

The model is applied for different categories of learning. Parameters in the model are 

determined after least-square fitting has been applied on observed student learning 

data. 

 

 

1 Introduction 

 

Teaching and learning processes that are being followed globally by 

education providers consist of conventional face-to-face approach. The 

globalisation, along with the interdependence of various economies, 

has resulted in creating an extra dimension to the higher order of skills 

requirements. Hence, there is a need to develop new teaching and learn-

ing methodologies that can comply with the ever increasing demands of 

the industry, regarding the skills of engineering students. 

 

The present paper summarizes existing learning models, and proposes 

an integrated connectedness model (ICM) that is applicable to indicate 

and compare the effectiveness of different teaching and learning meth-

ods on skills improvement. The model is validated by using data avail-

able in the literature to quantify the usefulness of the teaching and 

learning process in cognitive learning [1]. The old version of levels of 
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taxonomy was assumed in the study cited, and in the validation of the 

proposed model as well. Then, cognitive learning evaluation, assuming 

the new version of levels of taxonomy, through the ICM have been car-

ried out and presented in this paper. 
 

 

2       Connectedness Model 

 

Real learning usually involves some learning of both (i) students learn 

by memorization, and that learning is independent of prior knowledge, 

and (ii) students learn new knowledge by constructing an association 

between new and some prior knowledge. The first is known as Pure 

Memory Model while the latter is called Simple Connectedness Model. 

Pritchard et al [2] developed a model which interpolates between, and 

even beyond, these two models. This model is called Connectedness 

Model, and the parameter that establishes the relationship between the 

pure models is called the connectedness parameter, denoted by γ. Con-

nectedness Model can be effectively used for all skill levels of cogni-

tive domain. This model determines students’ knowledge KT as a func-

tion of the amount of teaching or instruction i. Thus, KT represents the 

fraction of the material that is known by the student, and another pa-

rameter, AT represents what is unknown. KT and AT vary between 0 and 

1. Initially KT = 0, because students do not know anything about the 

subject to be learnt, or in other words, the subject knowledge is un-

known, i.e. AT = 1. Students are supposed to learn the subject com-

pletely by the end of the course, hence KT = 1 and AT = 0 at the end of 

the teaching period in the case of an ideal student. The governing dif-

ferential equation takes the following form: 

 
      

  
             (       )                      (1) 

 

The model involves a differential equation for dAT/di, i.e. for the rate of 

change of unknown knowledge. The equations are based on AT, be-

cause given instructions are generally related to what students do not 

know. However, once the solution for AT is found, KT can easily be 

obtained. The parameter that expresses the probability that something 

taught sticks in the student’s mind is the sticking coefficient δ, hence 

δcon and δmem are the sticking coefficients from the pure memory and 



simple connectedness models. The solution for the known knowledge 

can be written as follows: 

 

      
                        

                                                        
 (2) 

 

where students’ knowledge, during the teaching period, depends on 

their initial knowledge KT0, which can be obtained by pre-instruction 

test scores, and can be used as input in the model. The model is equiva-

lent to the pure memory model for γ=0, and it is equivalent to the sim-

ple connect model for γ=1. Pure memory model is particularly applica-

ble to lowest skills in cognitive domain. The equation for the rate of 

change of unknown knowledge can be written as follows: 

 
      

  
                                         (3) 

 

The solution for the known knowledge is obtained as follows: 
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3       Development of an Integrated Connectedness Model (ICM) 

for different learning domains 

 

The learning domains are distinguished in cognitive learning as 

knowledge, comprehension, application, analysis, synthesis, and evalu-

ation. The proposed model relates the test results of any domain to the 

test results of the preceding domain. The model assumes identical im-

portance to each of these domains, i.e. the total knowledge that may be 

gained in each domain takes 1/6 of the total knowledge in the subject 

that students learn. The initial knowledge for the knowledge test is as-

sumed to be KT0,kn=0, i.e. students do not know anything about the sub-

ject that they are about to learn. The knowledge gained in the 

knowledge domain is 1/6 of the total knowledge in the subject, and it is 

essential for gaining knowledge in the comprehension domain. There-

fore, the initial knowledge for the comprehension test is KT0,co=1/6 

KT,kn(iins), where KT,kn(iins) is the known knowledge in the knowledge 

domain at the end of the learning period. The initial knowledge can be 

determined similarly for all the other domains, ending with the initial 



knowledge for evaluation, which is KT0,ev=5/6 KT,sy(iins) with KT,sy(iins) 

being the known knowledge in the synthesis domain at the end of learn-

ing period. 

 

The model also assumes that learning in knowledge domain is inde-

pendent of prior knowledge, learning in the evaluation domain is based 

purely on association between prior and new knowledge, whereas 

learning in the other domains is a combination of both types. First, an 

appropriate model has to be chosen, and then the sticking coefficients 

δmem and δcon as well as the connectedness parameter γ have to be de-

termined. In practice, since the sticking coefficients always appear in 

the products δi in the models, the products δmemi and δconi are deter-

mined and used in further calculations. These parameters are deter-

mined by fitting the solution in the chosen model on test data. Conse-

quently, the combined model is constructed as follows (see figure 1). 

Learning in the knowledge domain is modelled by the pure memory 

model, and the product δmemi is determined. Learning in the evaluation 

domain is modelled by the simple connect model, and the product δconi 

is determined. Then, the same sticking coefficients δmem and δcon in the 

connectedness model are used to simulate learning in the remaining 

four domains, and the connectedness parameter β is determined for 

each of the four domains. 

 

 
Fig. 1. Flowchart of combined model for cognitive learning 

 

4       Teaching/Learning Groups 

 

45 students were selected from the three mechanical engineering spe-

cialisations i.e. Automotive, Industrial Maintenance and Manufacturing 

Engineering. The students have then been divided into three separate 



groups. Each group consists of 15 students (5 students from each spe-

cialization), where the students have almost similar abilities. The de-

tails of these groups are as follows: 

 

Group 1:  Demonstration under the watchful eyes of the instructor 

(Teacher Centred, Interactive Dependent) 

 

Teachers in this group serve as the centre of knowledge in both theory 

and practical sessions, and are primarily responsible for directing the 

learning process. During assessment phase (student’s participation and 

demonstrations), teachers were focused almost exclusively on what had 

the students learned. Students were viewed as empty vessels, whereas 

the teacher imparts learning into these vessels within a given time peri-

od. Furthermore, learning was viewed as additive process [3]. 

 

Group 2: Students learn using computers and the teacher facilitates the 

process (Student Centred, Interactive Independent). 

 

In this method, students were considered as knowledgeable and they 

can bring about engagement and personal responsibility in learning [4]. 

This supports the idea of knowledge construction by learners through 

their use of prior knowledge and experience, which assists them to 

shape meaning and acquire new knowledge. The mechanical engineer-

ing teachers, during their preparation, observed that in constructive 

learning students participated in class and they may have a wide range 

of previous learning experiences, which enable teachers to select teach-

ing/learning methods at higher level of skills for optimal learning [5].  

 

Group 3: Project Base Group, work with and without supervision (In-

teractive) 

 

In this collaborative-interactive approach the lecturer provides computer 

tutorials including videos and animations, which show the students how 

to use tutorial instructions in order to warm-up to the lecture with the 

use of tutorial tasks and questions [6-7]. The lecturer intends to use two 

ways of communication between the teacher and the students, combined 

with active learning to increases understanding. The method was estab-

lished in cooperative environment where students work together. It al-

lows learning to continue after the class session. Students teach each 



other. The most effective way to learn is to actually teach, because this 

requires the highest degree of mental processing (high level of thinking 

skills) and greatly increases the likelihood that long-term memories will 

be produced. The tutorial was provided with motivational animations to 

stimulate team work, and it has a greater likelihood of being incorpo-

rated into long-term memory. 

 

5        Cognitive Skills Evaluation Techniques 

 

The learner should achieve proficiency in lower levels of cognition, and 

then progress through higher levels. This analysis is similar to the one 

carried out by Zywno [8] for electrical engineering students.  In me-

chanical engineering modules, various levels have been identified as per 

the developed model of cognitive level skills related to the knowledge 

(recall data), comprehension (understand information), application (ap-

plying knowledge to the new situation), analysis (separating information 

into part of better understanding), evaluating (justify a stand or decision 

by appraising, arguing, defending, judging, selecting, supporting, valu-

ing and evaluating) and creating (create new product or point of view by 

assembling, constructing, creating, designing, developing and formulat-

ing idea). 

 

Lecturer marked the students during maintenance and production of six 

tasks in Automotive, Industrial Maintenance and Manufacturing. The 

quality of students’ results for each activity is determined by comparing 

their products with the checklist and awarding learning ability indicators 

for each student and task. The learning ability indicator shows how well 

the student has performed a certain task by comparing his/her applica-

tion results with the checklist. Figure 2a shows the correlation between 

learning ability indicator (average marks obtained in the examination 

before entering this course) and the marks obtained for the three groups 

in the examination of the knowledge cognition level. Most groups show 

considerable improvement in knowledge but final marks for group 2 

students are uniformly distributed between 80% and 95%. This indi-

cates that student-centred approach has increased the level of achieve-

ment of learning outcomes for this heterogeneous group of students. 

The final marks for group 3 are spread between 65% and 85%. Hence, 

the interactive teaching and learning methods have produced a slight 

increase in the final marks but not too much like group 2.  



Figure 2b presents the variation of students’ marks in the examination 

of analysis cognition level. The final marks for group 2 are concentrated 

in the interval 75% to 95% so their level of achievement is the same as 

in previous cases (knowledge, comprehension, application). Further-

more, the students’ final marks from group 1 are in the interval 55% to 

80%. Hence, the teacher-centred approach does not increase the marks 

significantly at analysis cognition level. Figure 2c presents the variation 

of students’ marks in the examination of evaluation cognition level. The 

students were evaluated for their abilities in analyzing and evaluating 

the machining operation and procedure and selecting, preparing tools 

and equipment and using measuring instruments facilities to calculate 

missing dimensions of engineering application. This also requires stu-

dents to be capable of analyzing and verifying the manufacturing opera-

tions, assembling different parts to create prototype in final shape, de-

signing a new shape and modifying one shape to another shape, arrang-

ing machine tools, materials and instruments for final manufacture and 

engineering maintenance preparation of parts and tools. The students’ 

final marks from group 1 are clustered around the interval 55% to 65%. 

The teacher-centered approach does not enable the development of ap-

propriate students’ skills for evaluation cognitive level. Furthermore, 

students from group 1 obtained the lowest marks in comparison to those 

from group 2. Group 3 show less marks than the previous cases 

(knowledge, comprehension, application and analyses). This shows that 

the combination students-centred approached is far more useful in de-

livering learning outcomes at higher level of developed cognition skills. 

 

 
 

Fig. 2a. Comparison between 

teaching methods in Knowledge 

cognition level 

Fig. 2b. Comparison between 

teaching methods in Analysis cog-

nition level 



 

Fig. 2c. Comparison between teaching methods in Evaluation cogni-

tion level 

 

6         Cognitive Learning Evaluation through ICM 

 

The combined model is applied here for the case of imparting cognitive 

learning skills through blended learning system. The procedure de-

scribed in Section 3 is followed for different learning domains. The 

learning domains for this case are the following: knowledge, compre-

hension, application, analysis, evaluation and creating. The product 

δmemi for the knowledge domain as well as the product δconi for the cre-

ating domain were determined to be 1.33 and 0.57 for Group 1, 2.01 

and 0.71 for Group 2 and 1.45 and 0.49 for Group 3 respectively. First, 

the product δmemi was determined from the pure memory model only, 

using the test results obtained for the knowledge domain and assuming 

no initial knowledge. Then, the product δconi was calculated from the 

simple connect model using the test results obtained for the creating 

domain and using test results obtained for the evaluation domain as 

input. The dependence of post-instruction knowledge on initial 

knowledge in the creating domain is shown in figure 3 together with 

the test data used for fitting. 

 

Once the sticking coefficients are known, the connectedness parameter 

was also determined for each learning domain, and results are summa-

rised in table 1. The connectedness parameter increases for the different 

domains from knowledge to creating, because the more advanced the 

students’ learning in the subject, the more association they can con-

struct between new and prior knowledge. The values that did not follow 

this trend are the connectedness parameters for the comprehension and 

analysis domains for Group 3. The value for the comprehension domain 

is negative, which means that the normalized gain slightly decreases 



with increasing pre-instruction test scores. This can happen when stu-

dents with higher pre-instruction scores exert less effort, whereas stu-

dents with lower pre-instruction scores make more effort to improve 

their results [2]. Furthermore, this group was not exposed to a very 

structured learning environment as instructor’s input was least with this 

group. This might have caused skills development that cannot be ex-

plained from the model that has been used. The trends observed justify 

the choice of the model. If students learnt by memorization only or by 

constructing only association between new and some prior knowledge, 

then the values of the connectedness parameters would be close to 0 or 

1, respectively. 

 

 
Fig. 3. Curve fitting on data for creating (simple connect model) 

 

Table 1. Connectedness parameters for all the learning domains in 

cognitive learning 

 Group 1 Group 2 Group 3 

Knowledge 0 0 0 

Comprehension –0.02 0.12 –0.37 

Application 0.12 0.33 0.25 

Analysis 0.64 0.48 0.18 

Evaluation 0.94 0.66 1.03 

Creating 1 1 1 

 

The post-instruction knowledge as a function of initial knowledge is 

shown in figure 4. The normalized gains for the knowledge domain and 
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for the creating domain are obtained from the pure memory model and 

the simple connected model, respectively, and they are shown in figure 

5. The normalized gains are calculated for the remaining four learning 

domains by using the connectedness model, and they are presented in 

figure 6. It can be seen that the knowledge as well as the normalized 

gain is always highest for Group 2. The knowledge and the normalised 

gain are lowest for Group 1 in the knowledge, comprehension and 

analysis domains, whereas these are lowest for Group 3 for the applica-

tion, evaluation and creating domains. Thus, the teaching method ap-

plied for Group 3 is more effective at lower level skills, but the method 

applied for Group 1 is more effective at higher level skills. However, 

the most effective teaching method in all the cases is the one that has 

been applied with Group 2. 

 

  
                             (a)                                             (b) 

 Fig. 4. Curve fitting on data (connectedness model) (a) comprehen-

sion (b) application (c) analysis (d) evaluation 

  
                             (a)                                              (b) 

Fig. 5. Normalized gain for (a) knowledge domain (pure memory 

model) (b) creating domain (simple connect model) 
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                             (a)                                                   (b) 

Fig. 6. Normalized gain for (a) comprehension (b) evaluation do-

mains (connectedness model) 

 

 

Conclusions 

 

Mathematical models have been developed in the present study that 

quantifies the learning process at microscopic level within cognitive 

skills domains. In contrast to the macroscopic (conventional) evaluation 

methods used throughout the world, these models provides a much 

clearer picture of the teaching/learning taking place at different skills’ 

levels enabling a better control over the quality of teaching and learning 

process. These models can be further modified in order to apply them 

to other fields of education. 

 

The above study has clearly indicated that integrated connectedness 

model (ICM) represents skills development in cognitive skills domains 

fairly well. ICM can be used to monitor effectiveness of the teaching 

and learning strategies through well-developed assessment strategies. It 

can also dictate development of teaching and learning materials by 

providing important feedback on the effectiveness. 
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