A design technique for optimizing resonant coils and the energy transfer of inductive links.

HEIDARIAN, M. and BURGESS, S.J.

2021
A Design Technique for Optimizing Resonant Coils and the Energy Transfer of Inductive Links

Maryam Heidarian, Graduate Student Member, IEEE, and Samuel J. Burgess

Abstract—Power transfer efficiency (PTE) is a key performance parameter in development work on resonant inductive power transfer (IPT) systems. Geometrically optimizing the transmitter (Tx) and receiver (Rx) coil pair is a way of improving the IPT system’s efficiency. In this article, a new figure-of-merit (FoM) is proposed to find an optimum coil geometry which maximizes the PTE. The employed FoM parameter, called the “strong coupling factor” ($P_{scf}$), is defined such that its value indicates how strongly the Tx and Rx coils are linked together. Considering the IPT application and its physical size constraints, a proper selection method for identifying the numerical value of $P_{scf}$ is essential for optimal coil geometry design. This article presents an iterative algorithm to assist in the selection of the most favorable $P_{scf}$ value which provides maximized PTE for the designed optimum coil geometry. Design examples of two nominal IPT systems at frequencies of 415 and 0.1 MHz are used to investigate the design algorithm. Theoretical calculations show the optimum geometry designed for the IPT system operating at 415 MHz, with coupling coefficient ($K$) of 0.2, can achieve maximum PTE of 85.70%. Measurements presented from a practical Tx/Rx coil pair in the IPT link operating at 0.1 MHz, with $K = 0.05$, show a PTE of 83.10% against a calculated PTE of 84.11% validating the design process.

Index Terms—Inductive power transfer (IPT), magnetic resonance, power transfer efficiency (PTE), wireless power transfer (WPT).

I. INTRODUCTION

WIRELESS power transfer (WPT) offers a cordless method of energy transmission which can reduce the weight and cost of battery-powered devices. Inductive power transfer (IPT) is a WPT method that uses magnetic coupling between a transmitter (Tx) and a receiver (Rx) coil. It is based on the principle that a varying magnetic field produced by a primary winding will induce a magnetic field inside a secondary winding. The primary field, when interacting with the secondary winding, will set up a current flow in a load connected to the secondary: power can be transferred as can data. Magnetic flux leakage (i.e., leakage inductance) in the energy transfer link can significantly degrade the induced power in the Rx side. Adding resonators (i.e., compensation capacitors) to the inductively coupled windings can effectively cancel out the leakage reactance of the system and bring both windings to a resonance frequency ($f_0$).

Resonant inductive coupling, by providing a stronger inductive interaction between the Tx and Rx coil pairs, does improve the power transfer efficiency (PTE) of these WPT systems. However, maintaining maximum PTE in inductive links has always been a challenge [1]. In a resonant IPT link the PTE is influenced by three factors which are as follows.

1) transmission medium distance (between coils) and attenuation level;
2) terminating circuitry of both Tx and Rx sides (i.e., source resistance, $R_s$, and load resistance, $R_L$, respectively);
3) coil size (e.g., diameter, length, number of turns, etc.).

The medium distance and attenuation levels directly affect the magnetic flux coupling between the Tx/Rx pair (i.e., coupling coefficient, $K$). The terminating impedances of the Tx/Rx pair set the circuitry power losses in the primary and secondary which, in turn, indicate the system loaded quality factor ($Q_L$-factor). Also, the coil geometry determines the intrinsic quality factor ($Q_i$-factor) of the Tx/Rx coil pair which, in turn, affects their power transmission/receiving ability.

Strong inductive coupling between primary and secondary coils supports maximum PTE [2]. This requires a resonant inductive link that possesses high magnetic flux coupling while both $Q_i$-factor and $Q_L$-factor are maximized. From a practical viewpoint fulfilling these requirements is not always possible. The bulk of WPT applications have a significant air gap between Tx and Rx which limits the link’s magnetic flux coupling. The application’s required power level also affects both the loaded and intrinsic quality factors. The resonantly coupled coils can be used to wirelessly deliver any volume of power; from few mW in implantable microelectronic devices (IMDs) [1], [3]–[8] to kW range in electric vehicle (EV) battery chargers [9]–[11]. Managing such a range of power levels requires an IPT system with specific $R_s$ and $R_L$ values, which imposes some constraints on the system’s $Q_L$-factor. The application requirements, such as specific power level and space limitations, also influence the structural topology of the inductive resonators (i.e., $Q_i$-factor). Two coil topologies commonly used in WPT applications are spiral and helical inductors. The planar structure of the spiral coils makes them more suitable for space-confined applications such as IMDs [1], [4], [7], [8] and portable electronic devices [12], [13]. On the other hand, helical coils, due to
their uniform magnetic field [14], can provide a large inductive coupling in comparison with spiral coils [6], [9], [14]–[17]. Examples of such systems include high-voltage battery charging [11], [18], [19] and WPT through-metal-walls [20]–[22]. It should be noted that selecting the coil topology is mainly influenced by the application’s spatial restriction. For example, Sallan et al. [9] and Wang et al. [10], due to the EV’s limited space, have utilized spiral (planar) coils in EV battery charging with high power level requirements. These limitations and requirements necessitate optimizing the physical circuit parameters of an IPT system accordingly, which can be highly challenging.

Much work has been devoted to maximizing PTE with regards to the mentioned three impacting factors (i.e., $K$, $Q_i$, and $Q_L$-factors). This article focuses on geometric optimization of Tx/Rx coil pairs as a means of improving inductive linkage [1], [5]–[9], [14], [15], [23]–[32], which can additionally reduce the IPT system’s physical size. One of the methods for geometric optimization of inductive coils is through increasing $Q_i$-factor of the Tx/Rx coil pairs which has been considered by many researchers including [24]–[27]. In the proposed technique, to improve $Q_i$-factor, the coil’s winding layout has been modified in different ways such as varying the winding’s track width [24] and increasing the coil’s inner radius [26]. Employing a Tx/Rx coil pair with higher $Q_i$-factor can improve the energy transmission of the pair, however maximizing source-to-load PTE requires configuring the coil’s geometry while compensating the loading effect of $K$ and $Q_L$-factor as well.

To maximize the system’s overall PTE through coil geometry optimization, different iterative design algorithms have been proposed over the last few decades [1], [5]–[7], [9], [14], [15], [28]–[32]. As a common approach to cancel out the loading effect of Tx/Rx terminating circuitry, Jow and Ghovanloo [1], Ibrahim and Kiani [5], Sallan et al. [9], Hwang and Jang [15], Ko et al. [29], and Donaldson and Perkins [30] have found equations for PTE based on the system parameters (e.g., $K$, $R_i$, $R_L$, etc.). Then, for the derived PTE equation, various figure-of-merit (FoM) parameters are defined to help improve energy transmission efficiency for the purpose application. For example, to optimize the geometry of printed spiral coils in a cortical visual prosthesis, as listed in Table I, the coil’s diameter ($D$), conductor width ($W$), winding’s distribution over the spiral disk ($\phi$), and the number of turns ($N$) for both the Tx and Rx coils have been considered as FoM parameters by Jow and Ghovanloo [1]. In these proposed techniques, in order to determine the proper numerical combination of FoMs which maximizes the PTE, the design parameters are swept one by one in a wide range around their preselected initial values. This process is repeated until the considered combination lead to a desired PTE level. The selected initial FoMs and their respective designed optimum values, for the previous example, are shown in Table I. As can be seen, the optimized FoM values have significant differences from their preliminary values which indicates the high number of taken iterations. Using this method respective measured PTEs of 41.2% at $f_o = 1$ MHz and 85.8% at $f_o = 5$ MHz are found for a transmission distance of 10 mm and a 500-Ω resistive load.

Depending on the number of geometrical variables (i.e., FoMs) that need to be swept, the proposed coil optimization techniques clearly are very time consuming. To accelerate finding the optimal FoM parameters and make the design process more intuitive, Ahn and Ghovanloo [6] and Cheng et al. [14] have defined a combination of the design parameters as the FoM maximizing the PTE. To optimize the geometry of Rx coil, Cheng et al. [14] has considered multiplication of the Rx’s $Q_L$-factor, a part of the inductive link’s coupling coefficient and the ratio of power delivery to the load as the only required FoM. Utilizing the defined FoM parameter, a four-turn solenoid using a 0.1270-mm (dia) copper wire was prototyped for millimeter-sized IMDs operating at 700 MHz. The proposed method only focuses on optimizing Rx coil geometry to improve the PTE. Also, there is no indication of the system’s required power level and achieved PTE. To consider the effect of both Tx and Rx in maximizing the system’s source-to-load PTE, Ahn and Ghovanloo [6] has defined two independent FoMs (i.e., Rx-FoM and Tx-FoM) representing the roles of primary and secondary sides. The Rx-FoM has been considered such that its value indicates how efficiently the application’s load can receive the power. This is achieved through multiplication of the Rx’s $Q_L$-factor and the ratio of power delivery to the load. The Tx-FoM is defined as the link’s coupling coefficient squared multiplied by the Tx $Q_i$-factor (i.e., $K^2 Q_i$). The multiplication of Rx- and Tx-FoMs provides the IPT system’s overall PTE. Utilizing this technique, the first step to improve the PTE is to maximize the Rx-FoM, then the Tx coil geometry is optimized with considering the designed Rx. Using the developed Tx and Rx coils, the overall PTE of 1.02% could be measured while the power delivered to the load was 224 $\mu$W at 200 MHz with 12-mm distance (i.e., estimated $K = 0.002$) between the primary and secondary. In the proposed approach the inductive link’s coupling coefficient is considered as a property of Tx-FoM. However, $K$ based on its definition is affected by both the Tx and Rx [14]. We, in our previous article [31],

<table>
<thead>
<tr>
<th><strong>Table I</strong></th>
<th><strong>FoM PARAMETERS AND DESIGN VALUES FOR THE IPT APPLICATION IN [1]</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FoM</strong></td>
<td><strong>Symbols</strong></td>
</tr>
<tr>
<td>Diameter - Tx coil</td>
<td>$D_{Tx}$ (mm)</td>
</tr>
<tr>
<td>Diameter - Rx coil</td>
<td>$D_{Rx}$ (mm)</td>
</tr>
<tr>
<td>Conductor width - Tx coil</td>
<td>$W_{Tx}$ (μm)</td>
</tr>
<tr>
<td>Conductor width - Rx coil</td>
<td>$W_{Rx}$ (μm)</td>
</tr>
<tr>
<td>Fill factor - Tx coil</td>
<td>$\varphi_{Tx}$</td>
</tr>
<tr>
<td>Fill factor - Rx coil</td>
<td>$\varphi_{Rx}$</td>
</tr>
<tr>
<td>Number of turns - Tx coil</td>
<td>$N_{Tx}$</td>
</tr>
<tr>
<td>Number of turns - Rx coil</td>
<td>$N_{Rx}$</td>
</tr>
</tbody>
</table>
have modified the approach presented in [6] by considering only one FoM parameter such that its value indicates how strongly both the Tx and Rx sides are linked together. The proposed FoM parameter, named as “strong coupling factor” ($P_{scf}$), has been defined as: $P_{scf} = K^2 Q_L p Q_L$. The theoretical method in [31] was practically exemplified by the design of an optimized Tx/Rx solenoid pair geometry for an inductive link with a transmission distance of 9.5 mm ($K = 0.215$) at $f_o = 1$ MHz [32]: a PTE of 86% was measured thus showing merit in the design approach. However, a proper selection method for identifying a numerical value to represent the FoM parameter (i.e., $P_{scf}$) used in [31] and [32] still requires in-depth analysis.

Building upon the proposed coil optimization technique used in [31] and [32], this article introduces a method to assist selecting the most favorable numerical value for the strong coupling factor which can maximize PTE for the designed optimum coil geometry. The proposed method will be developed through geometrical optimization of a helical coil (i.e., solenoid). A solenoid has been chosen since the available coil design algorithms in the literature mainly focus on spiral coils or low power (i.e., ≤1 W) mm-size solenoids. However, geometrical optimization of high-power helical coils can be equally important. This is because for the coils to be suitable for high power IPT applications, the coil winding conductor must be large enough to tolerate the transmitting current level. This requirement yields a bulky coil geometry which in a physical implementation can encounter spatial difficulties. For example, in a typical WPT application transmitting 0.5–5-W power through-metal, a solenoid with a diameter of 84 mm, length of 152 mm, and 260 turns is required to operate at 0.3 MHz [20], geometrical optimization of the Tx/Rx coil, besides improving the PTE, can significantly reduce the system’s overall size. In addition to this, the proposed geometry optimization technique can also advantage low power IPT applications with sizable Tx/Rx helical coils. One example of such applications is the capsule endoscopy system presented in [33], where a 120 turns Tx solenoid operating at $f_o = 0.75$ MHz, delivers 39-mW power to the Rx.

This article is organized as follows: in Section II the physical parameters affecting the PTE of a resonant inductive WPT system are theoretically analyzed and the FoM parameter (i.e., $P_{scf}$) required to maximize PTE is discussed. The effect of strong coupling factor on the physical size of coil and the system’s PTE has been investigated in Section III. An iterative design algorithm for proper selection of the FoM’s numerical value and the subsequent optimization of coil geometry is presented in Section IV. In Section V, functionality of the proposed technique has been demonstrated by optimizing the coil geometry for a typical IPT system, similar to the WPT application in [20] as discussed above. The practical PTE measurements of the exemplified system have been presented in Section V followed by concluding remarks in Section VI.

II. THEORETICAL ANALYSIS ON MAXIMIZING THE PTE AND THE REQUIRED FoM

A generic lumped circuit diagram of the resonant IPT system is shown in Fig. 1 [34]. The series–series compensation topology has been considered as the connecting configuration of LC-resonators to the Tx and Rx sides. This is because this topology, at $f_o$, by canceling out the reflected reactance at both the primary [9] and the secondary [10] sides can provide a purely resistive inductive link. In this circuit model, $o_s$ and $R_s$ represent the ac voltage source and its equivalent internal resistance. $L_p$ and $L_s$ are the inductance values of the Tx and Rx windings, while $C_p$ and $C_s$ are the respective primary and secondary resonance compensation capacitors. $R_{cp}$ and $R_{cs}$ are the Tx and Rx windings’ ohmic resistances and $M$ is the mutual inductance between Tx and Rx coil pair. Also, the equivalent ac/dc load resistance, which power is being delivered to, is indicated by $R_L$. Following the common approach utilized in [1], [5]–[7], the equivalent source and load resistances (i.e., $R_s$ and $R_L$) have been considered to represent the rest of the system’s electronics. This is because in an IPT system, the application’s requirements and limitations demand different types of power amplifier (e.g., class-E power amplifier [35], full-bridge type inverter [11], etc.) and power management units (e.g., buck-boost converter [34], rectifier [36], dc–dc converter [37], [38], etc.) to be utilized in the primary and secondary sides, respectively. Maximizing PTE of these units have been extensively studied in the literature [35]–[38] and is out of the focus of this article [1].

At resonance, $o_o$, the application of Kirchhoff’s voltage law (KVL) to the inductive link in Fig. 1 can be expressed as

$$\begin{bmatrix} V_s \\ V_L \end{bmatrix} = \begin{bmatrix} R_s + R_{cp} + j M o_o \\ -R_{cs} \end{bmatrix} \begin{bmatrix} I_p \\ I_s \end{bmatrix}$$

(1)

where $V_s$ is the rms value of sinusoidal ac voltage source and $V_L$ is the voltage drop over the load. Also, $I_p$ and $I_s$ are the phasors of current in the Tx and Rx sides, respectively. In order to simplify the theoretical equations and ease duplex communication between Tx/Rx, both primary and secondary coils are considered identical (i.e., $L_p = L_s = L$ and $R_{cp} = R_{cs} = R$). Hence, the PTE ($\eta$), with respect to (1), can be defined as

$$\eta = \frac{V_L |I_s|}{V_s |I_p|}$$

$$= \frac{R_L o_o^2 M^2}{(R_L + R)(R_s + R_L + R) + o_o^2 R_L^2 M^2}$$

(2)

Equation (2) based on the system quality factors can be restated as

$$\eta = \frac{K^2 Q_L p Q_L}{1 + K^2 Q_L p Q_L} \left(1 - \frac{Q_L}{Q_o} \right)$$

(3)
where $K$ is the coupling coefficient between the coils, $K = M / (L_p L_s)^{1/2} = M / L$. The coil’s $Q_i$-factor and the Tx and Rx side’s $Q_L$-factor are, respectively, included as

$$Q_i = \omega_0 L / R$$

(4)

$$Q_{L_p} = \omega_0 L / (R + R_s)$$

(5)

$$Q_{L_s} = \omega_0 L / (R + R_t)$$

(6)

From (3) a condition which guarantees maximum PTE (i.e., $\eta = 1$) can be expressed as

$$Q_i - Q_{L_s} \equiv Q_i$$

(7)

$$K^2 Q_{L_p} Q_{L_s} \equiv 1 + K^2 Q_{L_p} Q_{L_s}.$$

(8)

These require both the following inequalities to be satisfied:

$$Q_i \gg Q_{L_s}$$

(9)

$$K^2 Q_{L_p} Q_{L_s} \gg 1.$$  

(10)

With proper coil wire selection (9) is met, i.e., a low ac ohmic resistance yields a large $Q_i$-factor. Satisfying (10) requires.

\[ A. \text{ Inductive Link With High Coupling Coefficient "}K\text{"} \]

Depending on the IPT system’s application, the transmission medium gap and coils’ mutual orientation set $K$ between 0 and 1 (i.e., $0 \leq K \leq 1$).

\[ B. \text{ Transceiver System With High Primary and Secondary } \]

$Q_L$-Factors ($Q_{L_p}$ and $Q_{L_s}$)

Based on (5), a high $Q_{L_p}$ value can be achieved if the Tx coil has high self-inductance and small ac ohmic resistance. Also, the $R_t$ value should be as small as possible given the level of power dissipated in the source internal resistance what power remains for the inductive link. Based on (6), achieving a high $Q_{L_s}$ value also requires a coil with high self-inductance and small ac ohmic resistance. However, there are different factors affecting an IPT system’s load resistance value, such as: power level (needed for the application), the inductive link’s coupling coefficient and geometric parameters of Tx/Rx coil pair. Hence, there is an optimum $R_L$ value for a given IPT system to satisfy operational requirements. By differentiating $\eta$ with respect to $R_L$ the optimum load value which maximizes PTE can be expressed as

$$R_{L_o} = R \sqrt{1 + \frac{\omega_0^2 K^2 L^2}{R(R + R_i)}}.$$  

(11)

\[ C. \text{ Tx and Rx Coils With High } Q_i\text{-Factor} \]

Increasing a coil’s $Q_i$-factor basically improves its power transmitting/receiving ability, which from (4) requires a coil with high self-inductance and small ac ohmic resistance. Furthermore, a high $Q_i$-factor coil (in addition to improving the Tx/Rx side’s $Q_L$-factor) can ease the task of meeting (9) to maximize PTE. Equation (12) expresses coil (i.e., coreless solenoid) self-inductance according to [39]

$$L = \frac{\mu_0 \pi N^2 r_c^2}{\sqrt{4r_c^2 + l_c^2}}.$$  

(12)

in which $\mu_0$ is free space permeability, $N$ is the number of turns, $r_c$ is the coil radius, and $l_c$ is the coil length (where $l_c \gg r_c$). Also, the coil ac ohmic resistance including skin-effect loss, based on [2], can be calculated as

$$R = R_{dc} \frac{r_c}{2\delta}.$$  

(13)

In (13), skin depth is represented by $\delta = (\rho / \pi \mu f_o)^{1/2}$, in which $\mu$ and $\rho$ are, respectively, the permeability and resistivity of winding wire material. $R_{dc}$, based on [1], can be expressed as

$$R_{dc} = \frac{4 \rho N}{d_w}.$$  

(14)

From (12), increasing $N$ and $r_c$ clearly improves coil self-inductance. However, increasing these values also has the detrimental effect of raising the coil ac ohmic resistance.

The challenge to maximize PTE is thus to design a geometrically optimized coil with maximized $L$ and low $R$. This requires exploiting the coil self-inductance to yield an ohmic resistance that provides maximized inductance coupling between Tx and Rx coil pair. The coil self-inductance, (12), is essentially a factor of three variables; $N$, $r_c$, and $l_c$. In a tightly wound coil $l_c = Nd_w$. Expressing $N$ from a rearranged (14) and replacing it in (12) permits $L$ to be restated, only based on $r_c$, as

$$L = \frac{\mu_0 \pi R^2 d_w^2 r_c}{\sqrt{4(2\omega_0 \mu \rho)(R^2 d_w^2 + 8r_c^4 \omega_0 \mu \rho)}}.$$  

(15)

Differentiating (15) with respect to $r_c$ provides a radius which maximizes $L$

$$r_c = \sqrt{\frac{R^2 d_w^4}{8\omega_0 \mu \rho}} = \frac{l_c}{2} \Rightarrow L_{max} = \frac{\mu_0^3 \pi^4 d_w^8 R^6}{128(\omega_0 \mu \rho)^3}.$$  

(16)

In selecting a suitable coil ac ohmic resistance, a FoM parameter ($P_{scf}$) has been introduced, in [31] and [32], such that its value indicates how strongly the Tx and Rx coils are linked together. The constant parameter $P_{scf}$ ($P_{scf} \gg 1$) has been named as strong coupling factor and provides a guideline for designing a geometrically optimized coil. With considering the FoM parameter $P_{scf}$, (10) can be expressed as

$$K^2 Q_{L_p} Q_{L_s} = P_{scf} \Rightarrow \omega_0^2 K^2 L^2 = P_{scf}(R + R_s)(R + R_L).$$  

(17)

As the coil self-inductance needs to be maximized, we substitute $L$ with $L_{max}$ in (17) which yields

$$\left(\frac{(K \omega_0 \mu \pi d_w)^2}{4 P_{scf}(\sqrt{2\omega_0 \mu \rho})}\right)R^3 - R^2 - (R_s + R_L)R - R_s R_L = 0.$$  

(18)

Solving (18) for $R$ determines the ac ohmic resistance which maximizes $\eta$ for a given resonant IPT system. From (18) it can be deduced that the optimal $R$ value is a function of $K$. 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
The inductive link’s coupling coefficient is also dependent on the coil’s radius \( r_c \) and the relative transmission distance between Tx and Rx pair \( d_i \) [16], [30]. Hence, the smallest variations in the value of coupling coefficient can easily drag the system’s PTE out of the maximum \( \eta \) ridge. It should be noted that based on the definition of coupling coefficient (i.e., \( K = M / (L_p L_s)^{1/2} \)), the coil’s number of turns does not affect \( K \), since both the coil’s self- and mutual-inductance have the same level of dependence on \( N \) [6], [14], [16], [30], [42].

To determine a unique optimum \( R \) value which is robust to \( K \) variations, (18) will be solved for \( K = 1 \). This is because, as can be deduced from (17), designing a coil for the highest possible coupling coefficient can ensure the \( P_{scf} \) value is large enough to maximize the PTE over the range of \( 0 \leq K \leq 1 \). Considering this, (18) can be restated as

\[
\left(\frac{(\omega_o \mu_o \mu_r d_i)^2}{4P_{scf}(\sqrt{2\omega_o \mu_r})^3}\right) R^3 - R^2 - (R_s + R_L) R - R_s R_L = 0.
\]

(19)

The solutions to (19) can be easily found using, for instance, MATLAB. With \( R \) established, \( r_c \), \( N \), and \( l_c \) can be calculated from (14) and (16).

To provide an example in this regard, a typical IPT system similar to Fig. 1, with \( R_s = 10 \, \Omega \) and \( R_L = 300 \, \Omega \) at \( f_o = 700 \, \text{MHz} \) has been considered. For an arbitrary \( P_{scf} \) value of 200 (\( P_{scf} = 200 \)) the calculated ac ohmic resistance from (19) is \( R = 323.39 \, \text{m\Omega} \). For this \( R \) value \( r_c = 2.70 \, \text{mm} \), \( N = 7 \) and \( l_c = 5.60 \, \text{mm} \). For the given IPT system, the PTE variations over a range of \( r_c \) values have been plotted in Fig. 2, with the designed geometry shown by use of red circles. It should be noted that, although the coil geometry was designed for \( K = 1 \), it provides the maximum PTE for the range of coupling coefficient values (i.e., \( 0.05 \leq K \leq 1 \)). In Fig. 2, the maximum achievable PTE is seen to drop with a reduction in \( K \), however the maximum PTE still stays centered around \( r_c = 2.70 \, \text{mm} \).

### III. Strong Coupling Factor Selection

Achieving an optimum coil geometry, which maximizes the PTE of an IPT system, requires proper selection of numerical value for the FoM parameter (i.e., \( P_{scf} \)). Besides influencing the system’s PTE the design parameter \( P_{scf} \), based on (19), affects the coil ac ohmic resistance, which directly impacts the coil’s physical size and \( R_{L0} \). To investigate the strong coupling factor’s effect on the physical size of Tx/Rx coil pair and the PTE, an IPT system with \( R_s = 0.1 \, \Omega \) and \( R_L = 100 \, \Omega \) at \( f_o = 13.56 \, \text{MHz} \) has been considered. For the given system, the coil geometric parameters (i.e., \( r_c \), \( N \), and \( l_c \)) are calculated for three arbitrary chosen FoM values; \( P_{scf} = 1550, 2550, \) and \( 3550 \), as listed in Table II.

Considering the derived coil geometries, the PTE variations of the designed inductive links over a range of \( r_c \) values are plotted in Fig. 3. The IPT system’s coupling coefficient values are \( K = 0.025, 0.125, \) and 1 in Fig. 3(a)–(c), respectively. The maximum achievable PTEs are marked with black circles on the curves, while their numerical values are indicated either on the graph or in Table II. From the graphs and numerical values, it can be deduced that increasing the strong coupling factor raises the coil’s physical size while the maximum achievable PTE of the given IPT system is centered around the designed geometries. It should be noted that there is always a tradeoff between reducing the physical size of the coil and increasing PTE for a given \( K \). Furthermore, when comparing the figures an observation is that for the inductive links with \( K < 1 \), i.e., \( K = 0.025 \) in Fig. 3(a) and \( K = 0.125 \) in Fig. 3(b), increasing the design parameter \( P_{scf} \) increases \( \eta \). However, as \( K \) gets closer to 1, as shown in Fig. 3(c), maximum PTE will slightly reduce with an increase of \( P_{scf} \).

This is because when \( K \approx 1 \), (3) can be restated as

\[
\eta = \frac{P_{scf}}{1 + P_{scf}} \left( \frac{R_L}{R + R_L} \right).
\]

(20)

At high \( P_{scf} \) values (20) is considered as

\[
\frac{P_{scf}}{1 + P_{scf}} \approx 1 \Rightarrow \eta \approx \frac{R_L}{R + R_L}
\]

(21)

where with an increase of \( P_{scf} \) the coil’s ac ohmic resistance also raises leading to reduction of \( \eta \).

To analyze the effect of strong coupling factor on the system’s optimum \( R_L \) value, PTE variations of the same IPT system over a range of load values are plotted in Fig. 4. The inductive link’s coupling coefficient is considered as \( K = 0.025 \) and the used \( P_{scf} \) values are \( P_{scf} = 1550, 2550, \) and 3550. It can be seen that decreasing strong coupling factor, due to raising \( R \), increases the IPT system’s optimal load value as expressed in (11). In selecting a proper \( P_{scf} \) value it should be noted that achieving maximum PTE in a given inductive link requires the system’s load to be equal to its optimal value from (11). However, due to many factors such as variations in coupling coefficient and charging/discharging of batteries (load), it is not always possible to keep \( R_L \) fixed at

### Table II

<table>
<thead>
<tr>
<th>( P_{scf} )</th>
<th>( R )</th>
<th>( r_c )</th>
<th>( N )</th>
<th>( l_c )</th>
<th>( \eta ) at ( K = 0.125 )</th>
<th>( \eta ) at ( K = 1 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1550</td>
<td>286.64</td>
<td>6.90</td>
<td>17</td>
<td>13.80</td>
<td>95.76</td>
<td>99.65</td>
</tr>
<tr>
<td>2550</td>
<td>358.17</td>
<td>7.70</td>
<td>19</td>
<td>15.50</td>
<td>97.20</td>
<td>99.60</td>
</tr>
<tr>
<td>3550</td>
<td>416.24</td>
<td>8.30</td>
<td>21</td>
<td>16.70</td>
<td>97.82</td>
<td>99.56</td>
</tr>
</tbody>
</table>
Fig. 3. Effect of increasing $P_{scf}$ on the physical size of coil and the system’s PTE. Three arbitrary strong coupling factor values ($P_{scf} = 1550$, $2550$, and $3550$) have been chosen for (a) $K = 0.025$, (b) $K = 0.125$, and (c) $K = 1$.

Fig. 4. Effect of increasing $P_{scf}$ ($P_{scf} = 1550$, $2550$, and $3550$) on the system optimal $R_L$ value for $K = 0.025$.

Fig. 5. Demonstration of the $\Delta$ window on the plot of PTE against load variations for the given IPT system (with $P_{scf} = 1550$ and $K = 0.025$).

IV. DESIGN PROCEDURE

In order to find the optimal value for the FoM parameter, an iterative algorithm is depicted in Fig. 6. The demonstrated design procedure, through selecting a proper $P_{scf}$ value will provide an optimum coil geometry which maximizes PTE for the required IPT application. The algorithm starts with taking a set of design constrains and an initial value for the FoM parameter. The design constrains comprise $R_s$, $R_L$, $f_o$, $d_w$, $K$, the parameter $X$ and the spatial limitations (e.g., maximum $r_c$, etc.) which can be determined from the IPT application requirements. The FoM parameter can initially take any arbitrary value, because the optimization algorithm provides the designer with a good sense of how to make necessary changes to the $P_{scf}$ value to maximize the PTE.

To numerically describe the optimization algorithm, an arbitrary IPT system with $R_s = 10 \, \Omega$, $R_L = 5 \, k\Omega$ at $f_o = 415 \, MHz$ has been considered, where the Tx/Rx coil diameter must be less than 10 mm (i.e., $r_c \leq 5 \, mm$). The coil winding conductor used is 0.8-mm (dia) copper wire, and the inductive link’s coupling coefficient, $K$, is 0.2. To ensure the designed coil geometry exhibits a high PTE the chosen proximity range of $\eta_{max}$ is 10% (i.e., $X = 10\%$). The iterative design process is initiated with considering $P_{scf} = 2000$. Table III shows some iteration examples for finding the FoM’s optimal value. As can be seen in the table, to fulfill the IPT application’s spatial requirements, the selected FoM values in iterations 1 and 2 have been reduced to $P_{scf} = 20$ in the iteration 3. However, the coil geometry designed at the third iteration does not provide high level of PTE. Hence, to improve $\eta$, the FoM value has been slightly increased in iterations 4 and 5. The maximum strong coupling factor value that can meet the
### V. Experimental Results and Validation

To validate the design procedure, described in Fig. 6, an arbitrary chosen IPT system with $R_s = 3 \, \Omega$, $R_L = 20 \, \Omega$ at $f_o = 0.1 \, \text{MHz}$ has been considered, where the Tx/Rx coil diameter must be less than 92 mm (i.e., $r_c \leq 46 \, \text{mm}$). The Tx/Rx coupling coefficient, $K$, is 0.05 and the chosen proximity range of $\eta_{\text{max}}$ is 3% (i.e., $X = 3\%$). The coil winding conductor used is 0.8-mm (dia) copper wire. This typical IPT system was chosen to facilitate practical, bench-top, investigation. The supplementary experimental results for a design example at higher frequency range has been mentioned in the abridged version of the present work [32], validating the proposed coil geometry optimization methodology over a wide radio frequency band.

Some iteration examples to find the optimal FoM value for the considered IPT system are listed in Table IV. Following the design procedure (see Fig. 6), the optimal FoM value for the given IPT system is $P_{\text{scf}} = 3200$ (i.e., iteration 4 in Table IV). Selecting this value results in designing a coil pair with $r_c = 45.70 \, \text{mm}$, $N = 114$, and $l_c = 91.40 \, \text{mm}$ which can provide maximum PTE of 84.11%. Further specifications of the designed geometry including Tx/Rx coil’s self-inductance, ohmic resistance, and $Q_i$-factors are mentioned in Table V.

Some iteration examples to find the optimal FoM value for the considered IPT system are listed in Table IV. Following the design procedure (see Fig. 6), the optimal FoM value for the given IPT system is $P_{\text{scf}} = 3200$ (i.e., iteration 4 in Table IV). Selecting this value results in designing a coil pair with $r_c = 45.70 \, \text{mm}$, $N = 114$, and $l_c = 91.40 \, \text{mm}$ which can provide maximum PTE of 84.11%. Further specifications of the designed geometry including Tx/Rx coil’s self-inductance, ohmic resistance, and $Q_i$-factors are mentioned in Table V.

Some iteration examples to find the optimal FoM value for the considered IPT system are listed in Table IV. Following the design procedure (see Fig. 6), the optimal FoM value for the given IPT system is $P_{\text{scf}} = 3200$ (i.e., iteration 4 in Table IV). Selecting this value results in designing a coil pair with $r_c = 45.70 \, \text{mm}$, $N = 114$, and $l_c = 91.40 \, \text{mm}$ which can provide maximum PTE of 84.11%. Further specifications of the designed geometry including Tx/Rx coil’s self-inductance, ohmic resistance, and $Q_i$-factors are mentioned in Table V.

Some iteration examples to find the optimal FoM value for the considered IPT system are listed in Table IV. Following the design procedure (see Fig. 6), the optimal FoM value for the given IPT system is $P_{\text{scf}} = 3200$ (i.e., iteration 4 in Table IV). Selecting this value results in designing a coil pair with $r_c = 45.70 \, \text{mm}$, $N = 114$, and $l_c = 91.40 \, \text{mm}$ which can provide maximum PTE of 84.11%. Further specifications of the designed geometry including Tx/Rx coil’s self-inductance, ohmic resistance, and $Q_i$-factors are mentioned in Table V. The measurements are taken using an $LCR$ meter (R&S HM8118). The deviations between calculated and measured values in Table V are attributed to the $LCR$ meter’s basic accuracy and measurement errors. In addition to this, small mismatches are expected given the approximate equations utilized to model the helical coil’s $L$ and $R$ [2], [39]–[41]. As presented in many geometry optimization techniques, an extremely high order of accuracy is not overly crucial, [1], [9], [20], [43]. Hence, for this work (i.e., high power, non-mm size helical coils), in modeling the coil’s ac ohmic resistance the proximity effect losses are neglected to provide a workable design method.

This is because, the proximity effect is caused due to the current crowding induced by the adjacent turns in a single layer coil (i.e., solenoid) [14]. In high frequency IPT systems, the influence of proximity effect on the resistance of a single turn of the solenoid is increased. However, with an increase in the IPT system’s operating frequency the physical size of the coil becomes smaller (i.e., less number of turns) [20]. The cumulative proximity effect losses in these coils can be neglected where the solenoid is not in mm-size range and is used in high power (i.e., $\geq 1 \, \text{W}$) applications. In lower frequency range the proximity effect losses are negligible due to the IPT system’s $f_o$.

The PTE measurements have been carried out on a series-series IPT system, as modeled in Fig. 1, where resonance application’s spatial limitations is $P_{\text{scf}} = 150$. For this FoM value, the designed coil geometry is $r_c = 5 \, \text{mm}$, $N = 12$, and $l_c = 10 \, \text{mm}$ and the maximum PTE of 85.70% is theoretically achieved.

V. EXPERIMENTAL RESULTS AND VALIDATION

To validate the design procedure, described in Fig. 6, an arbitrary chosen IPT system with $R_s = 3 \, \Omega$, $R_L = 20 \, \Omega$ at $f_o = 0.1 \, \text{MHz}$ has been considered, where the Tx/Rx coil diameter must be less than 92 mm (i.e., $r_c \leq 46 \, \text{mm}$). The Tx/Rx coupling coefficient, $K$, is 0.05 and the chosen proximity range of $\eta_{\text{max}}$ is 3% (i.e., $X = 3\%$). The coil winding conductor used is 0.8-mm (dia) copper wire. This typical IPT system was chosen to facilitate practical, bench-top, investigation. The supplementary experimental results for a design example at higher frequency range has been mentioned in the abridged version of the present work [32], validating the proposed coil geometry optimization methodology over a wide radio frequency band.

Some iteration examples to find the optimal FoM value for the considered IPT system are listed in Table IV. Following the design procedure (see Fig. 6), the optimal FoM value for the given IPT system is $P_{\text{scf}} = 3200$ (i.e., iteration 4 in Table IV). Selecting this value results in designing a coil pair with $r_c = 45.70 \, \text{mm}$, $N = 114$, and $l_c = 91.40 \, \text{mm}$ which can provide maximum PTE of 84.11%. Further specifications of the designed geometry including Tx/Rx coil’s self-inductance, ohmic resistance, and $Q_i$-factors are mentioned in Table V. The measurements are taken using an $LCR$ meter (R&S HM8118). The deviations between calculated and measured values in Table V are attributed to the $LCR$ meter’s basic accuracy and measurement errors. In addition to this, small mismatches are expected given the approximate equations utilized to model the helical coil’s $L$ and $R$ [2], [39]–[41]. As presented in many geometry optimization techniques, an extremely high order of accuracy is not overly crucial, [1], [9], [20], [43]. Hence, for this work (i.e., high power, non-mm size helical coils), in modeling the coil’s ac ohmic resistance the proximity effect losses are neglected to provide a workable design method.

This is because, the proximity effect is caused due to the current crowding induced by the adjacent turns in a single layer coil (i.e., solenoid) [14]. In high frequency IPT systems, the influence of proximity effect on the resistance of a single turn of the solenoid is increased. However, with an increase in the IPT system’s operating frequency the physical size of the coil becomes smaller (i.e., less number of turns) [20]. The cumulative proximity effect losses in these coils can be neglected where the solenoid is not in mm-size range and is used in high power (i.e., $\geq 1 \, \text{W}$) applications. In lower frequency range the proximity effect losses are negligible due to the IPT system’s $f_o$.

The PTE measurements have been carried out on a series-series IPT system, as modeled in Fig. 1, where resonance
TABLE IV
Algorithm Iterations for IPT System Under Consideration ($f_o = 0.1$ MHz, $R_s = 3 \, \Omega$, and $R_L = 20 \, \Omega$)

<table>
<thead>
<tr>
<th>Iteration</th>
<th>$P_{scf}$</th>
<th>$R$</th>
<th>$r_c$</th>
<th>$N$</th>
<th>$l_c$</th>
<th>$R_{L0}$</th>
<th>$\alpha$</th>
<th>$\beta$</th>
<th>$\eta$ for $R_L$ (%)</th>
<th>$\eta$ for $R_L$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>(W)</td>
<td>(\Omega)</td>
<td>(mm)</td>
<td></td>
<td>(mm)</td>
<td>(\Omega)</td>
<td>(\Omega)</td>
<td>(\Omega)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>500</td>
<td>0.55</td>
<td>32.70</td>
<td>81</td>
<td>65.20</td>
<td>3.80</td>
<td>2.25</td>
<td>6.41</td>
<td>74.7</td>
<td>54.07</td>
</tr>
<tr>
<td>2</td>
<td>2500</td>
<td>0.98</td>
<td>43.70</td>
<td>109</td>
<td>87.40</td>
<td>11.40</td>
<td>6.02</td>
<td>21.61</td>
<td>84.11</td>
<td>82.16</td>
</tr>
<tr>
<td>3</td>
<td>3500</td>
<td>1.11</td>
<td>46.50</td>
<td>116</td>
<td>93.00</td>
<td>14.39</td>
<td>7.38</td>
<td>28.09</td>
<td>85.62</td>
<td>85.00</td>
</tr>
<tr>
<td>4</td>
<td>3200</td>
<td>1.08</td>
<td>45.70</td>
<td>114</td>
<td>91.40</td>
<td>13.37</td>
<td>6.93</td>
<td>25.79</td>
<td>85.07</td>
<td>84.11</td>
</tr>
</tbody>
</table>

TABLE V
Specifications of the Prototyped Geometry ($r_c = 45.70$ mm, $N = 114$, $l_c = 91.40$ mm at $f_o = 0.1$ MHz)

<table>
<thead>
<tr>
<th>$L_p$</th>
<th>$R_{cp}$</th>
<th>$Q_{cp}$</th>
<th>$L_s$</th>
<th>$R_{cs}$</th>
<th>$Q_{cs}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mH)</td>
<td>(\Omega)</td>
<td>(\Omega)</td>
<td>(mH)</td>
<td>(\Omega)</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>Calculated value</td>
<td>0.835</td>
<td>1.08</td>
<td>486.22</td>
<td>0.835</td>
<td>1.08</td>
</tr>
<tr>
<td>Measured value</td>
<td>0.794</td>
<td>1.80</td>
<td>280.18</td>
<td>0.802</td>
<td>1.85</td>
</tr>
</tbody>
</table>

Fig. 7. Experimental PTE test setup (length of coil = 91.40 mm, radius of coil = 45.70 mm, and width apart, $d_i$, is varied).

capacitors, $R_s$ and $R_L$ are directly added to the primary and secondary coils. This technique permits sole PTE evaluation of the designed geometry [1], [43]. Fig. 7 shows the utilized experimental set up, where a function generator (HP 33120A) is used to drive the primary coil at the resonance frequency (i.e., 0.1 MHz). In order to probe the system’s energy transmission efficiency, an oscilloscope (Rigol DS1054Z) is used to measure the voltage and current waveforms at the Tx/Rx side [1], [43]. The transmitted power is simply found by multiplying the rms values of the measured voltage and current signals injected into the primary circuitry. The received power is also calculated by measuring the voltage across the load.

For the designed geometry, the maximum achievable PTE is 85.07% at $R_{L0} = 13.37 \, \Omega$. Based on the physical circuit parameters developed in Table IV, for all load values between $\alpha$ and $\beta$ (i.e., 6.93 $\Omega \leq R_L \leq 25.79 \, \Omega$) the system’s PTE will be within 3% of $\eta_{max}$ (i.e., $\geq 82.52\%$). Fig. 8 shows the simulated PTE against increasing $R_L$ for the coil design; set beside this curve are the results taken from practical measurements as $R_L$ is physically increased from 3 to 33.1 $\Omega$. The measured values show that for all the load resistances within the $\alpha$ and $\beta$ range, the system’s PTE is higher than 80% (i.e., within 6% of $\eta_{max}$). Although in modeling the coil’s ac ohmic resistance the proximity effect losses were neglected, the measured results from the physical system show correlation with the calculated results. The 3% mismatch between the calculated and measured PTE values are attributed to the fact that $\eta$, based on (3), is a function of both loaded and intrinsic quality factors (i.e., $Q_{Lp}$, $Q_{Ls}$, and $Q_l$ factors). The deviations in the value of $Q_l$ factor is compensated with intrinsic tolerance of $R_s$ and $R_L$ resistors (i.e., $Q_{Lp}$ and $Q_{Ls}$ factors). Also, the calculated and measured PTE for the IPT application (i.e., $R_L = 20 \, \Omega$) are 84.11% and 83.10%, respectively. The given IPT system delivers 1.06-W power to the load when $V_s = 3.53 \, v_{rms}$.

Although the Tx/Rx coil pair are designed for $K = 0.05$, as described in Fig. 2, the designed geometry maximizes PTE over the range of $0 \leq K \leq 1$. To practically prove the concept, seven sets of coil, each with different $r_c$ values, have been fabricated and their respective PTEs measured for the IPT application. The four groups of different colored solid and dashed curves plotted in Fig. 9 correspond to calculated and measured PTEs of the designed geometry for four $K$ values between 0.0125 and 0.1. The coupling coefficient range has been chosen again to facilitate practical, bench-top, investigation and ease of results gathering. As can be seen in Fig. 9, with a fall in coupling coefficient the link becomes more loosely-coupled but the maximum PTE becomes apparent as being around the designed coil $r_c$ value (i.e., 45.70 mm). The experimental PTE value shows a marked closeness to the analytical calculations using MATLAB. Practical tests on physical geometries either side of $r_c = 45.70$ mm show falling PTE over different $K$ values, thus validating the design method proposed.
the following inequality:
$$\eta = (1 - X) \eta_{\text{max}}.$$  \hfill (A1)

Maximum PTE (i.e., $\eta_{\text{max}}$) can be achieved by substituting $R_L$ with $R_{L,0}$ in (6); hence, (A1) can be restated as
$$R_L(R_{L,0} + R)(R + R_{L,0} + R + \alpha_0^2M^2) - (1 - X)$$
$$R_{L,0}(R + R)(R + R_{L,0} + R + \alpha_0^2M^2) \geq 0.$$ \hfill (A2)

Rearranging (A2) based on $R_L$ gives
$$P_1R_L^2 + P_2R_L + P_3 \geq 0 \quad (A3)$$

where
$$P_1 = -(1 - X)(R + R_{L,0})$$
$$P_2 = (R + R_{L,0})R_{L,0} + (R + R_{L,0})R^2 + 2RR_{L,0}$$
$$+(X + 1)\alpha_0^2M^2R_{L,0} + 2(X - 1)R_{L,0}R^2$$
$$+ 2(X - 1)RR_{L,0}$$
$$P_3 = (X - 1)(R + R_{L,0})R_{L,0}^2 + (X - 1)\alpha_0^2M^2RR_{L,0}.$$  

Solving (A3) for $R_L$ yields
$$\alpha \leq R_L \leq \beta$$
where
$$\alpha = \frac{-P_2 + \sqrt{P_2^2 - 4P_1P_3}}{2P_1} \quad (A4)$$
$$\beta = \frac{-P_2 - \sqrt{P_2^2 - 4P_1P_3}}{2P_1}. \quad (A5)$$

VI. CONCLUSION

Geometrical optimization of Tx and Rx coil pairs is considered to maximize PTE in resonant IPT systems. A design parameter, known as strong coupling factor ($P_{\text{scf}}$), is employed to assist in the design of optimized coils. In order to select the most favorable numerical value for $P_{\text{scf}}$ a recursive algorithm is introduced which maximizes PTE based on the IPT system application and physical size limits. An IPT system at 0.1 MHz was simulated using MATLAB and a PTE of 84.11% calculated. The theoretical method was validated by developing a prototype Tx/Rx coil pair, which yielded a PTE of 83.10% at $K = 0.05$. To increase the accuracy of the design equations proposed here, future work on this topic may include both skin-effect and proximity-effect losses.

APPENDIX

Finding the load range where $\eta$ of the IPT system stays within $X\%$ of the maximum achievable PTE requires solving the following inequality:
$$\eta = (1 - X) \eta_{\text{max}}.$$  \hfill (A1)

Maximum PTE (i.e., $\eta_{\text{max}}$) can be achieved by substituting $R_L$ with $R_{L,0}$ in (6); hence, (A1) can be restated as
$$R_L(R_{L,0} + R)(R + R_{L,0} + R + \alpha_0^2M^2) - (1 - X)$$
$$R_{L,0}(R + R)(R + R_{L,0} + R + \alpha_0^2M^2) \geq 0.$$ \hfill (A2)

Rearranging (A2) based on $R_L$ gives
$$P_1R_L^2 + P_2R_L + P_3 \geq 0 \quad (A3)$$

where
$$P_1 = -(1 - X)(R + R_{L,0})$$
$$P_2 = (R + R_{L,0})R_{L,0} + (R + R_{L,0})R^2 + 2RR_{L,0}$$
$$+(X + 1)\alpha_0^2M^2R_{L,0} + 2(X - 1)R_{L,0}R^2$$
$$+ 2(X - 1)RR_{L,0}$$
$$P_3 = (X - 1)(R + R_{L,0})R_{L,0}^2 + (X - 1)\alpha_0^2M^2RR_{L,0}.$$  

Solving (A3) for $R_L$ yields
$$\alpha \leq R_L \leq \beta$$
where
$$\alpha = \frac{-P_2 + \sqrt{P_2^2 - 4P_1P_3}}{2P_1} \quad (A4)$$
$$\beta = \frac{-P_2 - \sqrt{P_2^2 - 4P_1P_3}}{2P_1}. \quad (A5)$$

ACKNOWLEDGMENT

The authors would like to thank Dr. R. Prabhu for his advice and D. Smith for his technical assistance. They would also like to thank the School of Engineering, Robert Gordon University, Aberdeen, U.K., for the support of this research, and also the editorial board members and reviewers for their timely and thoughtful comments.

REFERENCES
