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A gaussian particle swarm optimized particle filter estimation method, along with the second-order 

resistance-capacitance model, is proposed for the state of charge estimation of lithium-ion battery in 

electric vehicles. Based on the particle filter method, it exploits the strong optimality-seeking ability of 

the particle swarm algorithm, suppressing algorithm degradation and particle impoverishment by 

improving the importance distribution. This method also introduces normally distributed decay inertia 

weights to enhance the global search capability of the particle swarm optimization algorithm, which 

improves the convergence of this estimation method. As can be known from the experimental results 

that the proposed method has stronger robustness and higher filter efficiency with the estimation error 

steadily maintained within 0.89% in the constant current discharge experiment. This method is 

insensitive to the initial amount and distribution of particles, achieving adaptive and stable tracking in 

the state of charge for lithium-ion batteries. 

 

 

Keywords: Lithium-ion Battery; State of Charge; Particle Filter; Particle Swarm Optimization; 
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1. INTRODUCTION 

As the environmental issues have become more and more prominent in recent years, clean energy 

has greatly promoted the development of the new energy vehicle industry. The lithium-ion battery, with 

its incomparable advantages, has become the core power source for Electric Vehicles (EVs) [1]. The 

State of Charge (SOC) is an important monitoring parameter to the battery management system, which 

determines its safety and emerge distribution [3,4]. 

Since lithium-ion batteries exhibit a high degree of nonlinearity during actual use [5,6], it is 

unlikely to be able to directly monitor their SOC, and there is currently no mature and well-developed 
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SOC estimation method for the nonlinear system [7]. Nevertheless, Particle Filter (PF) is gradually 

becoming a research hotspot because of its unique advantage in handling nonlinear systems without the 

constraints of assumptions such as noise and models [8,9]. In PF algorithm, however, the problem of 

algorithm degradation [10] and sample depletion [11] can easily occur, resulting in large SOC estimation 

errors for lithium-ion batteries. In recent years, researchers have proposed many improved algorithms 

for SOC estimation to deal with the shortcomings of PF algorithm [12-24]. By improving the proposed 

distribution function, in reference [25-28], Extended Kalman Filter (EKF) and Unscented Kalman Filter 

(UKF) are incorporated into the PF algorithm to generate the proposed distribution function, which 

adaptively adjusts the particle weights according to the measured noise characteristics to achieve high-

precision tracking effect. In reference [19], the estimation accuracy is improved by incorporating an 

adaptive genetic algorithm into the resampling process, which uses crossover and variation to reduce the 

number of resamples. In reference [29], a multi-strategy differential operation with the help of the cuckoo 

algorithm improves particle diversity and thus suppresses the problem of the algorithm. In addition, 

researchers also have incorporated artificial immunization [30], bat algorithms [31], and fish 

optimization algorithms [32] into the traditional resampling process of PF algorithms to improve filtering 

efficiency and state estimation accuracy, which achieves good tracking results as well. 

In order to suppress the algorithmic degradation of the PF and improve the estimation accuracy 

of the SOC, a novel GPSO-PF method is proposed to realize the state monitoring of lithium-ion battery 

under complex current variation conditions. It mainly uses PSO to guide particles in the low likelihood 

region of PF moving towards the high likelihood region, and then iteratively updates the velocity and 

position of the particles with normally distributed decaying inertia weights. The particles are then filtered 

by resampling after updating, which obtains the minimum mean square estimation of the SOC. Finally, 

combined with the analysis of the influencing factors, it is experimentally verified that the improved 

iterative calculation algorithm can effectively improve the accuracy and robustness of lithium-ion 

battery. 

 

 

2. MATHEMATICAL ANALYSIS 

2.1. Equivalent circuit model 

In the use of lithium-ion batteries, an accurate model is crucial for SOC estimation because of its 

complex internal physicochemical reactions. The electrochemical model obtains mathematical 

expressions of the battery's kinetic properties by experimentally analyzing its mechanism. Although the 

model is highly accurate and can represent the battery kinetic properties well, the model structure is 

complex and has many parameters, which is not suitable for real-time system [33]. While the Equivalent 

Circuit Model (ECM) stands out for its simple structure and fast implementation [34]. Considering the 

accuracy and complexity of the model [35], a more accurate and intuitive 2nd-order RC equivalent 

circuit model [36] is used in this paper to achieve real-time SOC estimation. Its model structure is shown 

in Figure 1. 
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Figure 1. 2nd-order RC equivalent circuit model 

 

As shown in the Figure 1, 𝑈𝑂𝐶 represents the open circuit voltage of the battery. 𝐼𝐿 represents the 

inflow current value of the lithium-ion battery connected to the external circuit. 𝑅0 represents the ohmic 

resistance of the battery, which characterizes the voltage drop at the moment of battery charging and 

discharging. The RC parallel circuit consisting of 𝑅𝑝1  polarization resistance and 𝐶𝑝1  polarization 

capacitance characterizes the electrochemical polarization effect. The RC parallel circuit consisting of 

𝑅𝑝2 diffusion resistance and 𝐶𝑝2 diffusion capacitance characterizes the differential polarization effect. 

According Kirchhoff's law, the relationship between each component in the model and SOC can then be 

described. 

 

2.2. State-space mathematical description 

The state-space equation is the basis for SOC estimation. Set the current direction to be positive 

when the lithium-ion battery is discharged. According to the equivalent circuit model as shown in Figure 

1, combined with Kirchhoff's law can be obtained formula (1): 

0 1 2U ( ) ( ) ( ) ( ) ( ) ( )L OC p pt U t i t R t U t U t   
 

(1) 

 When charging and discharging the lithium-ion battery, the RC parallel circuit is used to 

characterize the polarization effect, which is essentially represented by the zero state and zero input 

response process of the RC parallel circuit. The formula calculating the voltage 𝑈𝑝1 and 𝑈𝑝2 of the RC 

parallel circuits is shown in formula (2). 

1 1

1 1 1

2 2

2 2 2

p p

p p p

p p

p p p

dU U i
=-

dt R C C

dU U i
=-

dt R C C


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

 

  

(2) 

Then, based on the definition of the battery's SOC, also known as the Ampere hour (Ah) integral 

method, the remaining capacity of the battery is calculated by accumulating the incoming and outgoing 

charges in real time. The ratio between the remaining capacity and the nominal capacity of the battery 

is the SOC. Its mathematical expression is shown in formula (3). 



Int. J. Electrochem. Sci., Vol. 15, 2020 

  

10635 

t 0
0

1
( )  

t

N

SOC SOC I t dt
C

 

(3) 

 𝑆𝑂𝐶0 is the initial charge of the battery, 𝑆𝑂𝐶𝑡 is the remaining charge of the battery at time t; 

η is the charge/discharge efficiency; CN is the nominal capacity of the battery at room temperature; I(t) 

is the discharge current. According to formula (3), let 𝜏 to be the time constant of the RC circuit, where 

𝜏=RC. Then combine equations (1), (2) and (3), the state and observation equations of the lithium-ion 

battery are obtained after discretization, as shown in formula (4) and formula (5). 
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, ( , ) 1, 2, 0L k OC SOC k p k p k kU U U U R I   
 (5) 

Ts is the integral sampling time interval. The UOC（SOC,k） is the open circuit voltage in the model 

at time k. Each parameter in the model is a function of the SOC, which is identified by HPPC experiments. 

The mainstream estimation methods for lithium-ion batteries are based on the Ah integral method. 

However, the Ah integral method depends on the initial SOC value and the calculation of the power 

consumption, which is known from formula (3), in terms of noise, temperature, instantaneous high 

current and power outages, it is not possible to accurately estimate SOC in practice. In this paper, the 

GPSO method is used to improve the accuracy and robustness of the SOC estimation by addressing the 

nonlinearity and the effect of the initial SOC values of lithium-ion batteries. 

 

 

 

3. GPSO-PF BASED SOC ESTIMATION 

3.1. PF based SOC estimation  

The PF algorithm is an algorithm that implements Recursive Bayesian Theorem (RBT) based on 

a non-parametric Monte Carlo (MN) method simulation [37]. The basic idea is to use a large number of 

discrete random samples to approximate the probability function of the system's random variables 

according to the Law of Large Numbers (LOLN), substituting the sample mean value for the integral 

operation. It firstly generates a set of random particles p(𝑥0) through the empirical distribution of the 

system state, and obtains the a priori probability density distribution p(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 ) after importance 

sampling. The weights 𝑤𝑘
𝑖  and positions of each particle are then continuously adjusted according to the 

Bayesian filtering principle. Combined with the latest observations 𝑦𝑘
𝑖 , the true prior probability density 

of the state variables is approximated by resampling. The PF flowchart is shown in Figure 2. 
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Figure 2. PF algorithm flowchart 

 

In the traditional PF algorithm, its estimation accuracy is often affected by the initial particle 

distribution of the system. And in the resampling process, it selects and replicates high-weighted 

particles multiple times, while ignoring low-weighted particles, resulting in the problem of impoverished 

particle diversity and algorithmic degradation arises after several resamplings [38]. In order to alleviate 

the algorithm degradation and improve the robustness and accuracy of SOC estimation for nonlinear 

systems, the PSO algorithm is introduced to improve the resampling process of PF algorithm. 

 

3.2. Gaussian particle swarm optimization algorithm theory 

The particle swarm algorithm is an intelligent optimization algorithm [39] that simulates the 

movement of a bird flock. The basic idea is to iteratively update the position of the particle swarm 

according to the position, velocity and fitness between each particle, to achieve the purpose of 

optimization. Wherein, the position of the particle determines the direction of the particle motion and 

the velocity magnitude determines the distance of the particle motion. In the basic particle swarm 

optimization algorithm, as the particles move towards the optimal solution, the phenomenon of local 

non-convergence tends to occur [40]. In order to improve the convergence of PSO, a GPSO method is 

adopted in this paper that uses Gaussian function distribution, localization and other features to adjust 

the inertia weights nonlinearly, and its convergence is better than the PSO algorithm [41], the 

mathematical expression of which is shown in equation (6) and equation (7). 

| | ( ) | | ( )i i i

k best k best kv rand p x Rand g x   
 

(6) 

i i i

k k kx x v 
 

(7) 

where 𝑣𝑘
𝑖  indicates the speed of movement and 𝑥𝑘

𝑖  indicates the position of movement. 𝑝𝑏𝑒𝑠𝑡 is 
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the particle individual optimum of the iteration of particles, and 𝑔𝑏𝑒𝑠𝑡 is the particle set optimum. |𝑟𝑎𝑛𝑑| 

and |𝑅𝑎𝑛𝑑| are positive Gaussian distributed random numbers. In this paper, the sampling process of PF 

was optimized using PSO and the resampling process is shown in Figure 3. 
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Figure 3. Sampling process diagram of particle swarm optimized particle filter 

 

 

In the particle swarm algorithm, the offset occurs whenever there is a difference in fitness 

between the particles. If the set of particles is concentrated near the true value, this offset will instead 

reduce the diversity of particles. After applying the GPSO algorithm, the particles with less fitness move 

over a larger distance, and the particles with more fitness move over a smaller distance. And keeping a 

certain relative relationship between the particles, iterations into the update are repeated to guide the 

particles towards the state true value with a higher probability of occurrence. The region moves, and if 

the optimization threshold is reached, or if the set of particles is close to the real state, the optimization 

is stopped. 

 

3.3. GPSO-PF based SOC estimation iterate calculation 

First, the equation of the state-space of the model is obtained on the basis of the constructed 

equivalent circuit model. An initial set of particles is generated from the empirical distribution, 

importance sampling is performed by the state transfer equation, and then the Gaussian particle 

population is optimized for the importance distribution and resampled when the effective particle number 

threshold is not met. The process is as Figure 4. 
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Figure 4. Framework of particle filtering algorithm for particle swarm optimization 

 

The combination of the equation (4) and the equation (5) uses [SOC ; 𝑈𝑝1;  𝑈𝑝2] as the state 

variable 𝑥𝑘  and 𝑈𝐿  as the observation variable 𝑦𝑘 . The equations of state and observation of the 

algorithm can be expressed as the equation (8). 

1( , , )

( , , )

x x

y x






k k k k

k k k k

f u Q

h u R
 

(8) 

Where 𝑄𝑘 is process noise; 𝑅𝑘 is observation noise; 𝑢𝑘 is current input. 𝑓(𝑥𝑘−1, 𝑢𝑘，𝑄𝑘) is the 

state transfer equation; ℎ(𝑥𝑘, 𝑢𝑘，𝑅𝑘) is the observational equation. The specific algorithm steps for 

the SOC state estimation of lithium-ion batteries are as follows. 

（1） Define the fitness function. 

2

| 1

1
it[ ] exp[ (y ) ]

2

i

k k k

k

F i y
R

  

 
(9) 

𝑦𝑘  is the true end voltage measurement at moment k; 𝑦𝑘|𝑘−1
𝑖  is the algorithm prediction 

measurement. 

（2） Initialization: k=0. 

M particles {𝒙0
𝑖 }

𝑖=1

𝑀
 in the state space according to the empirical condition distribution of the 

system state vector p(𝑥0), with all particle weights of {𝑤0
𝑖 }

𝑖=1

𝑀
=

1

𝑀
. 

（3） Algorithmic loop process: make k=1, 2. . . 

① M particles are randomly selected from the importance density function, which is the state 

transfer probability density function. 

1 1( | , ) ( | ), 1,2, Mx x x x x   …,i i i i i

k k k k k kq y p i
 

(10) 

② Particle swarm optimization. 

a) The Fit[i] of each particle is obtained by calculating the fit value of each particle from the 

equation (9). 

b) Compare each particle with its fit value Fit[i] and individual pole value 𝑝𝑏𝑒𝑠𝑡(𝑖), and if 

Fit[i] >𝑝𝑏𝑒𝑠𝑡(𝑖), then replace 𝑝𝑏𝑒𝑠𝑡(𝑖) with Fit[i]. 

c) Compare each particle with its fit value Fit[i] and global pole value 𝑔𝑏𝑒𝑠𝑡(𝑖), and if Fit[i] > 

𝑔𝑏𝑒𝑠𝑡(𝑖), then replace 𝑔𝑏𝑒𝑠𝑡(𝑖) with Fit[i]. 

d) Update particle position 𝒙𝑘
𝑖  and velocity 𝒗𝑘

𝑖  according to equation (6) and equation (7). 
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e) Whether the particle set is distributed and concentrated or whether the maximum number 

of iterations is reached, otherwise a) is returned. 

③ Calculation and normalization of particle weights. 

1 1 | 1( | ) ( ), 1,2 Mx      …,i i i i i

k k k k k k k kw w p y w p y y i
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(12) 

④ Resampling to calculate effective sample size. 

2

1

1/ ( )
M

i

eff k

i

N w
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(13) 

⑤ Status estimate. 

1

x x

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M

i i
k k k

i

w
^

 

(14) 

⑥ Determine if the cycle is over, and if it is not over k=k+1, continue the cycle. 

 

 

4. EXPERIMENTAL ANALYSIS 

4.1. Battery testing platform 

The test platform for the battery is shown in Figure 5, which consists of the following 

components. (1) Battery. The positive and negative poles of the battery are connected separately through 

the battery test system, with black being the negative pole and red being the positive pole. (2) Host 

computer. The battery charge/discharge multiplier, duration and other process conditions are set by the 

host computer. (3) The battery test system NEWARE BTS-4000, which has 16 charge and discharge 

ports, transmits battery information to the host computer in real time during testing. (4) Thermostatic 

box. The temperature control panel sets specific operating temperature conditions for the battery and is 

suitable for experiments with temperature requirements. 

 

Temperature setting 
panel

Battery Test System 
NEWARE BTS-4000

Temperature Chamber 
TT-5166TH-7

Host computer

Power Connect

TCP/IP

 
 

Figure 5. Battery test bench 
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During the experimental operation, the lithium-ion battery is first connected to the battery test 

system and then placed in the thermostat. The battery's operating steps, temperature and duration are set 

by the host computer. At the end of the experiment, the voltage, current, and charge/discharge multiplier 

of the battery can be seen in the history of the host computer during the whole operation. 

 

4.2. Experimental validation and analysis 

4.2.1. Parameter Recognition Experiment 

In order to obtain the 2nd-order RC model parameters as a function of SOC, the lithium-

phosphate battery LFP50Ah was tested at room temperature at 25°C by the BTS-4000 [42]. The 

experimental procedure was set up as follows: first, discharge the battery at 1C (50A current) for 10 

seconds and then leave it alone for 10 minutes. Then, discharge the battery at 1C for 5 minutes and 50 

seconds, and then leave it for 40 minutes. Cycle the above two steps until the SOC is 0. The HPPC 

experimental current and voltage diagram as shown in Figure 6. 
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Figure 6. HPPC test  

 

 

Figure 6 (a) shows the voltage and current variation curves through the HPPC test. Figure 6 (b) 

shows the pulse discharge voltage curve at SOC=0.9. After 40 minutes of resting, of which the battery 

is almost stable internally, the voltage 𝑈0 is the open circuit voltage 𝑈𝑂𝐶 [43]. The fit function of 𝑈𝑂𝐶 is 

the equation (15), a polynomial function relationship between the model parameters and the SOC was 

fitted by MATLAB, with a goodness-of-fit greater than 0.999. 
9 8 7 6

5 4 3 2

( ) 535.7 233.5 431.3 446.4

290.7 126.6 371.2 67.6

5.7 3.6

        

       

  

OCU SOC SOC SOC SOC SOC

SOC SOC SOC SOC

SOC

 (15) 

At the moment of 𝑡1 and 𝑡2, it is the voltage mutation at the end of the lithium-ion battery caused 

by the ohmic resistance 𝑅0, which is calculated as shown in formula (16). According to the polynomial 

fitting, the fitting function of 𝑅0 can be obtained as shown by the equation (17). 
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SOC SOC

 (17) 

In the period from 𝑡1 to 𝑡2, the terminal voltage of the lithium-ion battery slowly decreases from 

𝑈1 to 𝑈2. This is the process by which the discharge current charges the polarized capacitor, which is 

the zero-state response phase of the dual RC circuit. The terminal voltage equation is shown by the 

equation (18). 

1 2

0 1 2
1 1( ) ( )

t t

L OC p p
U U R I e R I e R I

 
 

       (18) 

In the above equation, τ represents the time constant, τ=RC. The battery terminal voltages from 

𝑡1 to 𝑡2 are collected by MATLAB, and then the values of 𝑅𝑝1, 𝑅𝑝2, 𝐶𝑝1 and 𝐶𝑝2 are identified by 

cftool toolbox. After the above steps, the values of each parameter under different SOC can be 

identified [44], as shown in  

 

Table 1. 

 

 

Table 1. Parameter identification values under different SOC states 

 

SOC/100% 𝑈𝑂𝐶/V 𝑅0/mΩ 𝐶𝑝1/kF 𝐶𝑝2/𝑘𝐹 𝑅𝑝1/mΩ 𝑅𝑝2/mΩ 

1.0 4.184 1.147 55.628 28.413 0.332 0.254 

0.9 4.052 1.136 47.944 25.724 0.148 0.276 

0.8 3.936 1.141 32.500 34.599 0.244 0.227 

0.7 3.830 1.147 55.448 22.099 0.138 0.346 

0.6 3.724 1.151 46.985 25.260 0.158 0.295 

0.5 3.649 1.174 42.297 45.495 0.169 0.157 

0.4 3.615 1.202 58.314 36.132 0.129 0.208 

0.3 3.589 1.236 49.825 32.671 0.137 0.209 

0.2 3.537 1.306 4.687 24.426 0.079 0.571 

 

 

Similarly, the equations of each parameter regarding SOC are fitted by MATLAB and brought 

into the 2-order model to obtain the observed and measured equations for the SOC of the lithium-ion 

battery model. The fitted parameter equations are shown in equations (19), (20), (21) and (22). 
7 6 5 4

1

3 2

( ) 0.0442 0.1728 0.2511 0.1641

0.0458 0.0057 0.00173 7.20

        

      

pR SOC SOC SOC SOC SOC

SOC SOC SOC

 (19) 

8 7 6 5

2

4 3 2

( ) 0.5429 2.8102 6.0693 7.1011

4.8842 2.0010 0.4701 0.0566

0.0027

       

       



pR SOC SOC SOC SOC SOC

SOC SOC SOC SOC
 (20) 

6 7 6 6 7 5

1

7 4 6 3 5 2

5 4

( ) 8.6976 10 2.9999 10 3.8799 10

2.2329 10 4.7136 10 2.3046 10

1.1586 10 1.7701 10

        

        

    

pC SOC SOC SOC SOC

SOC SOC SOC

SOC

 (21) 

8 8 8 7 9 6

2

9 5 9 4 8 3

8 2 7 5

( ) 1.9877 10 9.8351 10 2.0425 10

2.3101 10 1.5431 10 6.1685 10

1.4211 10 1.6887 10 1.7701 10

         

        

       

pC SOC SOC SOC SOC

SOC SOC SOC

SOC SOC

 (22) 
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4.2.2. Constant current exchanger experiment 

To verify the superiority of GPSO-PF, this paper utilizes CPU Intel(R) Celeron(R) and memory 

1.10Ghz of Windows 10 system for simulation experiment verification. Based on the equivalence circuit 

model, the SOC value obtained by the Ah integral method is used as the reference value according to 

the state transfer equation (4) and the observation equation (5). In order to illustrate how well the 

algorithm tracks at arbitrary initial values and under system mutations, a random mutation in the current 

was added to the moments after 1500 s of the constant current discharge experiment. The initial state of 

PF and PSO-PF algorithm is set to [0.5 0 0 0]. The sampling interval is 0.1s. The number of particles is 

50. The effective particle threshold is 2Neff/3. The number of iterations of the particle cluster 

optimization algorithm is 20, and when the maximum number of iterations or the optimal solution of the 

particle cluster is updated 10 times, it is determined that the particle set is distributed near the real state 

and exit optimization. Figure 7 (a) and Figure 7 (b) show the true reference state distribution and 

resampling particle set distribution of PF and PSO algorithms, respectively. SOC-1 is the standard SOC 

value. SOC-2 is the estimated SOC value by PF. SOC-3 is the estimated SOC value by PSO-PF. 

 

 
( a ) Particle distribution by PF 

 
( b ) Particle distribution by GPSO-PF 

 

Figure 7. Particle distribution after resampling by two algorithms 

 

 

As can be seen from Figure 7 (a), the algorithm degradation of PF is evident. The particle 

diversity of the PF algorithm is low and there is no dispersion of particles that can represent the true state 

value again through iteration, with almost only three particles involved in the estimation process of the 

system state, resulting in a gradual increase in the estimation error over time. However, as can be seen 

from Figure 7 (b) that the overall particle set of the GPSO-PF algorithm is uniformly distributed in the 

same interval. There are still particles that can participate in the expression as the state of the system 

changes abruptly with the change. The improved algorithm is able to drive the particle set to the high 

likelihood region. To illustrate the superiority of the improved algorithm, EKF, UKF and PF are used as 

comparisons in the constant current discharge experiments. Figure 8(a) shows the SOC estimates of the 

PSO algorithm and other algorithms, and Figure 8(b) shows the SOC errors of these algorithms. SOC-4 

is the estimated SOC value by EKF. SOC-5 is the estimated SOC value by UKF. 
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( a ) SOC estimation 
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( b ) SOC estimation error 

 

Figure 8. SOC estimation and its error via different algorithms  

 

 

ERROR-1 is the estimation error of PSO-PF. ERROR-2 is the estimation error of PF. ERROR-

3 is the estimation error of EKF. ERROR-4 is the estimation error of UKF. It can be seen from Figure 

8(a) that the improved algorithm has a higher estimation accuracy and convergence speed, which is not 

affected by the number of particles, the initial value of the system and the state mutations. Compared to 

other algorithms, PF leads to over-frequent resampling and severe algorithm degradation due to the small 

number of particles and large initial value deviations, which makes it impossible to track the system 

state. Although EKF is able to gradually converge to the standard SOC values, it is the slowest to 

converge, and after adding the amount of state mutations, the error accumulates [45] and does not 

converge in later tracking. UKF has higher convergence speed than PF, yet it cannot be used in non-

Gaussian distributed systems [46] and cannot track the real state of the SOC later. As can be seen in 

Figure 8(b), the error of the improved algorithm has been maintained at a smooth level with a maximum 

estimated deviation of less than 0.89%. Despite the fact that EKF can achieve good tracking results in 

the early stages, the error accumulates more and more in the later stages when the system state changes 

abruptly. PF has higher accuracy than UKF, but neither algorithm can accurately track the SOC state at 

the later stage. 
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4.2.3. Dynamic current experiment 

To further verify the filtering performance of the improved PSO-PF algorithm and to simulate 

the SOC estimation under frequent charge/discharge conditions, a dynamic variable current test was 

performed on the lithium-ion battery. The experimental procedure was set up as follows: first, discharge 

the battery at 0.5C for 6 minutes and stand still for 3 minutes. And then, in each dynamic cycle test, 

charge the battery at 0.5C for 1 minute and stand still for 3 minutes. After that discharge the battery at 

1C for 6 minutes and leave it alone for 3 minutes. Go through several cycles until the battery reaches the 

protection voltage. The current is shown in Figure 9. 

 

 
 

Figure 9. Dynamic current diagram 

 

 

The initial settings are the same as for the constant current discharge experiment. Under the 

dynamic current test, the SOC estimation and voltage values obtained by the Ah integration method are 

used as reference. The SOC estimation is shown in Figure 10. 

 
( a ) SOC 

t/s
 

( b ) Voltage 

 

Figure 10. SOC estimation and voltage under dynamic current 
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It can be seen from Figure 10 (a) that the PF algorithm has caused a serious algorithm degradation 

problem when the system initial particle set deviation is 0.5, while the PSO algorithm has strong 

robustness and accuracy in the process of resampling near the true state value. In the Figure 10 (b), it 

can be seen that the model voltage estimated by GPSO-PF varies with the input current, and its operating 

voltage value is not affected by the measured noise at all. In order to quantitatively compare the filtering 

performance of PF and PSO-PF, the root mean square error of the experiment is defined as formula (23). 

*

1

1
= ( )

T 


T

k k

k

MSE x x

 
(23) 

T represents the total time step of an experiment; 𝑥𝑘 represents the estimated SOC state at the 

kth moment; 𝑥𝑘
∗  represents the true SOC state value at the k moment. And the filtering efficiency 𝜂 is 

defined by the formula (24), taking into account the effect of particle number and estimation time on the 

filtering performance. 

1/ ( * )MSE M   (24) 

The formula (24) shows that the higher the particle filtering efficiency, the higher the filtering 

accuracy (smaller MSE) from a smaller number of particles. The initial value of the setting algorithm is 

[0.5 0 0], and 10 independent sets of dynamic variable current experiments under the same working 

conditions are performed. The estimates of the average elapsed time, root mean square error, and filtering 

efficiency of the two algorithms for different particle counts are calculated, respectively, as shown in 

Table 2. 

 

 

Table 2. Comparison of filtering performance under different particle Numbers 

 

Algorithm particles MSE Efficiency 

𝜂/% 

Averge 

time/s 

 30 0.0586 56.797 345.9 

PSO-PF 50 0.0564 35.436 407.5 

 100 0.0574 17.403 880.1 

 50 8.57 0.233 14.4 

PF 500 3.28 0.0610 132.7 

 1000 0.00587 17.020 285.2 

 

 

As shown in Table 2, the filtering efficiency and error of PF is much worse than PSO-PF at M = 

50. Although the RMS error of the PF algorithm gradually decreases when increasing the number of 

particles. However, at M=500, the increase in the number of particles instead reduces the filtering 

efficiency by nearly three times. In addition, at M=1000, the filtering efficiency of PF only reaches 

17.403%, which brings nearly 20 times the time consumption.  

To achieve more accurate estimates, too many particles in the initial setup can lead to excessive 

time consumption, while a smaller number of particles can lead to excessive accuracy errors. Compared 

to PSO-PF, the particle swarm optimization improves the effectiveness of each particle. The prior 

distribution of the particles dynamically adjusts their position and velocity from the current measured 
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value to achieve more accurate SOC estimation. For example, at M = 30, the filtering efficiency can 

reach 56.797% with a RMS error of 0.0586. However, as the number of particles increases, the root-

mean-square error and the filtering performance may also decrease, partly due to the oscillation of the 

PSO near the global optimum at a later stage, resulting in a longer computation time. On the other hand, 

it is due to the fact that the PSO algorithm is insensitive to particle size [47], when the population size 

decreases, it has little effect on the filtering performance, which is mainly related to the particle position 

and motion velocity at each iteration. 

 

 

 

5. CONCLUSION 

With the rapid development of socio-economic, the applications of lithium-ion batteries are 

becoming more and more widespread. In order to ensure the safety of lithium-ion batteries, higher 

requirements are placed on the SOC estimation of lithium-ion batteries. In this paper, the state space 

expression of the lithium-ion battery is obtained on the basis of 2-order RC model. The GPSO-PF method 

effectively suppresses the degradation of the PF algorithm and improves the problem of large SOC 

estimation errors under fault conditions. Finally, it is experimentally shown that the proposed algorithm, 

even at small numbers of particles and large initial deviations, is still able to maintain high estimation 

accuracy, filtering efficiency and strong robustness. 

 

 

NOMENCLATURE 

The symbols used in this research can be described as shown in Table 3. 

 

 

Table 3. List of symbols 

 

Symbol  Description  Symbol  Description  

SOC  State of Charge  EKF Extended 

Kalman Filter 

UKF  Unscented 

Kalman Filter  

ECM Equivalent 

Circuit Model 

Ah Ampere hour EV Electric 

Vehicle 

RC  Resistance and 

Capacitance  

UKF Unscented 

Kalman Filter 

PF Particle Filter MC Monte Carlo 

OCV Open Circuit 

Voltage 

LOLN Law of Large 

Number 
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GPSO Gaussian 

Particle Swarm 

Optimization 

PSO Particle 

Swarm Optimization 

HPPC Hybrid Pulse 

Power Characterization 

RBT Recursive 

Bayesian Theorem 
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