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Abstract—This work presents a critical analysis of the suitabil-
ity of surrogate models for finite element method application. A
case study of a finite element method (FEM) structural problem
was selected in order to test the performance of surrogate
algorithms. A simple design of experiments (DoE) approach,
based on 1D kernel density estimations, is employed to construct
a representative pool of real FEM simulations, which becomes the
dataset for five different surrogate models, two linear and three
non-linear, whose most relevant hyperparameters were tuned
(model selection). Results in a real bushing case study show
that surrogate models can accurately mimic FEM simulations
outcomes, in this case four types of stiffnesses (axial, radial,
torsion, and cardanic).

Index Terms—Design of experiments, Surrogate model, Finite
element method, Bushing, Support vector regression, Random
Forest

I. INTRODUCTION

The finite element method (FEM) is the most popular
numerical method to solve partial differential equations. The
method is based on simplifying a large, complex and continu-
ous problem into an approximate composed of simple, discrete
small parts called finite elements [1]. The architecture of the
FEM formulation is based in a system of algebraic equations
where each finite element is assembled into a large system
that models the behaviour of the original problem. FEM
applications are widespread, ranging from structural problems
[2], to more advance ones such as the fluid-structure iteration
(FSD [3] [4].

However, one major drawback of the FEM is that the exe-
cution time needed to solve the partial differential equations
is large. In an industrial application framework, usually lots
of different try-outs are needed to obtain a result that meets
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all requirements, i.e. variations of the original problem are
introduced in order to evaluate the impact of existing variables.
Therefore, the lead time to obtain a desired result increases
considerably and this directly translates into an increased
final product cost. Furthermore, the optimal result usually is
never achieved as the time needed to obtain it is frequently
prohibitive.

Machine learning could be defined as the field of study that
gives computers the ability to learn without being explicitly
programmed (Arthur Samuel, 1959). Every machine learning
model, in its own particular way, will learn underlying rela-
tions inside the data it has access to, without being guided
by any external influence, apart from the definition of the
hyperparameters that might define the model itself. In fact,
many machine learning algorithms (such as Takagi-Sugeno
fuzzy systems [5] or artificial neural networks among others)
are universal function approximators [6] [7] [8], meaning that
they would eventually asymptotically mimic the output of any
existing function. Therefore, if we understand the FEM as
a function, whose output is the approximate solution of the
partial differential equations, we can be sure that with enough
data and a possibly asymptotically infinite complex model we
would be able to exactly replicate the FEM. The key question
is if we are able to relax the needed data and the complexity
level in such a way that the loss in accuracy of our model is
low enough to get high quality approximations of the FEM’s
output in a reasonable time frame (surrogate model).

In this work, a suspension bushing component is employed
as a case study of a general FEM problem to analyze the
suitability of surrogate models. Bushings are usually employed
in vehicles suspension systems as anti-vibration components.
They are made of rubber and are enclosed with two concentric
metallic parts that are press-fitted from the inner and outer
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Fig. 1. Example of a bushing component where a cross section of the rubber
part is shown. Adapted figure from [12].

rings (see Fig. 1). The overall structural behavior of bushings is
difficult to predict, as the rubber is a hyper-elastic material that
undergoes large strains. Due to the aforementioned problem,
a large number of different trials are needed to fine-tune the
design of each bushing and this has associated impact in the
cost of the product. Bushing design using FEM has been
considered in the literature [9] [10] [11]. In this context, a
surrogate model might bring a fast alternative to the typical
FEM-based procedure, accelerating considerably the lead-time
in the design phase.

Therefore, this work presents a critical analysis of the
suitability of surrogate models for FEM application, using
the bushing component as case study. For that, the rest of
the paper is organized as follows. In Section II the finite
element analysis is theoretically described, and the specific
bushing case study used in the experiments put into context.
Next, Section III defines surrogate models, as well as our
approach combining the design of experiments (DoE) with
machine learning surrogate models for FEM simulations.
Then, Section IV shows the application of DoE to our problem
(IV-A), presents the considered types of machine learning
algorithms for regression problems (IV-B), and fully describes
the whole experimentation performed, including the variants
of the algorithms used, the hyperparameters to be tuned for
each of them, and the exact way to train and evaluate the
developed surrogate models (IV-C). Furthermore, Section V
presents the results achieved and a complete discussion about
them. Last, Section VI states the conclusions and propose
possible promising future lines.

II. FINITE ELEMENT PROCEDURE

Finite element analysis is frequently divided into three
blocks. The first one is the so called pre-processing where
the geometry, meshing and the boundary conditions among
others are defined. Usually this process is done manually by
the engineer in a commercial finite element software suit such
as Abaqus FEA. The second block is the processing, where
the partial differential equations are solved. Finally, the last
block is the post-processing where the results are analysed by
the engineer.

Pre—processing Processing Post—processing
Define inputs: Solve partial Outpu.ts:
Geometry > differential » stress field
Loads equations Displacements

Fig. 2. Finite element method procedure.

In order to develop a surrogate model, an automatic pre-
and post- process needs to be developed in order to perform
hundreds or thousands of numerical simulations. In this work,
a parametric scripting was developed in Python where the
whole finite element process was automatised (see Fig. 2). This
way, numerous different geometries and loading conditions can
be tested, in order to generate the needed data to construct the
surrogate models.

Subplots (a)-(d) from Fig. 3 illustrate the four different FEM
simulations we performed in accordance with the description
in [12]: from theses simulations, the stiffness of each case (k)
can be easily calculated from the applied force (/') or moment
(M) vs. displacement (§) or rotation () plot (see Fig. 3e):

k= F/6, (1)
k= M/o. )

Therefore, the above mentioned parametric FEM procedure
can be used to generate the raw data needed to develop a
surrogate model, i.e. relating the inputs (geometry, material
constitutive model, applied forces among others) with the
outputs (stiffness values).

III. EFFICIENT DESIGN OF SURROGATE MODELS

Formally, a surrogate model could be defined as a meta-
model that is capable of mimicking, as closely as possible, the
behavior of the original model that is being surrogated while
being computationally cheaper to evaluate. Computational cost
could be understood in several ways, e.g. as computational
resources or time. In engineering, surrogate models are used
for approximating an outcome of interest in case this is time-
consuming, expensive, or somehow difficult to be measured.

As mentioned before, in the presence of enough data and
having theoretically unlimited memory, computational power
and time, any function, including FEM simulations, could be
approximated by certain machine learning models. Our aim is
to (i) first perform a Design of Experiments, in order to get
a small but diverse pool of simulations, complete enough for
surrogate modelling to be feasible on them. Then, (ii) tune the
hyperparameters of promising regression modeling techniques
to find low complexity final surrogate models that are precise
enough that their outcomes can be safely used as replacements
for FEM simulations.

The objective of the DoE is to end up with a real FEM
simulations dataset, as small as possible, containing enough
informative power. In order to construct our dataset, we
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Fig. 4. Example of feasible (left) and unfeasible (right) bushing configura-
tions.

assume that we have a catalog with several parametrizations
(inputs for the FEM) of interest. In this way, we can know
the actual geometric and loading requirements and also have
a general view of the type of FEM simulations that are
being performed. We must take into account that the FEM
simulations could stop without completing all forces ranges
for numerical reasons, mainly in cases of high non-linearity.
In such cases, despite the surrogate model would provide a
prediction, that prediction must be considered as uncertain.
Moreover, the catalog is assumed to contain information about
the catalog control variables, i.e. features whose values must
be fixed because they are static design limitations (e.g. the
outer and inner rings radii in Fig. 1), so that we have access
to the current design limitations with a double purpose: (i)
polishing current designs, and (ii) being prepared for potential
new requirements. Consequently, ranges for each feature in the
parametrization are implicitly provided. Then, we would try to
cover, with certain density, the hypercube in the feature space
given by them. As the hypercube is a Cartesian product of
feature ranges, where each feature contributes independently,
we also proceed in a feature-wise way (i.e. without control
variables). Nevertheless, there might be certain feature combi-
nations that are physically unfeasible, enforcing the definition
of design constraints. Fig. 4 shows examples of one feasible
(left) and one unfeasible (right) configuration.

Instead of filling the feasible regions of the hypercube
uniformly, we perform a 1D kernel density estimation, using
a Gaussian kernel, for each feature in the catalog. Then,
we adapt the density of the coverage of the dataset to be
constructed according to the estimated density. Notice that the
Gaussian kernel guaranties a minimum coverage in the whole
range, as it is always positive. Nevertheless, as sometimes that
minimum coverage could be too small, a threshold for the
minimum coverage could be imposed. Fig. 5 and Fig. 6 show
two real example of the KDE for two of the variables of torsion
data, one discrete geometric feature, and one continuous force
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Fig. 5. Real example of 1D kernel density estimation with a Gaussian

kernel. Due to the limited amount of unique values, the real density could
be calculated, and is shown in grey. It corresponds to a geometric discrete
variable of torsion data, whose values are not depicted. Nevertheless, the true
density allows us to deduce that their positions correspond to 5 concrete zones
of influence identified by the peaks. The values in the horizontal axis have
been modified for confidentiality issues.
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Fig. 6. Real example of 1D kernel density estimation with a Gaussian kernel.
It corresponds to a continuous force variable of torsion data. The black
crosses are the 3131 values (placed horizontally), distributed vertically for
visualization purposes. The values in the horizontal axis have been modified
for confidentiality issues.

feature.

IV. EXPERIMENTAL SETUP
A. Design of experiments

The reference catalog we will employ has six different
designs, defined by six pairs of the two control variables,
external radius and internal radius, corresponding to the outer
and inner rings’ radii respectively. For each of them, we have
several feature-level design constrains, that limit the possible
values of both the geometric and force variables. The real

examples in Fig. 5 and Fig. 6 illustrate graphically the type
of available information. Using general product-level design
constraints, and extracting the extreme values and densities of
all variables, we have generated an adequate grid of possible
configurations to be simulated for constructing our dataset,
keeping a coverage of the whole configuration space that
reflects the actual coverage of the configurations catalog, and
respects the minimum general coverage threshold.

The complete dataset can not be shown for confidentiality
issues. Table I shows a summary of the generated datasets,
one for each of the four stiffness targets of interest. Our aim
is to be able to predict the FEM output stiffness measures, not
only when considering minor alterations to the already known
six product types, but also for hypothetical new types whose
control variables are reasonably similar to the known ones.

TABLE I
DATASETS DESCRIPTION
Stiffness | Designs | CtrlVars GeomVars Forces | Samples
Axial 6 2 6 1 1080
Radial 6 2 6 1 1340
Torsion 6 2 6 1 3131
Cardanic 6 2 6 1 1799

B. Regression algorithms

Among all possible regression algorithms we could have
considered, the ones we have chosen are support vector
regression (linear and non-linear variants), random forest (non-
linear), and generalized linear models with elastic net (linear
with regularization). These algorithms have, at the same time,
relatively low complexity (compared to highly complex algo-
rithms such as deep learning approaches) and potentially high
predictive capabilities (flexibility).

a) Support Vector Regression: Support vector machines
(SVM) [13] is a well-known classification method, based on
separating the classes employing hyper-planes is such way
that the separation is maximized (optimization problem). This
separation is not performed in the original input space but
in a kernel-transformed space, i.e. the kernel trick [14]. The
samples that are closest to the decision boundary, thus defining
the hyper-planes, are called support vectors. Depending on the
type of kernel function employed, the resulting model could be
linear or non-linear. Depending on both the kernel and how the
underlying optimization problem is defined, there are several
SVM versions. The same philosophy is kept for regression,
adapting the idea of maximum separation to numerical instead
of categorical output data. The usual kernels are linear, and
Gaussian radial basis function (RBF) defined by means of a
parameter called «y. The regular SVM algorithm employs a cost
parameter, meant for controlling the errors in the definition
of the hyper-planes, and v-SVM [15] substitutes the cost by
a parameter v that is able to limit the amount of support
vectors and thus the complexity of the model. The adaptation
of support vector machines for regression problems is called
support vector regression (SVR) [16].



b) Generalized Linear Models with Elastic Net: Gen-
eralized linear models [17] are a generalization of ordinary
linear regression that provides flexibility in the sense that the
distribution of the errors is not necessarily assumed to be
normal, as with ordinary linear regression. The combination
of the elastic net with generalized linear models (GLMnet)
is a regression algorithm based on generalized least squares
that uses cyclical coordinate descent [18] in a path-wise
fashion [19] in order to select the optimum elasticity in the
regularization via the elastic net. The elasticity is provided
by the possibility of controlling, by means of a convex linear
combination, how close we are to Lasso (L1 penalty) or ridge
regression (L2 penalty) using a single parameter, called «, so
that a 0 value means pure L2, a value 1 means pure L1, and a
value between them leads to a combined penalty. This allows
an efficient exploitation of the regularization benefits. The
amount of regularization that is performed is also controlled,
by means of the regularization parameter \.

c) Random Forest: Random forest (RF) algorithm [20]
is a stochastic ensemble method that performs a bagging
strategy by combining bootstrapping (with replacement) and
aggregation of decision trees (weak learners). The procedure
relies on training a preset number n of trees, with the
particularity of using only a subpopulation of the available
samples, chosen by bootstrapping, for training. By default,
the size of the subpopulations is the same as the one of the
original population, thus the expectation is that 68.27% of the
samples will be included in each subpopulation [21], being the
rest simply replicates. Moreover, at each node of each tree,
only a subset of the original features is randomly selected for
deciding how to split the current branch into two subbranches.
By default, VM are used, where M is the number of fea-
tures. Given that decision trees tend to overfit as their depth
increases, RF attempts to tackle this phenomenon by limiting
the depth of each tree through a parameter. When the model is
applied to a new sample for validation, the decision is obtained
by combining all individual n tree decisions by aggregation
(majority voting in classification problems, and averaging in
regression problems).

C. Experimental scheme

In the experiments, we have tried to exploit the capabilities
of each of the regression algorithms by fine tunning their
most relevant hyperparameters. In order to validate the
models, the data has been split into train (75%) and test
data (25% of the total data samples). As randomness is
involved in the split process, we conducted several repetitions
to diminish the influence of chance. We can report that the
obtained results are very stable as there is low variance when
experimenting on different training-test random splits of the
total data. The chosen strategy for model selection for each
algorithm has been best performance over a grid search (GS)
combined with 10-folds cross validation (CV). In grid search
all possible combinations of all the selected options for the
parameters in the grid are tried. Then, for each combination,
CV is performed, consisting on partitioning the data into 10

subsets and train and test 10 models using sequentially one
fold for testing and the other 9 for training.

The parameter grids defined for each algorithm are the
following:

a) Linear support vector regression (LSVR): The hyper-
parameters to be tuned and the considered options for them are
the cost (C) and the zero-loss margin (¢), which is a threshold
under which errors are neglected. The grid, comprising 66
combinations, is defined by the options:

Ce{27%273 ... 2%}

(3
e € {0.001,0.005,0.01,0.05,0.1,0.15} .

Despite LSVR being deterministic by definition, the order of
the samples might influence the result because of the way the
calculations are performed. Therefore, we have run ten times
each GS CV with different sample shuffling trials, averaging
the scores. Therefore the total amount of trials is 660.

b) Support vector regression (SVR): The hyperparame-
ters and options considered are the cost (C') and the zero loss
margin (e), with the same options as in LSVR, and the
parameter that defines the RBF kernel. The final parameter
search comprises 660 combinations, considering the options
for ~:

ye {271 271 2%}, 4)

¢) Nu support vector regression (NuSVR): The hyperpa-
rameters and options considered are C' and -y, with the same
options as in SVR, and the v that controls the final amount
of support vectors. The grid comprises 396 combinations,
considering the options for v:

v € {0.1,0.3,0.5,0.7,0.9,1.0} . (5)

d) Generalized linear models with elastic net (GLMnet):
In this case, we have selected the previously described «
and A\ parameters, controlling respectively the intensity of
the regularization and the penalty type balance. The grid,
comprising 610 combinations, is defined by

o €{0.01}U{0.05,0.1,...,1.0} U{1.1,1.2,...,5.0}

A €{0.1,0.2,...,0.9,1.0}.
(6)
e) Random forest: For RF, the hyperparameters we have
tuned are meant for providing learning capacity through
horizontal complexity increase (number of trees, n), and for
controlling the risk of overfitting by limiting the vertical com-
plexity (maximum tree depth, mazDepth), and by limiting
the internal information per node (maximum seen features,
mazFeat). The grid comprises 64 combinations, given by

n € {10,50, 100, 150, 200, 500, 750, 1000}

maxDepth € {c0,20,10,5} (7

mazxFeat € {\/M,M},



where M is the total amount of features. There are also certain
stochastic processes inside the RF algorithm, concretely in the
random selection of the features to use in each splitting node
of the trees, so we have run ten times each GS CV, averaging
the scores. Therefore the total amount of trials is 640. Both
here and in LSVR, the results of the repetitions are pretty
similar, thus 10 times seems to be a safe amount.

V. RESULTS

As mentioned in Section IV-A (Table I), there are 6 different
designs for each stiffness. It makes sense to consider two
scenarios where one of the existing designs is improved, or
a new design is introduced in the catalog. For the latter, it
makes more sense to ignore the control variables in the sur-
rogate model definition, focusing on the modifiable features.
In any case, the new control variables should not be in the
extrapolation zones of the control variables space if we want
our predictive surrogate model to be precise.

Tables I and III show the results, with R? as quality
score, using all features and all features excluding the control
variables respectively. For each algorithm and each stiffness,
we have a double line containing both the CV score (average
R? over the 10 CV test folds), and the test R? score on
the 25% of reserved (i.e., unseen by the CV) test data, for
the best hyperparameters in the corresponding algorithm grid.
In the case of the algorithms with repetitions due to their
stochastic content (LSVR and RF), the results on the table
are the averages of the 10 repetitions. Finally, the last column
shows the average scores across all four stiffness targets. The
scores that are statistically significantly worse than the best for
each stiffness (marked in bold), using Wilcoxon signed-rank
test [22], are marked with a star.

TABLE II
RESULTS INCLUDING THE 2 CONTROL VARIABLES.

Stiffness

Axial Radial | Torsion | Cardan. Aver.

LSVR CV | .83411* | .6029* .1631* .4559* 5140
Test | .83703* | .5719* .1642* .3949* 4920

SVR CvV 99997 9987 .1322* .8282 7398
Test 99995 9997 1478 .6793* .7067*

NuSVR CV 99997 9987 .1348* .8283 7404
Test 99994 9997 .1439* .6786* 7055

GLMnet CV | .84308* | .6982* .3933* 5127 .6077
Test | .84693* | .6780* .3649* 4504* 5851

RF Cv 99942 9983 9976 9746 9925
Test 99967 19993 9985 9882 9964

First, for the case including all features, we have to point
out the problems of all three SVR variants to converge in
torsion stiffness, even diminishing the tolerance parameter to
allow the algorithms to run longer towards convergence. The
other two algorithms, GLMnet and RF, show very different
performances, due to linearity. The same differences between
linear and non-linear methods can be observed for the other
stiffness targets: non-linear methods generally perform much
better than linear ones. This is expected, because of the
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Fig. 7. Prediction error plot (left) and residual plots with distribution
histograms (right) for axial stiffness prediction including control variables.
Both linear methods on one hand and all three non-linear methods on the
other behave similarly. Therefore, we show just the best examples of linear
(GLMnet), and non-linear (NuSVR) surrogate models.

exponential behavior of the stiffness (see Fig. 3(e)). Both non-
linear SVR methods always behave very similarly in light of
the similarities between their hyperparameters grids.

Comparing CV and test results across all cases, there is
strong empirical evidence that the results are not impacted by
overfitting as the test scores are not much worse than the CV
(train) ones. In general, RF displays the best performance as:
(i) it achieves near-best results on the axial and radial stiffness
targets given that the difference of top performing SVR and
NuSVR is not statistically significant, (ii) it outperforms by a
large margin all other algorithms on the torsion and cardanic
stiffness targets (see Tables II and III).

As an illustrative example, Fig. 7 shows both the prediction
error plot, and residual plots with distribution histograms, for
radial stiffness prediction including control variables. Only the
best linear and non-linear methods are depicted. We can clearly
see that the linear method, GLMnet in Fig. 7(a), suffers when
predicting the extreme values, being much worse in the high
values, that are known to be associated with more non-linear
effects — see Fig. 3(e). On the contrary, the non-linear method,
NuSVR in 7(b), is stable in the whole target range, being able
to capture the non-linear essence of the stiffness very well.

In the second case, without using the control variables,
the results are generally similar, but with slightly worse R?
scores. A possible reason, could be that now the algorithms
do not have the chance to differentiate between different
catalog designs and behave as if they are making predictions
based only on samples originating from the same design.



TABLE III
RESULTS EXCLUDING THE 2 CONTROL VARIABLES.

Stiffness
Axial Radial | Torsion | Cardan. | Aver.
LSVR CvV | .7375* | .5310* .0049* 3216* .3987
Test | .7273* | .5162* .0138* .2960* .3883
SVR Cv 9193 .8587 .0461* .6441* 6171
Test .8798 9198 .0624* .6574* .6299
NuSVR CV 9195 .8587 .0817* .6478* .6269
Test .8801 9198 .0922* .6585* 6377
GLMnet CV | .7735* | .5993* 2663* 4163* 5139
Test 1557 .5974* .2488* .3732* 4938
RF Cv 9021 9320 9915 .8689 9236
Test .8706 9500 9904 9348 9365

This assumption is validated by the higher accuracy of RF
predictions since the internal mechanics of this method are
well suited to this scenario: in RF, each individual decision
tree operates by considering a randomly sub-sampled feature
set and making predictions inside this reduced search space.

In Fig. 8 we can also see the prediction error plots (left) and
residual plots with distribution histograms (right) for cardanic
stiffness when not using control variables in the model. We
can see that all the models with the exception of RF suffer
a bit in the zones that are close to the range limits of the
target. This effect is more clearly visible in the case of linear
models. Notice that the range of the vertical axis in the case of
the residual plot for RF is much narrower, thus the residuals
are much lower than they seem to be when visually compared
to the rest of the methods. These differences in plot ranges
have been considered necessary for the sake of visibility in
each individual plot. Based on these observations, we would
conclude that RF is the adequate algorithm for incorporating
new designs to the catalog.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we have analyzed the suitability of machine
learning surrogate models that can be used to speed-up the
design of bushing components. Our analysis focuses on light-
weight models both in terms of the amount of data, optimized
by means of DoE, and the complexity, avoiding too complex
models (Occam’s razor) that would need a lot of data and
computational power, such as deep learning approaches. The
main motivation for this is that light-weight surrogate models
are more amenable for future on-the-fly hybridization with
single and multi-objective design space optimization strategies
[23].

The proposed kernel-grounded DoE procedure allowed us
to generate the required datasets for each stiffness output in a
reasonable amount of time. These datasets were proven to be
sufficient for obtaining very good predictions of the outcomes
of the FEM simulations using light-weight models, as random
forests. Those surrogate models were capable of, not only
predicting the impact of enforcing different variations to the
geometries of the existing six types of catalog configurations,
but also of predicting the performance of potentially new
geometries. This fact was checked by training models ignoring
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Fig. 8. Prediction error plot (left) and residual plots with distribution
histograms (right) for cardanic stiffness prediction without control variables.



the catalog control variables. Nevertheless, this goodness-of-
fit should only be extrapolated to configurations in which the
control variables are within the ranges of the six configurations
in the dataset.

As future research lines, we could try to enhance the
DoE by also focusing on general density estimators. This
could theoretically allow us to decrease the volume of data
without loosing predictive power. Apart from this, the best
performing model in our experiments, random forest, is known
to be one of the algorithms that is being widely studied by
the explainable artificial intelligence community and this is
reflected by both novel theoretical contributions [24] [25]
and an increasing application to in industrial scenarios [26].
Thus, by further exploring the underlying reasons behind the
presently reported superior RF predictions, we could generate
wide-interest RF modeling insights.

Finally, if we understand the design process as an opti-
mization problem in which several objectives/requisites have
to be optimized in parallel, then multiobjective evolutionary
algorithms could be employed. Such algorithms are known
to need many objective functions calculations, being FEM
simulations included. Surrogate models could be the tool that
makes the multiobjective optimization problem solvable in an
acceptable time.
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