CHIKERE, C.O., HOBBEN, E., FAISAL, N.H., KONG THOO LIN, P. and FERNANDEZ, C. 2021. Electroanalytical determination of gallic acid in red and white wine samples using cobalt oxide nanoparticles-modified carbon-paste electrodes. *Microchemical journal* [online], 160(part B), article ID 105668. Available from: <u>https://doi.org/10.1016/j.microc.2020.105668</u>

Electroanalytical determination of gallic acid in red and white wine samples using cobalt oxide nanoparticles-modified carbon-paste electrodes.

CHIKERE, C.O., HOBBEN, E., FAISAL, N.H., KONG THOO LIN, P. and FERNANDEZ, C.

2021

This document was downloaded from https://openair.rgu.ac.uk

Electroanalytical determination of gallic acid in Red and White wine samples using Cobalt Oxide Nanoparticles-modified carbonpaste electrodes

Chrys. O. CHIKERE^a, Emma HOBBEN^a, Nadimul Haque FAISAL^b, Paul KONG-THOO-LIN^a, Carlos FERNANDEZ^{a*}

a. School of Pharmacy and Life Sciences, the Robert Gordon University, Aberdeen, AB10 7GJ, United Kingdom

b. School of Engineering, the Robert Gordon University, Aberdeen AB10 7GJ, United Kingdom
 * Corresponding Author. Tel. +44 (0) 1224 262559 E-mail: <u>c.fernandez@rgu.ac.uk</u>

Highlights

- For the first time synthesised cobalt oxide nanoparticles modified CPE is used for the electrochemical determination of gallic acid
- Differential pulse voltammetry and cyclic voltammetry were used for the characterisation of the modified electrode and also for the determination of gallic acid
- The cobalt oxide nanoparticles modified electrode was used for Red and White wine analysis, producing a third peak current at increased GA concentration in Red wine.

Electroanalytical determination of gallic acid in Red and White wine samples using Cobalt Oxide Nanoparticles-modified carbon paste electrodes

Chrys. O. CHIKERE^a, Emma HOBBEN^a, Nadimul Haque FAISAL^b, Paul KONG-THOO-LIN^a, Carlos FERNANDEZ^{a*}

a. School of Pharmacy and Life Sciences, the Robert Gordon University, Aberdeen, AB10 7GJ, United Kingdom

b. School of Engineering, the Robert Gordon University, Aberdeen AB10 7GJ, United Kingdom

* Corresponding Author. Tel. +44 (0) 1224 262559 E-mail: <u>c.fernandez@rgu.ac.uk</u>

12 Abstract

Beverages like wines, have exhibited high level of antioxidant capacity, specifically from compounds like Gallic acid (GA) and their derivatives. GA has shown great importance in the food industry and pharmaceutical industry as a food additive, anti-tumour, anti-viral, and anti-mutagenic agent. Red and white wines from the USA and Australia were electrochemically analysed for GA, using Cobalt oxide nanoparticles modified carbon paste electrode (CoO-NPs-CPE). The electrochemical studies demonstrated an efficient GA (10 mmol L⁻¹) oxidation, with enhanced peak currents from 302 µA to about 405 µA (25 % increase). The limit of detection (LOD) of the modified electrode was 1.52×10^{-4} mmol L⁻¹ within the concentration range of 1 x 10⁻⁴ to 1 x 10⁻³ mmol L⁻¹. The CoO-NPs-CPE was successfully used, for the quantitative analysis of GA in red and white wine, showing average recoveries of 97% and 101% respectively. Hence our electrode can be applied for GA quantification in wine matrices.

Keywords: Cobalt oxide nanoparticles, Carbon paste electrode, Phenolic acids, Gallic acid,
Wine samples

1. Introduction

Gallic acid (GA) also known as 3,4,5-trihydrobenzoic acid is a natural phenolic compound, which can be found in plants like tea, grapes, blueberries, walnuts, apples and herbs [1]. GA has been used widely in the food industry as a food additive and as an antiradical, anti-histaminic, anti-mutagenic, anti-tumour and anti-inflammatory chemical compound in the pharmaceutical industry [2–5]. With these properties, GA is seen as an important compound in human diets. This is because it helps in reducing the risk of disease development, by preventing or slowing down molecular oxidation known as oxidative stress in the human body [6]. It should be noted that, oxidative stress has been linked to human diseases such as Alzheimer's disease, Parkinson's disease, cancer, cardiovascular diseases and diabetes [7,8].

With these important uses of GA in the food, drink and pharmaceutical industries, there has been a need for very good analytical methods for its determination in real samples. The analytical methods that have been traditionally used for the determination of GA are high performance liquid chromatography (HPLC) [9], flow injection analysis [10], spectrophotometry [11], and flow injection-chemiluminescence [12]. Although these techniques have shown high sensitivity, they have also needed very expensive equipment, skilled operators, elaborate procedures, and complicated sample preparations. However, electrochemical methods [13,14] have shown advantages that include, high sensitivity, low cost, high selectivity, very short measurement time and are easy to use as compared to the other methods [15–17]. They also provide more information about the reaction mechanism of the compound being analysed [18-21].

47 Several carbon-based electrochemical sensors have been developed for the
48 determination of GA in food matrices. These include modified glassy carbon electrode (GCE)
49 [22,23], nanomaterials functionalized carbon-based composite electrodes [24], modified50 screen-printed electrodes [1] and modified carbon paste electrodes (CPE) [25,26]. Among all

the electrochemical methods and electrode modifications available, carbon paste electrodes modifications appear to be the technique of choice [27,28]. This is due to the low cost of modifying carbon paste electrodes, very low background current, flexibility, ease to effect modification, quick regenerative surface, wide potential window, and its good electrochemical sensing properties, like low ohmic resistance [29–31].

Carbon paste electrodes (CPEs) are a mixture of carbon (graphite) powder and pasting liquid or binder like paraffin oil. Different types of carbonaceous materials and modifiers have been used to develop CPE using different methods. These include carbon nanotubes, graphite, carbon nanofibers, polymers, and nanomaterials [32,33]. These modified carbon paste electrodes have been used as working electrodes in electrochemical experiments aimed at identifying, characterising and quantifying GA. Fayemi & Adekunle, (2015) modified multi-walled carbon nanotubes doped with metal oxide nanoparticles (nickel oxide, zinc oxide and iron oxide nanoparticles), where they were used for the determination of dopamine. On the other hand SiO₂ nanoparticles and TiO₂ nanoparticles [35] respectively, have been used to modify carbon paste electrode, where they were used for the successful determination of GA in, tap water, orange juice and tea samples (black and green teas). However, there are no evidence of metal oxide nanoparticles modified carbon paste electrode that have used for the electrochemical determination of GA in red and white wine samples.

In this era of nanomaterials, different metal oxide nanoparticles have been used to modify CPE for the electrochemical determination of many organic compounds. Most recently ZnO nanoparticles and amorphous zirconium oxide nanoparticles modified CPE have been used for the determination of GA in wine samples [25,36]. With the inherent capacity of transition metals towards electrocatalysis of organic compounds, there was a need to explore other transition metal oxides for the electrochemical determination of GA in food samples. Cobalt oxide (Co₃O₄) nanoparticle is a transition metal oxide nanoparticle that has been used in electrochemical sensor fabrication. Many different earth-abundant metal oxide nanoparticles like cobalt oxide [26], manganese oxide [37] and nickel oxide [34], have been used as electrode materials for electrochemical determinations. Amongst these compounds, Co₃O₄ nanoparticles have attracted much interest because of their catalytic ability, large surface area, high activity and strong stability [38]. The cobalt oxide nanoparticles have been used in different fields as catalysts, energy storage units and electrochemical sensors [39,40]. Puangjan and Chaiyasith [26] produced a novel Co₃O₄ and ZrO₂ nanoparticles nanocomposite with reduced graphene oxide on to a fluorine-doped electrode for the determination of GA. Their nanocomposite electrode was used for the simultaneous determination of GA, caffeic acid (CA) and protocatechuic acid (PA). Co₃O₄ nanoparticles acted as a composite with zirconia in the determination of GA, CA, and PA. However, the recorded properties of cobalt oxide nanoparticles alone, have not previously been explored for the development of electrochemical sensors for GA determination in wine matrices. Hence, for the first time this study was performed, to use the physicochemical properties of Co₃O₄ nanoparticles to produce a novel nanomaterial-based electrochemical sensor for fast, sensitive, cost-effective, and selective analysis of GA in wine samples.

2. Experimental

2.1 Chemicals and reagents

All chemicals and reagents were of analytical grade and were used as purchased with no further purification unless otherwise stated. Gallic acid (anhydrous), cobalt (II) nitrate hexahydrate (Co(NO₃)₂.6H₂O) (purity: \geq 98%) and sodium hydroxide pellets (NaOH), Graphite powder and paraffin oil were purchased from Sigma Aldrich (London, UK). Potassium ferricyanide (purity: \geq 99%), potassium chloride (KCl), disodium hydrogen orthophosphate (MaPO₄), sodium dihydrogen orthophosphate (NaH₂PO₄) were from Merck (Darmstadt, Germany). Stock of buffers and gallic acid solutions were kept protected from light at 4 °C. All aqueous

| Page

solutions used in this study were made with doubly distilled water with a 18.2 M Ω .cm resistance value. Wine samples were made from commercially available wines from a local store in the city of Aberdeen.

2.2 **Instrumentation and Apparatus**

Voltammetric measurements and all other electrochemical measurements were carried out using Ivium vertex One potentiostat-galvanostat with Ivium software (Eindhoven, Netherlands). A standard three-electrode cell set-up was used for all the studies, including the modified-CPE as the working electrode, a platinum wire electrode as the auxiliary electrode and an Ag/AgCl (saturated KCl) as a reference electrode. Meanwhile, all potentials recorded in the study were done in reference to the Ag/AgCl reference electrode. The morphology of the electrode surface and elemental analysis were studied using scanning electron microscopy (SEM) and an energy dispersive x-ray analysis (EDXA) spectrum. The measurements were done with a Carl Zeiss variable pressure scanning electron microscope (Oberkochen, Germany), fitted with an Oxford Instrument and energy dispersive X-ray analysis system. The Fourier transform infrared (FTIR) spectrometer used for the chemical bonding analysis was a Thermo Scientific Nicolet iS50 FTIR Spectrometer (Waltham, MA, USA). The thermogravimetric analysis (TGA) measurement was carried out on a PerkinElmer STA 6000 instrument (Waltham, Massachusetts, USA) in an oxygen atmosphere. The size characterisation of the synthesised Co₃O₄ nanoparticles, was done by dynamic light scattering (DLS) using a Malvern Zetasizer Nano ZS (Malvern, UK). All pH measurements were done with a Fisher Scientific Mettler Toledo Benchtop pH meter (Loughborough, UK). Meanwhile, pH adjustments of buffer solutions were done with sodium hydroxide (1 x 10² mmol L⁻¹) for pH increase or phosphoric acid (10 mmol L⁻¹) to lower the pH. HPLC analysis was carried out with a Shimadzu HPLC system consisting of LC-20AD prominence liquid chromatography,

using a SIL-20A autosampler and an SPD-M20A diode array detector (Kyoto, Japan). The columns used for the measurements were the C_{18} ODS Hypersil-Keystone LC -18 (150 x 4.6 mm i.d., 3mm) in conjunction with a Supelguard LC 18 (2cm x 2.1 mm i.d.) guard cartridge column. The software used for all the analysis was the Shimadzu LC solution software (Kyoto, Japan).

0 130

2.3 Synthesis of Cobalt Oxide nanoparticles

Cobalt oxide nanoparticles (Co_3O_4) was synthesised by a co-precipitation method previously described [41]. Cobalt (II) nitrate hexahydrate (Co(NO₃)₂.6H₂O) (5.82 g in 20 ml; 1M) and NaOH in a 1:2 M ratio (molar ratio), were dissolved in distilled water (20 mL), while stirring constantly. Using the molar ratio, NaOH solution (2 x 10³ mmol L⁻¹) was added dropwise to $Co(NO_3)_2.6H_2O$ (1 x 10³ mmol L⁻¹), under constant stirring for 2 hr at room temperature (~ 25 °C). The solution mixture was then left to settle overnight at room temperature. Cobalt hydroxide sludge was found to settle at the bottom of the flask the next day. Meanwhile, the excess solution on top of the sludge was carefully decanted and the precipitated sludge was then separated using a centrifuge (15000 RPM for 15 mins). The residue was then heated for 5 hrs at 80 °C to form a black colour compound (~ 80 % yield).

The cobalt oxide nanoparticles synthesised were characterised by measuring the particle sizes
with a Zetasizer and other physical structures studied, using SEM, EDXA, and FTIR.

2.4 Preparation of the modified Carbon Paste Electrodes

Graphite powder and paraffin oil binder mixture ratio for the bare CPE were optimised for the best results. The bare CPE was prepared by thoroughly mixing and grinding in graphite powder and paraffin oil (70:30; w/w) ratio into a homogenous paste using an agate mortar and pestle for 30 min. The homogenous paste was then transferred into a solvent-resistant Teflon tube of

148 2.87 mm internal radius and smoothened on a weighing paper. The other end of the filled Teflon 149 tube was connected to copper wire to provide a connection. The modified CPE was prepared 150 by mixing graphite powder, Co_3O_4 nanoparticles and paraffin oil in a 60:10:30 (w/w/w) ratio. 151 The mixture was thoroughly grounded with an agar mortar and pestle for about 30 mins and 152 then the paste was transferred into a Teflon tube.

9 153

2.5 Preparation of wine samples

The measurement of the GA content in the wine samples was carried out using differential pulse voltammetry (DPV), by recording the voltammograms produced by spiked samples of the wine. Each wine sample (1 mL) was made up to 10 mL in a voltammetric cell with phosphate buffer solution (10 mmol L⁻¹, pH 2.0). In all the samples, their pH was adjusted to 2.0 with phosphoric acid (10 mmol L⁻¹). In measuring the spiked samples of the wine, aliquots amount of gallic acid solution ((1 mL, 10 mmol L⁻¹) were added to the wine sample, while stirring for 2 mins followed by the recording of the voltammogram.

2.6 Electrochemical measurements

The electrochemical oxidation of gallic acid on the surface of the cobalt oxide nanoparticlesmodified carbon paste electrode (CoO-NPs-CPE) was carried out using CV and DPV. The cyclic voltammograms were carried out in a potential scan range of 0.0 to ± 1.5 V and a scan rate of 100 mVs⁻¹. For the differential pulse voltammetry, measurements were done at a potential scan range of 0.0 to ± 1.5 V, with a pulse amplitude of 0.08 V and a pulse period of 0.2 s. All the electrochemical analysis of GA on the surface of all the carbon paste electrodes, were done in phosphate buffer (1 x 10² mmol L⁻¹, pH 2.0) at room temperature.

Electrochemical impedance spectroscopy (EIS) of the bare and modified CPE was carried out
 to ascertain the impedance changes between the bare and modified electrodes. The frequency

3. Results and discussion

3.1 Characterisation of Co₃O₄ nanoparticles-modified CPE

mmol L⁻¹ KCl containing 5 mmol L⁻¹ $[Fe(CN)_6]^{3-/4-}$ redox solution.

range of 100 KHz-0.1 Hz was used for the EIS measurement at a potential of 0.4 V in 1 x 10²

The synthesised Co₃O₄ nanoparticles were analysed with SEM, EDX, FTIR, and TGA. The SEM and EDXA were used to study the morphology and elemental composition of the nanoparticles. Fig 1 shows the SEM images and EDXA analysis, with the morphology, microstructure, and the elemental composition of the Co_3O_4 nanoparticles (Fig 1(a)) and the CoO-NP-CPE (Fig 1(b)). The SEM images show non-homogenous size distributions of cobalt oxide nanoparticles, ranging from 60 nm to 280 nm as demonstrated by the Dynamic Light Scattering (DLS) results (Fig. 1(d)). This is in line with Yang, Liu, Martens, & Frost, (2010) who showed particles sizes of 100 nm to 600 nm. The elemental composition (Fig 1(c)) of the nanosized cobalt oxide compound shows the proportional atomic ratio (3:4) of cobalt and oxygen. Meanwhile, the CoO-NP-CPE paste (Fig 1(b)), shows also a non-homogeneous morphology, with the milky coloured presence of the paraffin oil binder. The nanosized composition of the CoO-NP-CPE as shown in Fig 1(b) contributed to the peak current enhancement and provided better mass transport when used, as seen in later experiments.

Fig 1. (a) The SEM Image of Cobalt oxide nanoparticles showing the morphology of the nanoparticles
with (Inset) Co₃O₄ in 100 nm (b) SEM Image of CoO-nano-CPE, with the paraffin holding the Cobalt
oxide nanoparticles and graphite together (c) EDXA analysis of Cobalt oxide nanoparticles (d) Size
distribution of cobalt oxide nanoparticles using a Zetasizer.

The FTIR characterisation of the cobalt oxide nanoparticles was carried out in the mid-infrared range (MIR) of 400 to 4000 cm⁻¹ (Fig. S1), set in transmittance mode, with a resolution of 4 cm⁻¹ and scanned 32 times. From the FTIR spectrum, the absorption peak at 558 cm⁻¹ is assigned to the Co-O stretching vibration, as octahedrally coordinated by the Co³⁺ ions.

Meanwhile, the 658 cm⁻¹ absorption band is attributed to the bridging vibration in Co²⁺ ion, which in this case is tetrahedrally coordinated [43]. The strong absorbance as seen at 1340 cm⁻¹ could be attributed to traces of unreacted Na-OH. On the other hand, water absorbed by the Co₃O₄ nanoparticles is linked to the 3400 – 3600 cm⁻¹ bands attributed to the O-H stretching and bending [44].

The thermogravimetric analysis (TGA) of the cobalt oxide nanoparticles (Fig. S2) was carried to ascertain the thermal stability of the nanoparticles. The oxygen flow rate of the TGA was 20 mL min⁻¹ and the rate of heating of the sample was 10 °C min⁻¹ using α -alumina crucibles, from room temperature to 900 °C. From the analysis, the TGA profile showed three main step-downs. The first step started with an initial weight loss up to 150 °C which could be mainly attributed to the evaporation of water molecules absorbed on the CoO-NP. The temperature then rises for the second step of weight loss from 210 °C to 500 °C which is attributed to the volatilisation and combustion of organic species with the formation of the pyrochlore phases [45]. The last weight loss step from 500 °C to 650 °C is attributed to the decomposition of the pyrochlore phases to the CoO-NPs pure phases. With no further significant weight loss up to 900 °C on the TGA curve, suggesting the formation of a decomposed cobalt oxide product.

The results of the characterisation confirm the synthesis of cobalt oxide nanoparticles whichwere used for the modification of the carbon paste electrode.

3.2 Electrochemical characterisation of CoO-NPs-CPE

The electrochemical determination of GA (10 mmol L⁻¹, pH 2.0) in phosphate buffer (1 \times 10² mmol L⁻¹) was carried out using bare CPE and the cobalt oxide nanoparticles-modified CPE (CoO-NPs-CPE). Using Cyclic voltammetry as shown in Fig 2(a), at a scan rate of 100 mVs⁻¹ and a scan potential range of 0 to +1.5 V in the absence of GA; there was no anodic peak current. However, when GA (10 mmol L⁻¹, pH 2.0) was measured using CPE and the CoO-

⁴ 220 NPs-CPE, there were noticeable anodic peak currents respectively at a peak potential of 0.61 ⁶ V (Fig. 2(a)). The peak currents produced by CoO-NPs-CPE showed up to a 25% positive ⁸ enhancement of the peak current produced by the CPE. This demonstrates the effect of the ⁹ Co₃O₄ nanoparticles on the CPE electrode, as it increases the electroactive surface area of the ⁹ electrode. The effect of the CoO-NPs on the CPE was also demonstrated in the measurement ¹⁰ of 5 mmol L⁻¹ [Fe(CN)₆]^{3-/4-} redox solution (Fig.2(b)), where the modified electrode (CoO-¹⁰ NPs-CPE) shows an enhanced peak current relative to the peak current of the bare CPE.

Electrochemical impedance spectroscopy (EIS) serves as an effective method to monitor and understand the chemical changes that have occurred in the course of modifying the electrodes from CPE to CoO-NPs-CPE. The EIS measurement was carried out in a $[Fe(CN)_6]^{3-/4-}$ (5 mmol L^{-1}) redox solution and the Nyquist plot produced (Fig 2(c)). The Nyquist plot of the impedance spectra shows a semi-circular domain and smaller linearly inclined domain. The semi-circular portion at the high frequencies indicates the reaction had undergone an electron transfer limited process. Meanwhile, the diameter of the semi-circular portion provides us with the electron-transfer resistance (R_{ct}). The Nyquist plot of the impedance of the bare CPE (black curve) (Fig. 2(c)) exhibits an apparent interfacial electron-resistance (R_{ct}). For the CoO-NPs-CPE the semi-circular part shows a reduced diameter as compared to the bare CPE, depicting an increased and facilitated interfacial electron transfer. This shows that, the use of cobalt oxide nanoparticles to modify the CPE helps to decrease the electron transfer resistance, as compared to the bare CPE.

Fig 2. (a) Cyclic voltammetry of GA (10 mmol L⁻¹) at the CoO-NPs-CPE and bare CPE in 1 x 10^2 mmol L⁻¹ phosphate buffer of pH 2.0 at a scan rate of 100 mVs⁻¹. (b) The cyclic voltammograms of 5 mmol L⁻¹ [Fe(CN)₆]^{3-/4-} redox solution, using bare CPE and CoO-NPs-CPE, (c) Nyquist plot showing the EIS measurements of [Fe(CN)₆]^{3-/4-} (5 mmol L⁻¹) using the bare CPE and CoO-NPs-CPE (inset) The equivalent circuit used for the calculation

The effective reactive surface area of the modified electrode was also studied, using the electrodes to determine KCl (1 x 10² mmol L⁻¹) solution in [Fe(CN)₆]^{3-/4-} (1 mmol L⁻¹) using CV at different scan rates (100, 200, 250, 300, 350, 400, 450 mVs⁻¹). From the voltammograms produced (Fig. S3(a)) the plots of peak currents (I_p) vs square root of scan rate ($v^{1/2}$) (Fig. S3(b)) was generated and used for the determination of reactive surface area, using the Randles-Śev \square ik equation thus: -

$$I_{\rm pa} = (2.69 \ x \ 10^5) n^{2/3} A D^{1/2} v^{1/2} C_0 \dots Eq. 1$$

Where I_{pa} is the anodic peak current, *n* is the number electrons involved in the transfer, in the course of the redox reaction, A is the effective surface area of the electrode, D is the diffusion coefficient for $K_3[Fe(CN)_6]$ which is 7.6 x 10⁻⁶ cm²s⁻¹, v is the scan rate and C is the concentration of K₃[Fe(CN)₆]. From the plot of I_p vs $v^{1/2}$ the anodic peak currents produced the linear regression equation of $I_p = 64.827 v^{1/2} + 176.92$, $R^2 = 0.9983$ and the cathodic peak currents gave $I_p = -97.399 v^{1/2} - 492.72$, $R^2 = 0.9997$. Using the Randles-Śev \Box ik equation, the effective surface area was calculated to be 0.088 cm² for CPE and 0.321 cm² for the CoO-NPs-CPE. From the calculation, it can be seen that the effective surface area of the CPE was less than that of the CoO-NPs-CPE. This shows that, the cobalt oxide nanoparticles served as an effective modifier that increased the surface area of the electrode.

³² 262

3.3 Electrochemical behaviour of gallic acid on the CPE

The electrochemical behaviour of the GA on the surface of the modified and unmodified electrodes was studied using CV. GA (10 mmol L⁻¹, pH 2.0) was oxidised on the faces of three different electrodes, in a phosphate buffer (10 mmol L⁻¹), at a scan rate of 100 mVs¹. As shown in Fig. 3, bare CPE, bulk Co₃O₄ (bulk-CoO-CPE) and CoO-NPs-CPE produced anodic peak currents in the scan potential range of 0 to +1.5 V at room temperature. Meanwhile, there was no peak seen when the electrodes were used on phosphate buffer alone, through the same potential range of 0.0 to +1.5 V. The voltammograms (Fig.3) shows the
anodic peak currents produced by all the electrodes in the presence of GA, as two oxidation
peaks. The first oxidation peak is much more prominent than the second and is the peak used
for the determination of GA.

The oxidation peak current of GA when using bare CPE, bulk-CoO-CPE and CoO-NPs-CPE produced peak current at peak potentials of 0.6 - 0.67 V as can be seen in Fig 3. From these voltammetric results, CoO-NPs-CPE showed the highest oxidation peak current as compared to the other electrodes. This demonstrates the effect of the cobalt oxide nanoparticles in the CPE modification and the GA oxidation, where the peak current was enhanced.

Fig 3. Cyclic voltammograms of 10 mmol L⁻¹ GA at Co₃O₄ nanoparticles-modified CPE, bulk Co₃O₄
nanoparticles-modified CPE and bare CPE in 1 x 10² mmol L⁻¹ phosphate buffer of pH 2.0 at a scan rate of 100 mVs⁻¹

On the other hand, the bulk CoO-CPE that was used for the modification of CPE, produced a negative effect on GA oxidation. The peak current produced by the bulk CoO-CPE was less than those of the bare CPE and CoO-NPs-CPE. Showing peak currents of the electrodes as CoO-NPs-CPE > bare CPE > bulk CoO-CPE. This might be as a result of reduced electroactive surface area attributed to the bulk cobalt oxide, as compared to the cobalt oxide nanoparticles in the carbon paste electrode. This is because the increased electroactive surface area of metal oxide nanoparticles tend to enhance the peak currents of the modified electrode [22,36,46].

The enhanced peak current of the oxidised GA, when CoO-NPs-CPE was used may be due to the higher surface area and the adsorptive capacity of the modified electrode surface. The more GA is adsorbed on the surface of the modified electrode the higher is the accumulation efficiency and increase in the surface concentration. However, it can be observed from the voltammograms shown in Fig 3 that, the peak potential at the determination of GA on CoO-NPs-CPE shows a little positive shift of 0.01 V as compared to that of the bare CPE. This

12 | Page

shows that, the cobalt oxide nanoparticles did not catalyse the oxidation of GA, but enhanced the peak current generated by the oxidation reaction. Had there been any catalysis, the peak potential would have had a negative shift to the bare CPE. The reduction of peak potential would have meant a faster reaction with less overpotential. Hence, the peak current enhancement was not attributed to electrocatalysis but the increased electroactive surface area from the cobalt oxide nanoparticles used

Furthermore, the two oxidation peaks produced by GA on the surfaces of the electrodes in the course of the anodic sweep from 0.0 to 1.6 V is consistent with other GA measurements in literature [22,36,47,48]. The first peak is attributed to the formation of the semiquinone radical, which is then oxidised to the quinone form as the second peak with poor resolution. The first peak is from the galloyl group and the second peak then develops from the third hydroxyl (-OH) group on the galloyl moiety of the gallic acid. This is because, normally the carboxylic group (-COOH) is oxidised at a peak potential of 2.0 V and give off CO₂ as bi-product [49]. Meanwhile, the two oxidation peaks, in this case, occur at 0.61 V and 0.9 V. One electron and one proton are said to have been transferred in each of the reaction processes, without any peak on the reverse scan. This confirms an irreversible reaction. The gallic acid oxidation mechanism (Fig. S4) depicts the oxidation of GA in acidic condition, showing the two peaks.

3.4 Effect of pH on Gallic Acid Oxidation

The effect of the pH on the electroanalytical performance of the CoO-NPs-CPE on the detection of GA, was studied using CV and the voltammograms recorded as seen in Fig. S5(a) and S5(b). The modified electrode was used to measure GA (1 mmol L^{-1}) in phosphate buffer (1 x 10² mmol L⁻¹) at pH values of 2.0, 4.0, 6.0, 8.0 and 10, at a scan rate of 100 mVs⁻¹. From the literature [22] it can be seen that GA oxidation is influenced by a protonation reaction (Fig.

S5), thus suggesting its oxidation is influenced by the pH condition of the buffer. From the voltammograms recorded in Fig. S5(a) and S5(b), the anodic peak currents of GA decreased with the increasing pH values and a negative shift of the anodic peak potentials. The best-resolved peak current from the voltammograms, was the peak current produced at pH 2.0. It could be deduced from the results that the oxidation procedure of gallic acid is related to H⁺ ions of the solution, as seen in Fig. S4. The results show that the GA oxidation peak currents decrease linearly with the increase in pH value of the solution. This produce a non-linear equation of $I_p = -2107 \text{ pH} + 32.755 \text{ and } \mathbb{R}^2 = 0.9203 \text{ (Fig. S5(d))}$. Meanwhile, the plot of peak potential (E_p) vs pH showed a good linear relationship in the pH range of 2.0 to 8.0, that produced a linear regression equation of $E_p = -0.058 \text{ pH} + 0.655 \text{ and } \mathbb{R}^2 = 0.9938$. From the linear regression equation, the slope E_p/pH of the regression line is 58 mV/pH. This is almost equivalent to the Nernstian value of 59 mV/pH at room temperature, for an equal number of protons and electrons transfer reactions. The oxidation reaction of GA on the surface of CoO-NPs-CPE is two electrons and two protons process (Fig. S4). With the positive shift of the oxidation peak potential as the pH decreases, it indicates that, GA needs higher potential for its oxidation at low pH values. However, based on the peak currents produced, pH 2.0 was used for subsequent experiments, which is in line with other works in the literature [22,36,47].

Just looking at the colour changes observed (Fig. S6) with GA in different pH, suggests an influence of pH in GA oxidation. UV spectrophotometer was used to measure the colour changes of the different GA acid solutions at different pHs at 280 nm and the absorbance recorded (Table 1). From the absorbance results, the higher pH solutions show an extensive change in colour which can be attributed to the reduction of GA caused by its exposure to light. This phenomenon just confirms the effect of pH in GA oxidation. Hence all GA solutions were protected from light by wrapping the glassware with aluminium foil and refrigerated at 4 °C.

342

 Table 1. The absorbance values of GA (1 mmol L⁻¹) at different pH at the wavelength of 280nm

3.5 Effect of scan rate on Gallic Acid Oxidation

The influence of the scan rate on the electrooxidation of GA on the surface of the CoO-NPs-CPE was also studied using CV. GA (1 mmol L⁻¹) in phosphate buffer (1 x 10² mmol L⁻ ¹, pH 2.0) was measured, within the scan rate range of $25 - 1000 \text{ mVs}^{-1}$, at room temperature (Fig. S7(a)). From the results of the scan rate, it can be seen that the oxidation peak currents (I_p) of GA increased linearly with the scan rate (v) within the range of $50 - 400 \text{ mVs}^{-1}$. This is an indication that, the electrode interaction process was an adsorption-controlled process, with a linear regression equation of $I_p = 0.1979 v + 11.831$ with $R^2 = 0.9966$ (Fig. S7(b)) [50].

On the other hand, the peak potentials show a slight positive shift as the scan rate increases, with a linear increase in peak currents. This suggests that there is a kinetic limitation in GA reaction at the surface of CoO-NPs-CPE.

3.6 Effect of CoO-NPs concentration on the CPE mixture

The effect of the concentration of cobalt oxide nanoparticles (CoO-NPs) in preparing the modified-carbon paste electrode was studied using CV. Cobalt oxide nanoparticles (0.5 g, 0.1 g, 0.15 g and 0.2 g) were weighed and mixed with graphite powder of appropriate ratio (Making up the graphite to 70% of the CPE and Paraffin 30%; w/w). The modified electrodes were then used for the electrochemical determination of GA (10 mmol L¹) in phosphate buffer solution (1 x 10² mmol L⁻¹, pH 2.0) and a scan rate of 100 mVs⁻¹. From the results (Fig. S8), the CoO-NPs-CPE that had 10% cobalt oxide nanoparticles showed the highest current and most resolved peak. Therefore, the 10% cobalt oxide nanoparticles-modified CPE was subsequently used for further experiments and electrochemical determinations of GA.

Calibration curve and the limit of detection of GA determination 3.7

Differential pulse voltammetry (DPV) was used for the determination of the calibration curve and the limit of electrochemical detection (oxidation) of GA at the surface of the CoO-NPs-CPE. The DPV was recorded at a potential range of 0 to + 1.5 V, the scan rate of 100 mVs⁻ ¹, pulse amplitude of 80 mV and a pulse period of 0.2 s. Using the optimised conditions voltammograms were recorded from the oxidation of increasing concentrations of GA in phosphate buffer (1 x 10² mmol L⁻¹, pH 2.0) on the surface of the CoO-NPs-CPE (Fig. 4). The recorded results were then used for the determination of the calibration curve and the limit of detection (LOD) of the modified electrode.

From the results in Fig. 4, it is observed that the anodic peak currents changed linearly with the increasing GA concentration from the concentration range of 1×10^{-4} to 1×10^{-2} mmol L⁻¹. However, the linearity of the increasing peak current relative to the increase GA concentration was specifically between 1 x 10⁻⁴ to 1 x 10⁻³ mmol L⁻¹, within the examined concentration range of 1 x 10⁻⁴ to 1 x 10⁻². DPV produced voltammograms of GA with two peaks at peak potentials of 0.55 V and 0.9 V, respectively. The peak potential showed a slight positive shift with increasing concentration of gallic acid, as can be seen in Fig 4 (a). The corresponding analytical calibration curve, as shown in Fig 4 (a) inset shows a linear relationship between the peak current (I_p) and the gallic acid concentration as seen in Fig 4 (a)

Fig 4. (a) Differential voltammograms of various concentrations of GA at CoO-nano-CPE in a 1 x 10⁻²mmol L⁻¹ phosphate buffer at pH 2.0 at scan rate of 100 mVs⁻¹, with voltammograms (a-j) that corresponds to the following concentrations a) Blank PBS, b) 1 x 10⁻⁴ mmol L⁻¹, c) 2.5 x 10⁻⁴ mmol L⁻ ¹, d) 5 x 10⁻⁴ mmol L⁻¹, e) 7.5 x 10⁻⁴ mmol L⁻¹, f) 1 x 10⁻³ mmol L⁻¹, g) 2.5 x 10⁻³ mmol L⁻¹, h) 5 x 10⁻³ mmol L⁻¹, i) 7.5 x 10⁻³ mmol L⁻¹, j) 1 x 10⁻² mmol L⁻¹ (inset) Plot of concentration of GA against peak currents. (b) The plot of the Peak Current (I_p) against the concentration of GA, showing the effect of concentration on the electrochemical behaviour of increasing GA concentration, using CoO-nano-CPE at a scan rate of 100 mVs⁻¹

⁹³⁸ 390 The first and major peaks from the DPV voltammograms produced from the different GA
⁹⁴⁰ 391 concentrations were used to create the calibration graph (Fig. 4(a) inset and Fig. 4(b)). The

linear relationship is depicted in the linear regression equation, which is also the calibration curve as $I_p = 11285.86 \text{ C} - 0.07936 (I_P: \mu \text{A}, C: \text{mmol } L^{-1})$ and $R^2 = 0.9934$ from 1 x 10⁻⁴ mmol L^{-1} to 1 x 10⁻² mmol L^{-1} as seen Fig. 4 (b). Meanwhile, the limit of detection (LOD) defined as $(3 \times Std_{Blank})/m$ where Std_{Blank} is the standard deviation of the blank and m is the slope; was found to be 1.52×10^{-4} mmol L⁻¹ (S/N=3) and concentration range 1 x 10⁻⁴ mmol L⁻¹ to 1 x 10⁻² mmol L⁻¹. The CoO-NPs-CPE showed a relatively wide linear dynamic range and the low limit of detection was comparable to others in the literature, where the limit of detections are between the range of 2.09 x 10^{-6} to 1.5 x 10^{-9} mmol L⁻¹ [22,25,26,48]. This is based on the fact that, the maximum permitted GA concentration in the EU and North America antioxidant limit guidelines is 1.2×10^2 mmol L⁻¹ to 6.0×10^3 mmol L⁻¹. The LOD from this electrode is below this limit, hence would be suitable for use in GA determination of GA concentration even at high concentrations.

404 Table 2. Metal Oxide Nanoparticles (MO-NPs) and Metal Nanoparticles composites in different
 405 electrochemical sensor systems for the determination of Gallic acid.

406

3.8 Reproducibility and repeatability of the method

The reproducibility of using CoO-NPs-CPE for the electrochemical determination of GA (5 x
10⁻¹ mmol L⁻¹) was studied using DPV. This was carried out by measuring the GA with six
newly prepared CoO-NPs-CPE (prepared on different days). The results (Fig. S9(a)) show a
relative standard deviation of the peak currents produced was 4.56%. This suggests a relatively
good reproducibility of the preparation procedure of the electrodes.

Furthermore, the repeatability of the method was studied, by taking six independent measurements of GA (5 x 10⁻¹ mmol L⁻¹) in phosphate buffer (1 x 10² mmol L⁻¹, pH 2.0) with a CoO-NPs-CPE. From the result of the measurement (Fig. S9(b)), the relative standard deviation of the voltammograms produced was 0.66%, showing a very good repeatability.

3.9 Stability of the modified electrode

The long-term storage stability of the modified electrode (CoO-NPs-CPE) was studied by keeping the electrode at room temperature, then used twice to detect GA (5 x 10^{-1} mmol L⁻¹) after 15 and 30 days, respectively using DPV. The recorded voltammograms for the first day, 15th dav and 30th day showed peak currents with RSD of 6.32% (Fig. S10), which demonstrated a good stability.

3.10 Interference study

The selectivity of the CoO-NPs-CPE was studied by determination of GA (10 mmol L⁻¹), using DPV conducting interference experiments in the presence of different metals ions (K⁺, Cl⁻, Na⁺, Fe^{3+}) and other organic (antioxidant) compounds (ascorbic acid and quercetin). The use of those cations and organic compounds was because of their potential properties to complex or interfere with the electrochemical determination gallic acid respectively [51]. The results in Fig. S11, showed RSD values of less than 5%, suggesting the ions and the organic compound did not interfere with the determination of GA.

Analytical application of the modified electrode in the 3.11 determination of GA in Wine

The modified carbon paste electrode was used for the determination of GA content in red and white wine. The presence of GA in red and white wine samples have previously been analysed by electrochemical determination and HPLC analysis [22,50]. The wine (Australia and USA) samples were diluted with phosphate buffer (10 mmol L⁻¹) and the pH adjusted to 2.0 with phosphoric acid $(1 \times 10^2 \text{ mmol } \text{L}^{-1})$. The wine samples were then spiked with standard solutions of GA to obtain a GA range from 0 - 2.3 mmol L⁻¹ followed by the recording of their corresponding DPV voltammograms Table 3, (Fig. S12(a) and Fig. S12(b)). The results

18 | Page

showed that with CoO-NPs-CPE exhibited anodic peaks in the absence of GA. This suggests that the cobalt oxide modified CPE electrode detected GA or showed an antioxidant capacity in these wine samples (Fig. S12). The anodic peak current produced by the wine sample is generally attributed to the total antioxidant capacity of the sample as described by Kilmartin et al., (2001), Makhotkina and Kilmartin, (2009) and Lopez-Velez et al., (2003) [52-54]. Hence, the use of the standard addition of GA to confirm the presence of GA in the wine sample. On the other hand the confirmation of the presence of GA in the wine samples was carried out using HPLC (Fig S14) and the results were in line with Ragusa et al., (2019); where they found GA in Negroamaro and Primitivo red wines from Salento. Table 3. Results of the analysis of GA in spiked Red Wine and White Wine Furthermore, in the course of the determination of GA in the red wine sample there was an unusual observation. As the standard solution of GA, that was being used for the spiking was increased, there was a third peak observed in the voltammograms (Fig. S13). In the determination of GA in the red wine using CoO-NPs-CPE, the normal first and second peaks of GA were noticed at peak potentials of 0.59 V and 1.02 V, while, the third unusual peak is seen at a peak potential of 0.76 V. This third peak could be attributed to the activation of another compound in the red wine as the GA concentration increases in the red wine sample. 4. Conclusions

In this work a novel Co_3O_4 nanoparticles-modified carbon paste electrode was successfully prepared and used for the electrochemical determination of GA in phosphate buffer (1 x 10² mmol L⁻¹, pH 2.0) using CV and DPV. The CoO-NPs-CPE showed excellent activity on GA oxidation and an enhancement in peak current of 25% as compared to the bare CPE. The modified carbon paste electrode demonstrated good stability, reproducibility, and repeatability. The selectivity of the modified electrode was demonstrated by using the electrode to determine

GA in the presence of some interferant foreign species, like K⁺, Cl⁻, Na⁺, Fe³⁺, ascorbic acid and quercetin. The characteristics of the modified electrode led to its use in the determination of GA in red and white wine. With the low cost and ease of fabrication, the CoO-NPs-CPE would be a suitable sensor for the determination of other phenolic compounds in food matrices.

467 Acknowledgement

The authors would want to acknowledge the work done by the research and teaching laboratorystaff of the School of Pharmacy and Life Sciences of the Robert Gordon University.

Conflict of interest

471 Dr. Chrys. O. Chikere declares that he has no conflict of interest. Ms. Emma Hobben declares
 472 that she has no conflict of interest. Dr. Nadimul H Faisal declares that he has no conflict of
 473 interest. Professor Paul Kong-Thoo-Lin declares that he has no conflict of interest. Dr. Carlos
 474 Fernandez declares that he has no conflict of interest.

475 Appendix A. Supplementary data

7 476 **Reference**

477 [1] N. Raja, T. Kokulnathan, S.M. Chen, W.C. Liao, T. Sakthi Priya, Amperometric
478 detection of gallic acid based on electrochemically activated screen printed carbon
479 electrode, Int. J. Electrochem. Sci. 12 (2017) 4620–4629.
480 https://doi.org/10.20964/2017.06.22.

- 481 [2] Y.C. Chia, R. Rajbanshi, C. Calhoun, R.H. Chiu, Anti-Neoplastic effects of gallic acid, a major component of toona sinensis leaf extract, on oral squamous carcinoma cells, Molecules. 15 (2010) 8377–8389. https://doi.org/10.3390/molecules15118377.
 - 484 [3] C. Dalla Pellegrina, G. Padovani, F. Mainente, G. Zoccatelli, G. Bissoli, S. Mosconi,

20 | Page

1181							
1183	185		G Veneri A Peruffo G Andrighetto C Rizzi R Chignola Anti-tumour potential of				
1184 1185	405		G. Veneri, A. Feruno, G. Andrighetto, C. Kizzi, K. Cinghola, Anti-tumour potential of				
1186	486		a gallic acid-containing phenolic fraction from Oenothera biennis, Cancer Lett. 226				
1187 1188	487		(2005) 17–25. https://doi.org/10.1016/j.canlet.2004.11.033.				
1189							
1190 1191	488	[4]	B. Bajpai, S. Patil, A new approach to microbial production of gallic acid., Braz. J.				
1192 1193	489		Microbiol. 39 (2008) 708–11. https://doi.org/10.1590/S1517-838220080004000021.				
1194							
1195 1196	490	[5]	J. Jayamani, G. Shanmugam, Gallic acid, one of the components in many plant tissues,				
1197 1198	491		is a potential inhibitor for insulin amyloid fibril formation, Eur. J. Med. Chem. 85				
1199 1200	492		(2014) 352-358. https://doi.org/10.1016/j.ejmech.2014.07.111.				
1201							
1202	493	[6]	I. Pinchuk, H. Shoval, Y. Dotan, D. Lichtenberg, Evaluation of antioxidants: Scope,				
1204 1205	494		limitations and relevance of assays, Chem. Phys. Lipids. 165 (2012) 638-647.				
1206 1207	495		https://doi.org/10.1016/j.chemphyslip.2012.05.003.				
1208							
1209 1210	496	[7]	R. Nowak, M. Olech, N. Nowacka, Plant Polyphenols as Chemopreventive Agents,				
1211 1212	497		Polyphenols Hum. Heal. Dis. 2 (2013) 1289–1307. https://doi.org/10.1016/B978-0-12-				
1213 1214	498		398456-2.00086-4.				
1215 1216	100	гот	A A Zammer O.L. Dadala D.O. Chanda M.V. Haada O.L. Dadhankan Dala af Callia				
1217	499	[8]	A.A. Zanwar, S.L. Badole, P.S. Snende, M. V. Hegde, S.L. Bodnankar, Kole of Gallic				
1218 1219	500		Acid in Cardiovascular Disorders, Elsevier Inc., 2013. https://doi.org/10.1016/B978-0-				
1220 1221	501		12-398456-2.00080-3.				
1222							
1223 1224	502	[9]	M. Tasioula-Margari, E. Tsabolatidou, Extraction, Separation, and Identification of				
1225 1226	503		Phenolic Compounds in Virgin Olive Oil by HPLC-DAD and HPLC-MS,				
1227 1228	504		Antioxidants. 4 (2015) 548-562. https://doi.org/10.3390/antiox4030548.				
1229							
1230 1231	505	[10]	W. Phakthong, B. Liawruangrath, S. Liawruangrath, Determination of gallic acid with				
1232 1233	506		rhodanine by reverse flow injection analysis using simplex optimization, Talanta. 130				
1234 1235	507		(2014) 577-584. https://doi.org/10.1016/j.talanta.2014.06.024.				
1236							
1237 1238		21 P	age				
1239		1'					

1240			
1241			
1242 1243	508	[11]	Z. Chen, R. Bertin, G. Froldi, EC50 estimation of antioxidant activity in DPPH* assay
1244 1245	509		using several statistical programs, Food Chem. 138 (2013) 414-420.
1246 1247 1248	510		https://doi.org/10.1016/j.foodchem.2012.11.001.
1249 1250	511	[12]	S. Parveen, M.S. Aslam, L. Hu, G. Xu, Electrogenerated chemiluminescence protocols
1251 1252 1253	512		and applications, Springer Berlin Heidelberg, 2013.
1254 1255	513	[13]	V. Andrei, E. Sharpe, A. Vasilescu, S. Andreescu, A single use electrochemical sensor
1256 1257	514		based on biomimetic nanoceria for the detection of wine antioxidants, Talanta. 156-
1258 1259 1260	515		157 (2016) 112-118. https://doi.org/10.1016/j.talanta.2016.04.067.
1261 1262	516	[14]	Madhusudhana, G. Manasa, A.K. Bhakta, Z. Mekhalif, R.J. Mascarenhas, Bismuth-
1263 1264	517		nanoparticles decorated multi-wall-carbon-nanotubes cast-coated on carbon paste
1265 1266	518		electrode; an electrochemical sensor for sensitive determination of Gallic Acid at
1267 1268	519		neutral pH, Mater. Sci. Energy Technol. 3 (2020) 174-182.
1269 1270 1271	520		https://doi.org/10.1016/j.mset.2019.10.001.
1272 1273	521	[15]	H. Karimi-Maleh, F. Karimi, Y. Orooji, G. Mansouri, A. Razmjou, A. Aygun, F. Sen,
1274 1275 1276	522		A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt
1270 1277 1278	523		nanostructure hybrid; a highly sensitive approach for determination of cysteamine in
1279 1280	524		the presence of serotonin, Sci. Rep. 10 (2020) 1-13. https://doi.org/10.1038/
1281 1282	525		s41598-020-68663-2.
1283 1284 1285	526	[16]	H. Karimi-Maleh, F. Karimi, M. Alizadeh, A.L. Sanati, Electrochemical Sensors, a
1286 1287	527		Bright Future in the Fabrication of Portable Kits in Analytical Systems, Chem. Rec.
1288 1289	528		(2020). https://doi.org/10.1002/tcr.201900092.
1290 1291 1292	529	[17]	Z. Shamsadin-Azad, M.A. Taher, S. Cheraghi, H. Karimi-Maleh, A nanostructure
1293 1294	530		voltammetric platform amplified with ionic liquid for determination of tert-
1295 1296	531		butylhydroxyanisole in the presence kojic acid, J. Food Meas. Charact. 13 (2019)
1297 1298		22 P	a g e

1299								
1300 1301								
1302 1303	532		1781–1787. https://doi.org/10.1007/s11694-019-00096-6.					
1304 1305	533	[18] J] J. Ostojić, S. Herenda, Z. Bešić, M. Miloš, B. Galić, Advantages of an electrochemic					
1306 1307	534		method compared to the spectrophotometric kinetic study of peroxidase inhibition by					
1308 1309	535		boroxine derivative, Molecules. 22 (2017).					
1310 1311 1312	536		https://doi.org/10.3390/molecules22071120.					
1313 1314	537	[19]	D. Galato, K. Ckless, M.F. Susin, C. Giacomelli, R.M. Ribeiro-do-Valle, a Spinelli,					
1315 1316	538		Antioxidant capacity of phenolic and related compounds: correlation among					
1317 1318 1310	539		electrochemical, visible spectroscopy methods and structure-antioxidant activity.,					
1320 1321	540		Redox Rep. 6 (2001) 243–50. https://doi.org/10.1179/135100001101536391.					
1322 1323	541	[20]	M.J. Rebelo, R. Rego, M. Ferreira, M.C. Oliveira, Comparative study of the					
1324 1325	542		antioxidant capacity and polyphenol content of Douro wines by chemical and					
1320 1327 1328	543		electrochemical methods, Food Chem. 141 (2013) 566-573.					
1320 1329 1330	544		https://doi.org/10.1016/j.foodchem.2013.02.120.					
1331 1332	545	[21]	J. Hoyos-Arbeláez, L. Blandón-Naranjo, M. Vázquez, J. Contreras-Calderón,					
1333 1334 1335	546		Antioxidant capacity of mango fruit (Mangifera indica). An electrochemical study as					
1336 1337	547		an approach to the spectrophotometric methods, Food Chem. 266 (2018) 435-440.					
1338 1339	548		https://doi.org/10.1016/j.foodchem.2018.06.044.					
1340 1341	549	[22]	C.O. Chikere, N.H. Faisal, P. Kong Thoo Lin, C. Fernandez, The synergistic effect					
1342 1343 1344	550		between graphene oxide nanocolloids and silicon dioxide nanoparticles for gallic acid					
1345 1346	551		sensing, J. Solid State Electrochem. 23 (2019) 1795–1809.					
1347 1348	552		https://doi.org/10.1007/s10008-019-04267-9.					
1349 1350	553	[23]	Y. Gao, L. Wang, Y. Zhang, L. Zou, G. Li, B. Ye, Highly sensitive determination of					
1352 1353	554		gallic acid based on a Pt nanoparticle decorated polyelectrolyte-functionalized					
1354 1355	555		graphene modified electrode, Anal. Methods. 8 (2016) 8474-8482.					
1356 1357		23 P	a g e					

1359 1360	E E 4		https://doi.org/10.1020/a6ay02582h			
1361 1362	220		https://doi.org/10.1039/coay0238311.			
1363 1364	557	[24]	C. Xiong, Y. Wang, H. Qu, L. Zhang, L. Qiu, W. Chen, F. Yan, L. Zheng, Highly			
1365 1366	558		sensitive detection of gallic acid based on organic electrochemical transistors with			
1367 1368	559		poly(diallyldimethylammonium chloride) and carbon nanomaterials nanocomposites			
1369 1370	560		functionalized gate electrodes, Sensors Actuators, B Chem. 246 (2017) 235-242.			
1371 1372 1373	561		https://doi.org/10.1016/j.snb.2017.02.025.			
1374 1375	562	[25]	C. Chikere, N.H. Faisal, P.K.T. Lin, C. Fernandez, Zinc oxide nanoparticles modified-			
1376 1377	563		carbon paste electrode used for the electrochemical determination of Gallic acid, J.			
1378 1379	564		Phys. Conf. Ser. 1310 (2019) 012008. https://doi.org/10.1088/1742-			
1380 1381 1382	565		6596/1310/1/012008.			
1383 1384	566	[26]	A. Puangjan, S. Chaiyasith, An efficient ZrO2/Co3O4/reduced graphene oxide			
1385 1386	567		nanocomposite electrochemical sensor for simultaneous determination of gallic acid,			
1387 1388	568		caffeic acid and protocatechuic acid natural antioxidants, Electrochim. Acta. 211			
1389 1390 1391	569		(2016) 273–288. https://doi.org/10.1016/j.electacta.2016.04.185.			
1392 1393	570	[27]	H. Karimi-Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, N.W.			
1394 1395	571		Maxakato, A. Abbaspourrad, A novel electrochemical epinine sensor using			
1396 1397	572		amplified CuO nanoparticles and a: N -hexyl-3-methylimidazolium			
1398 1399 1400	573		hexafluorophosphate electrode, New J. Chem. 43 (2019) 2362–2367. https://			
1401 1402	574	[28]	doi.org/10.1039/c8nj05581e. M. Miraki, H. Karimi-Maleh, M.A. Taher, S. Cheraghi, F. Karimi, S. Agarwal, V.K.			
1403 1404	575		Gupta, Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for			
1405 1406 1407	576		determination of benserazide and levodopa, J. Mol. Liq. 278 (2019) 672-676. http://			
1408 1409	577		doi.org/10.1016/j.molliq.2019.01.081.			
1410 1411	578	[29]	F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, H. Karimi-Maleh, 3D reduced			
1412 1413	579		graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical			
1414 1415 1416		24 P	age			

1417			
1418			
1419 1420	580		synergic effect for development of tert-butylhydroquinone and folic acid sensor,
1421 1422	581		Compos. Part B Eng. 172 (2019) 666-670.
1423 1424 1425	582		https://doi.org/10.1016/j.compositesb.2019.05.065.
1426 1427	583	[30]	H. Karimi-Maleh, C.T. Fakude, N. Mabuba, G.M. Peleyeju, O.A. Arotiba, The
1428 1429	584		determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-
1430 1431 1432	585		Fe3O4/ionic liquid paste electrode as an electrochemical sensor, J. Colloid Interface
1433 1434	586		Sci. 554 (2019) 603-610. https://doi.org/10.1016/j.jcis.2019.07.047.
1435 1436	587	[31]	H. Karimi-Maleh, O.A. Arotiba, Simultaneous determination of cholesterol, ascorbic
1437 1438	588		acid and uric acid as three essential biological compounds at a carbon paste
1439 1440 1441	589		electrode modified with copper oxide decorated reduced graphene oxide
1442 1443	590		nanocomposite and ionic liquid, J. Colloid Interface Sci. 560 (2020) 208-212.
1444 1445	591		https://doi.org/10.1016/j.jcis.2019.10.007.
1446 1447 1448	592	[32]	M. Bijad, H. Karimi-Maleh, M. Farsi, S.A. Shahidi, An electrochemical-amplified-
1449 1450	593		platform based on the nanostructure voltammetric sensor for the determination of
1451 1452	594		carmoisine in the presence of tartrazine in dried fruit and soft drink samples, J. Food
1453 1454	595		Meas. Charact. 12 (2018) 634-640. https://doi.org/10.1007/s11694-017-9676-1.
1455 1456 1457	596	[33]	F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, H. Karimi-Maleh, Analysis of
1458 1459	597		glutathione in the presence of acetaminophen and tyrosine via an amplified electrode
1460 1461	598		with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte, Talanta. 176 (2018)
1462 1463 1464	599		208-213. https://doi.org/10.1016/j.talanta.2017.08.027.
1465 1466	600	[34]	O.E. Fayemi, A.S. Adekunle, Metal Oxide Nanoparticles/Multi-walled Carbon
1467 1468	601		Nanotube Nanocomposite Modified Electrode for the Detection of Dopamine:
1469 1470	602		Comparative Electrochemical Study, J. Biosens. Bioelectron. 06 (2015) 190.
1471 1472 1473	603		https://doi.org/10.4172/2155-6210.1000190.
1474		25 P	age

1476 1477								
1478 1479	604	[35]	J. Tashkhourian, S.F.F. Nami-Ana, A sensitive electrochemical sensor for					
1480 1481	605		determination of gallic acid based on SiO2nanoparticle modified carbon paste					
1482 1483	606		electrode, Mater. Sci. Eng. C. 52 (2015) 103–110.					
1484 1485	607		https://doi.org/10.1016/j.msec.2015.03.017.					
1486 1487	608	[36]	C.O. Chikere, N.H. Faisal, P. Kong-Thoo-Lin, C. Fernandez, Interaction between					
1488 1489	(00	[00]						
1490 1491	609		Amorphous Zirconia Nanoparticles and Graphite: Electrochemical Applications for					
1492 1493	610		Gallic Acid Sensing Using Carbon Paste Electrodes in Wine, Nanomaterials. 10 (2020)					
1494 1495	611		537. https://doi.org/10.3390/nano10030537.					
1496 1497	612	[37]	E. Mehmeti, D.M. Stanković, S. Chaiyo, Ľ. Švorc, K. Kalcher, Manganese dioxide-					
1498 1499 1500	613		modified carbon paste electrode for voltammetric determination of riboflavin,					
1500 1501 1502	614		Microchim. Acta. 183 (2016) 1619–1624. https://doi.org/10.1007/s00604-016-1789-4.					
1503 1504	615	[38]	Y. Zhao, S. Chen, B. Sun, D. Su, X. Huang, H. Liu, Y. Yan, K. Sun, G. Wang,					
1505 1506	616		Graphene-Co3O4 nanocomposite as electrocatalyst with high performance for oxygen					
1507 1508 1509	617		evolution reaction, Sci. Rep. (2015). https://doi.org/10.1038/srep07629.					
1510 1511	618	[39]	ZY. Li, P.T.M. Bui, DH. Kwak, M.S. Akhtar, OB. Yang, Enhanced					
1512 1513	619		electrochemical activity of low temperature solution process synthesized Co3O4					
1514 1515	620		nanoparticles for pseudo-supercapacitors applications, Ceram. Int. 42 (2016) 1879-					
1517 1518	621		1885. https://doi.org/10.1016/J.CERAMINT.2015.09.155.					
1519 1520	622	[40]	Y.I. Choi, H.J. Yoon, S.K. Kim, Y. Sohn, Crystal-facet dependent CO oxidation,					
1521 1522 1522	623		preferential oxidation of CO in H2-rich, water-gas shift reactions, and					
1523 1524 1525	624		supercapacitor application over Co3O4 nanostructures, Appl. Catal. A Gen. 519					
1526 1527	625		(2016) 56-67. https://doi.org/10.1016/J.APCATA.2016.03.027.					
1528 1529 1530	626	[41]	K.F. Wadekar, Nemade K.R., Waghuley S.A., Chemical synthesis of cobalt oxide					
1530 1531 1532	627		(Co3O4) nanoparticles using Co-precipitation method, Res. J. Chem. Int. Sci.					
1533		26 P	age					

1535			
1536			
1537 1538	628		Community Assoc. Res. J. Chem. Sci. Res. J. Chem. Sci. 7 (2017) 53-55.
1539 1540 1541	629		https://doi.org/10.1051/jp4:2001380.
1542 1543	630	[42]	J. Yang, H. Liu, W.N. Martens, R.L. Frost, Synthesis and characterization of Cobalt
1544 1545	631		hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs, J. Phys. Chem. C. 114
1546 1547 1548	632		(2010) 111-119. https://doi.org/10.1021/jp908548f.
1549 1550	633	[43]	N. Rani, G. Rani, M. Kumar, Green synthesis, characterization and optical properties
1551 1552	634		of cobalt oxide nanoparticles by co-precipitation method, Int. J. Adv. Res. Dev. 3
1553 1554 1555	635		(2018) 1195–1198.
1556 1557	636	[44]	L. Estepa, M. Daudon, Contribution of Fourier transform infrared spectroscopy to the
1558 1559	637		identification of urinary stones and kidney crystal deposits, Biospectroscopy. 3 (1997)
1560 1561 1562	638		347–369.
1563 1564	639	[45]	F. Chekin, S.M. Vahdat, M.J. Asadi, Green synthesis and characterization of cobalt
1565 1566	640		oxide nanoparticles and its electrocatalytic behavior, Russ. J. Appl. Chem. 89 (2016)
1567 1568	641		816-822. https://doi.org/10.1134/S1070427216050219.
1570 1571	642	[46]	J. Tashkhourian, S.F. Nami-Ana, A sensitive electrochemical sensor for determination
1572 1573	643		of gallic acid based on SiO2nanoparticle modified carbon paste electrode, Mater. Sci.
1574 1575 1576	644		Eng. C. 52 (2015) 103–110. https://doi.org/10.1016/j.msec.2015.03.017.
1577 1578	645	[47]	J.H. Luo, B.L. Li, N.B. Li, H.Q. Luo, Sensitive detection of gallic acid based on
1579 1580	646		polyethyleneimine- functionalized graphene modified glassy carbon electrode, Sensors
1581 1582 1583	647		Actuators, B Chem. 186 (2013) 84-89. https://doi.org/10.1016/j.snb.2013.05.074.
1584 1585	648	[48]	J. Tashkhourian, S.F.N. Ana, S. Hashemnia, M.R. Hormozi-Nezhad, Construction of a
1586 1587	649		modified carbon paste electrode based on TiO2 nanoparticles for the determination of
1588 1589 1590	650		gallic acid, J. Solid State Electrochem. 17 (2013) 157-165.
1591 1592 1593		27 P	a g e

1594								
1595								
1596 1597 1598	651		https://doi.org/10.1007/s10008-012-1860-y.					
1599 1600	652	[49]	I. Novak, M. Šeruga, Š. Komorsky-Lovrić, Electrochemical characterization of					
1601 1602	653		epigallocatechin gallate using square-wave voltammetry, Electroanalysis. 21 (2009)					
1603 1604 1605	654		1019-1025. https://doi.org/10.1002/elan.200804509.					
1606 1607	655	[50]	L.P. Souza, F. Calegari, A.J.G. Zarbin, L.H. Marcolino-Júnior, M.F. Bergamini,					
1608 1609	656		Voltammetric Determination of the Antioxidant Capacity in Wine Samples Using a					
1610 1611 1612	657		Carbon Nanotube Modified Electrode, J. Agric. Food Chem. 59 (2011) 7620–7625.					
1613 1614	658		https://doi.org/10.1021/jf2005589.					
1615 1616	659	[51]	A.E. Fazary, M. Taha, Y.H. Ju, Iron complexation studies of gallic acid, J. Chem. Eng.					
1617 1618 1619	660		Data. 54 (2009) 35-42. https://doi.org/10.1021/je800441u.					
1620 1621	661	[52]	P. a Kilmartin, H. Zou, A.L. Waterhouse, A Cyclic Voltammetry Method Suitable for					
1622 1623	662		Characterizing Antioxidant Properties of Wine and Wine Phenolics A Cyclic					
1624 1625 1626	663		Voltammetry Method Suitable for Characterizing Antioxidant Properties of Wine and					
1627 1628	664		Wine Phenolics, J. Agric. Food Chem. 49 (2001) 1957–1965.					
1629 1630	665		https://doi.org/10.1021/jf001044u.					
1631 1632 1633	666	[53]	O. Makhotkina, P.A. Kilmartin, Uncovering the influence of antioxidants on					
1633 1634 1635	667		polyphenol oxidation in wines using an electrochemical method: Cyclic voltammetry,					
1636 1637	668		J. Electroanal. Chem. 633 (2009) 165–174.					
1638 1639	669		https://doi.org/10.1016/j.jelechem.2009.05.007.					
1640 1641 1642	670	[54]	M. López-Vélez, F. Martínez-Martínez, C. Del Valle-Ribes, The Study of Phenolic					
1643 1644	671		Compounds as Natural Antioxidants in Wine, Crit. Rev. Food Sci. Nutr. 43 (2003)					
1645 1646	672		233–244. https://doi.org/10.1080/727072831.					
1647 1648 1649 1650	673	73 [55] A. Ragusa, C. Centonze, M.E. Grasso, M.F. Latronico, P.F. Mastrangelo, F. Spar						
1651 1652		28 P	a g e					

1653		
1654 1655		
1656	674	M. Maffia, HPLC analysis of phenols in Negroamaro and primitivo red wines from
1658	675	salento, Foods. 8 (2019) 45. https://doi.org/10.3390/foods8020045.
1659		
1660	676	
1661	070	
1662		
1663		
1665		
1666		
1667		
1668		
1669		
1670		
1671		
1673		
1674		
1675		
1676		
1677		
1678		
1680		
1681		
1682		
1683		
1684		
1685		
1686		
1688		
1689		
1690		
1691		
1692		
1693		
1694		
1696		
1697		
1698		
1699		
1700		
1701		
1702		
1704		
1705		
1706		
1707		
1708		
1709		29 Page
1711		

Electroanalytical determination of gallic acid in Red and White wine samples using Cobalt Oxide Nanoparticles-modified carbonpaste electrodes

Chrys. O. CHIKERE^a, Emma HOBBEN^a, Nadimul Haque FAISAL^b, Paul KONG-THOO-LIN^a, Carlos FERNANDEZ^{a*}

a. School of Pharmacy and Life Sciences, the Robert Gordon University, Aberdeen, AB10 7GJ, United Kingdom

b. School of Engineering, the Robert Gordon University, Aberdeen AB10 7GJ, United Kingdom

* Corresponding Author. Tel. +44 (0) 1224 262559 E-mail: <u>c.fernandez@rgu.ac.uk</u>

LIST OF FIGURES

Fig 1. (a) The SEM Image of Cobalt oxide nanoparticles showing the morphology of the nanoparticles with (Inset) Co_3O_4 in 100 nm (b) SEM Image of CoO-nano-CPE, with the paraffin holding the Cobalt oxide nanoparticles and graphite together (c) EDXA analysis of Cobalt oxide nanoparticles (d) Size distribution of cobalt oxide nanoparticles using a Zetasizer..

Fig 2. (a) Cyclic voltammetry of GA (10 mmol L⁻¹) at the CoO-NPs-CPE and bare CPE in 1 x 10^2 mmol L⁻¹ phosphate buffer of pH 2.0 at a scan rate of 100 mVs⁻¹. (b) The cyclic voltammograms of 5 mmol L⁻¹ [Fe(CN)₆]^{3-/4-} redox solution, using bare CPE and CoO-NPs-CPE, (c) Nyquist plot showing the EIS measurements of [Fe(CN)₆]^{3-/4-} (5 mmol L⁻¹) using the bare CPE and CoO-NPs-CPE (inset) The equivalent circuit used for the calculation.

Fig 3. Cyclic voltammograms of 10 mmol L⁻¹ GA at Co_3O_4 nanoparticles-modified CPE, bulk Co_3O_4 nanoparticles-modified CPE and bare CPE in 1 x 10² mmol L⁻¹ phosphate buffer of pH 2.0 at a scan rate of 100 mVs⁻¹

Fig 4. (a) Differential voltammograms of various concentrations of GA at CoO-nano-CPE in a 1 x 10⁻² mmol L⁻¹ phosphate buffer at pH 2.0 at scan rate of 100 mVs⁻¹, with voltammograms (a-j) that corresponds to the following concentrations a) Blank PBS, b) 1 x 10⁻⁴ mmol L⁻¹, c) 2.5 x 10⁻⁴ mmol L⁻¹, d) 5 x 10⁻⁴ mmol L⁻¹, e) 7.5 x 10⁻⁴ mmol L⁻¹, f) 1 x 10⁻³ mmol L-1, g) 2.5 x 10⁻³ mmol L⁻¹, h) 5 x 10⁻³ mmol L⁻¹, i) 7.5 x 10⁻³ mmol L⁻¹, j) 1 x 10⁻² mmol L⁻¹ (inset) Plot of concentration of GA against peak currents. **(b)** The plot of the Peak Current (I_p) against the concentration of GA, showing the effect of

concentration on the electrochemical behaviour of increasing GA concentration, using CoO-nano-CPE at a scan rate of 100 mVs^{-1}

Fig 1. (a) The SEM Image of Cobalt oxide nanoparticles showing the morphology of the nanoparticles with (Inset) Co₃O₄ in 100 nm (b) SEM Image of CoO-nano-CPE, with the paraffin holding the Cobalt oxide nanoparticles and graphite together (c) EDXA analysis of Cobalt oxide nanoparticles (d) Size distribution of cobalt oxide nanoparticles using a Zetasizer.

Fig 2. (a) Cyclic voltammetry of GA (10 mmol L⁻¹) at the CoO-NPs-CPE and bare CPE in 1 x 10^2 mmol L⁻¹ phosphate buffer of pH 2.0 at a scan rate of 100 mVs⁻¹. (b) The cyclic voltammograms of 5 mmol L⁻¹ [Fe(CN)₆]^{3-/4-} redox solution, using bare CPE and CoO-NPs-CPE, (c) Nyquist plot showing the EIS measurements of [Fe(CN)₆]^{3-/4-} (5 mmol L⁻¹) using the bare CPE and CoO-NPs-CPE (inset) The equivalent circuit used for the calculation.

Fig 3. Cyclic voltammograms of 10 mmol L⁻¹ GA at Co_3O_4 nanoparticles-modified CPE, bulk Co_3O_4 nanoparticles-modified CPE and bare CPE in 1 x 10² mmol L⁻¹ phosphate buffer of pH 2.0 at a scan rate of 100 mVs⁻¹

Fig 4. (a) Differential voltammograms of various concentrations of GA at CoO-nano-CPE in a 0.1 mol L⁻¹ phosphate buffer at pH 2.0 at scan rate of 100 mVs⁻¹, with voltammograms (a-j) that corresponds to the following concentrations a) Blank PBS, b) 1 x 10⁻⁴ mmol L⁻¹, c) 2.5 x 10⁻⁴ mmol L⁻¹, d) 5 x 10⁻⁴ mmol L⁻¹, e) 7.5 x 10⁻⁴ mmol L⁻¹, f) 1 x 10⁻³ mmol L⁻¹, g) 2.5 x 10⁻³ mmol L⁻¹, h) 5 x 10⁻³ mmol L⁻¹, i) 7.5 x 10⁻³ mmol L⁻¹, j) 1 x 10⁻² mmol L⁻¹ (inset) Plot of concentration of GA against peak currents. (b) The plot of the Peak Current (I_p) against the concentration of GA, showing the effect of concentration on the electrochemical behaviour of increasing GA concentration, using CoOnano-CPE at a scan rate of 100 mVs⁻¹

Electroanalytical determination of gallic acid in Red and White wine samples using Cobalt Oxide Nanoparticles-modified carbonpaste electrodes

Chrys. O. CHIKERE^a, Emma HOBBEN^a, Nadimul Haque FAISAL^b, Paul KONG-THOO-LIN^a, Carlos FERNANDEZ^{a*}

a. School of Pharmacy and Life Sciences, the Robert Gordon University, Aberdeen, AB10 7GJ, United Kingdom

b. School of Engineering, the Robert Gordon University, Aberdeen AB10 7GJ, United Kingdom

* Corresponding Author. Tel. +44 (0) 1224 262559 E-mail: c.fernandez@rgu.ac.uk

List of tables

Table 1. The absorbance values of GA (1 x 10⁻³ mol L⁻¹) at different pH at the wavelength of 280nm

	pH Values	Absorbance (Wavelength 280 nm)
1	2.0	2.205 ± 0.02
2	4.0	3.09 ± 0.02
3	6.0	3.52 ± 0.06
4	8.0	33.92 ± 0.6
5	10	37.49 ± 0.15

Table 2. Metal Oxide Nanoparticles (MO-NPs) and Metal Nanoparticles composites in different electrochemical sensor systems for the determination of Gallic acid.

	Electrodes	Method	Medium	Linear	Limit of	Reference
			Analysed	Range (mol	Detection	
				L-1)	(mol L ⁻¹)	
1	ZnO-NPs-CPE	CV, DPV	Red Wine	1 x 10 ⁻⁶ -	1.86 x 10 ⁻⁷	[25]
				5 x 10 ⁻⁵		
2	SiO ₂ -NPs -GrO	CV, DPV	Red and	6.25 x 10 ⁻⁶ to	2.09 x 10 ⁻⁶	[22]
	nanocolloids-GCE		White wine	1 x 10 ⁻³		

3	Amorphous Zirconia-	CV, DPV	Red and	1 x 10 ⁻⁶ -	1.24 x 10 ⁻⁷	[36]
	CPE		White Wine	1 x 10 ⁻³		
4	ZrO ₂ /Co ₃ O ₄ /rGO-FTO	CV, DPV	Fruit juice,	6.24 x 10 ⁻⁹ -	1.56 x 10 ⁻⁹	[26]
			Теа	4.8 x 10 ⁻⁷		
5	Bismuth-NPs-MWCNT-	CV,	Clove and	1 x 10 ⁻⁶ - 1	1.6 x 10 ⁻⁷	[14]
	CPE	Amperometry	Green Tea	x 10 ⁻⁴		
6	TiO ₂ -NPs-CPE	CV, DPV	Green and	2.5 x 10 ⁻⁶ -	9.4 x 10 ⁻⁷	[48]
			Black Tea	1.5 x 10 ⁻⁴		
7	CoO-NPs-CPE	CV, DPV	Red and	1 x 10 ⁻⁴ to 1 x	1.52 x 10 ⁻⁶	This Work
			White Wine	10-2		

Table 3. Results of the analysis of GA in spiked Red Wine and White Wine

		Australian Wine			
Sample	Added (mmol L ⁻¹)	Found (mmol L ⁻¹)	Relative Error	Recovery (%)	
Red Wine	0.0	0.688	-	-	
	0.9	0.787	±13	87	
	1.6	1.599	±0.7	99.93	
	2.31	2.35	±1.73	101.73	
		0.074	1 1		
White Wine	0.0	0.076	-	-	
	0.9	0.995	±10.5	110.5	
	1.6	1.658	±3.63	103.63	
	2.31	2.23	±3.46	96.54	
	United States of America Wine				
	Added (mmol L ⁻¹)	Found (mmol L ⁻¹)	Relative Error	Recovery (%)	
Red Wine	0.0	0.844	-	-	
	0.9	0.931	±3.4	103.4	
	1.6	1.501	±6.19	93.81	
	2.31	2.33	±0.87	100.87	
White Wine	0.0	0.0083			
wine wine	0.9	0.911	±1.2	101.2	
	1.6	1.582	±1.12	98.88	
	2.31	2.271	±1.69	98.31	

Conflict of interest

Dr. Chrys. O. Chikere declares that he has no conflict of interest. Ms. Emma Hobben declares that she has no conflict of interest. Dr. Nadimul H Faisal declares that he has no conflict of interest. Professor Paul Kong-Thoo-Lin declares that he has no conflict of interest. Dr. Carlos Fernandez declares that he has no conflict of interest.

Electroanalytical determination of gallic acid in Red and White wine samples using Cobalt Oxide Nanoparticles-modified carbonpaste electrodes

Chrys. O. CHIKERE^a, Emma HOBBEN^a, Nadimul Haque FAISAL^b, Paul Kong THOO-LIN^a, Carlos FERNANDEZ^{a*}

a. School of Pharmacy and Life Sciences, the Robert Gordon University, Aberdeen, AB10 7GJ, United Kingdom

b. School of Engineering, the Robert Gordon University, Aberdeen AB10 7GJ, United Kingdom

* Corresponding Author. Tel. +44 (0) 1224 262559 E-mail: <u>c.fernandez@rgu.ac.uk</u>

Electronic Supplementary Material

S1 The FTIR Characterisation

Fig. S1. FT-IR Image showing the spectra of Co₃O₄ nanoparticles

S2 The Thermogravimetric Analysis (TGA)

Fig S2. TGA result in the analysis of cobalt oxide nanoparticles

Fig. S3. (a) Cyclic voltammograms of $[Fe(CN)_6]^{3-/4-}$ (1 mmol L⁻¹) measured with CoO-NPs-CPE at increasing scan rates of 100-450 mVs⁻¹ (b) Plots of I_p vs $v^{1/2}$ used for the calculation of the reactive surface area.

S4 The Reaction Mechanism of Gallic Acid oxidation

Fig. S4. The reaction mechanism of the oxidation of Gallic acid, showing the two peaks (semiquinone radical and the quinone)

S5 Effect of pH on Gallic acid Oxidation

Fig. S5 (a) Cyclic voltammograms of 1 x 10⁻³ mol L⁻¹ GA in the different pH range of 2.0 to 10.0 at a scan rate 100 mVs⁻¹ (b) Zoomed section of the voltammograms (c) A graph of pH against the peak currents (d) Non-linear plot of peak current (*I*_p) vs pH (e) Linear plot of peak potential (*E*_p) vs pH

S6. Colour changes of GA solutions at different pH

Fig. S6. Images of Gallic acid solutions at different pH, showing a very dark solution at a pH 10, that becomes brighter as the pH reduces to pH 8 to pH 2.

S7. Effect of Scan rate on Gallic acid oxidation

Fig. S7 (a) CV voltammograms of 1 x 10⁻³ mol L⁻¹ GA in 1 x 10⁻¹ mol L⁻¹ Phosphate buffer solution at pH 2.0, showing different scan rates ranging from 50 -1000 mVs⁻¹ (b) Plot of the scan rates from 50-400 mVs⁻¹ against the peak current.

S8. Effect of Cobalt Oxide nanoparticles concentration on the CPE mixture

Fig.S8 Voltammograms showing changes in the constitution of the carbon paste electrode using 5%, 10%, 15% and 20% Cobalt oxide nanoparticles constituted in the modified CPE. This was used to determine 1 x 10⁻² mol L⁻¹ GA in 1 x 10⁻¹ mol L⁻¹ phosphate buffer at pH 2.0 using CV at a scan rate of 100 mVs⁻¹

S9 Reproducibility and repeatability of the method

Fig. S9 DPV voltammograms of 5 x 10⁻⁴ mol L⁻¹ Gallic acid showing **(a)** Reproducibility of the CoO nanoparticles modified CPE **(b)** Repeatability of the CoO nanoparticles modified CPE

S10 Stability of the method

Fig. S10. DPV voltammograms of 5 x 10⁻⁴ mol L⁻¹ Gallic acid, showing voltammograms measured by the same electrodes after 0 days, 15 days and 30 days: showing stability.

S11. Interference Study

	Interfering Species and Ions	Concentration (mol L-1)	Relative Standard Deviation (%)
1	K+	1 x 10 ⁻¹	±2.54
2	Cŀ	1 x 10 ⁻¹	±2.77
3	Na ⁺	1 x 10 ⁻¹	±4.51
4	Fe ³⁺	1 x 10 ⁻¹	±0.61
5	Ascorbic Acid	1 x 10 ⁻³	±3.7
6	Quercetin	1 x 10 ⁻³	±4.16

Table S2. Effects of various foreign species on the determination of GA (1 x 10⁻² mol L⁻¹)

S12. Voltammograms of GA determination in Wine Samples

Fig. 12. (a) Voltammograms of aliquots of 1 x 10⁻² mol L⁻¹ of GA added into White Wine using a standard addition method (b) Calibration curve of the standard addition of Gallic acid.

S13. Voltammograms of GA determination in Wine Samples

Fig 13. (a) Voltammograms of aliquots of $1 \ge 10^{-2} \mod L^{-1}$ of GA added into Red Wine using a standard addition method and the presence of the third peak.

S14. HPLC Analysis of wine samples to validate the presence of GA in the Wines.

Fig 14. (a) Chromatogram of Gallic acid standard at retention time 3.13 mins. Giving the time Gallic acid would be expected in a Red or White wine.

Fig 14. (b) Chromatogram of Red Wine showing the Gallic acid peak at retention 3.16 min.

Fig 14. (c) Chromatogram of White Wine showing the Gallic acid peak at the retention time 3.12 min