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 For the first time synthesised cobalt oxide nanoparticles modified CPE is used for the

electrochemical determination of gallic acid
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producing a third peak current at increased GA concentration in Red wine.
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12 Abstract
13 Beverages like wines, have exhibited high level of antioxidant capacity, specifically from 

14 compounds like Gallic acid (GA) and their derivatives. GA has shown great importance in the 

15 food industry and pharmaceutical industry as a food additive, anti-tumour, anti-viral, and anti-

16 mutagenic agent. Red and white wines from the USA and Australia were electrochemically 

17 analysed for GA, using Cobalt oxide nanoparticles modified carbon paste electrode (CoO-NPs-

18 CPE). The electrochemical studies demonstrated an efficient GA (10 mmol L-1) oxidation, with 

19 enhanced peak currents from 302 µA to about 405 µA (25 % increase). The limit of detection 

20 (LOD) of the modified electrode was 1.52 x 10-4 mmol L-1 within the concentration range of 1 

21 x 10-4 to 1 x 10-3 mmol L-1. The CoO-NPs-CPE was successfully used, for the quantitative 

22 analysis of GA in red and white wine, showing average recoveries of 97% and 101% 

23 respectively. Hence our electrode can be applied for GA quantification in wine matrices.

24 Keywords: : Cobalt oxide nanoparticles, Carbon paste electrode, Phenolic acids, Gallic acid,  

25 Wine samples 
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26 1. Introduction

27 Gallic acid (GA) also known as 3,4,5-trihydrobenzoic acid is a natural phenolic

28 compound, which can be found in plants like tea, grapes, blueberries, walnuts, apples and herbs 

29 [1]. GA has been used widely in the food industry as a food additive and as an antiradical, anti-

30 histaminic, anti-mutagenic, anti-tumour and anti-inflammatory chemical compound in the 

31 pharmaceutical industry [2–5]. With these properties, GA is seen as an important compound in 

32 human diets. This is because it helps in reducing the risk of disease development, by preventing 

33 or slowing down molecular oxidation known as oxidative stress in the human body [6]. It 

34 should be noted that, oxidative stress has been linked to human diseases such as Alzheimer’s 

35 disease, Parkinson’s disease, cancer, cardiovascular diseases and diabetes [7,8]. 

36 With these important uses of GA in the food, drink and pharmaceutical industries, there 

37 has been a need for very good analytical methods for its determination in real samples. The 

38 analytical methods that have been traditionally used for the determination of GA are high 

39 performance liquid chromatography (HPLC) [9], flow injection analysis [10], 

40 spectrophotometry [11], and flow injection-chemiluminescence [12]. Although these 

41 techniques have shown high sensitivity, they have also needed very expensive equipment, 

42 skilled operators, elaborate procedures, and complicated sample preparations. However, 

43 electrochemical methods [13,14] have shown advantages that include, high sensitivity, low 

44 cost, high selectivity, very short measurement time and are easy to use as compared to the other 

45 methods [15–17]. They also provide more information about the reaction mechanism of the 

46 compound being analysed [18–21]. 

47 Several carbon-based electrochemical sensors have been developed for the 

48 determination of GA in food matrices. These include modified glassy carbon electrode (GCE) 

49 [22,23], nanomaterials functionalized carbon-based composite electrodes [24], modified- 

50 screen-printed electrodes [1] and modified carbon paste electrodes (CPE) [25,26]. Among all 
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51 the electrochemical methods and electrode modifications available, carbon paste electrodes 

52 modifications appear to be the technique of choice [27,28]. This is due to the low cost of 

53 modifying carbon paste electrodes, very low background current, flexibility, ease to effect 

54 modification, quick regenerative surface, wide potential window, and its good electrochemical 

55 sensing properties, like low ohmic resistance [29–31].

56 Carbon paste electrodes (CPEs) are a mixture of carbon (graphite) powder and pasting 

57 liquid or binder like paraffin oil. Different types of carbonaceous materials and modifiers have 

58 been used to develop CPE using different methods. These include carbon nanotubes, graphite, 

59 carbon nanofibers, polymers, and nanomaterials [32,33]. These modified carbon paste 

60 electrodes have been used as working electrodes in electrochemical experiments aimed at 

61 identifying, characterising and quantifying GA. Fayemi & Adekunle, (2015) modified multi-

62 walled carbon nanotubes doped with metal oxide nanoparticles (nickel oxide, zinc oxide and 

63 iron oxide nanoparticles), where they were used for the determination of dopamine. On the 

64 other hand SiO2 nanoparticles  and TiO2 nanoparticles [35] respectively, have been used to 

65 modify carbon paste electrode, where they were used for the successful determination of GA 

66 in, tap water, orange juice and tea samples (black and green teas). However, there are no 

67 evidence of metal oxide nanoparticles modified carbon paste electrode that have used for the 

68 electrochemical determination of GA in red and white wine samples. 

69 In this era of nanomaterials, different metal oxide nanoparticles have been used to 

70 modify CPE for the electrochemical determination of many organic compounds. Most recently 

71 ZnO nanoparticles and amorphous zirconium oxide nanoparticles modified CPE have been 

72 used for the determination of GA in wine samples [25,36]. With the inherent capacity of 

73 transition metals towards electrocatalysis of organic compounds, there was a need to explore 

74 other transition metal oxides for the electrochemical determination of GA in food samples. 

75 Cobalt oxide (Co3O4) nanoparticle is a transition metal oxide nanoparticle that has been used 

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177



4 | P a g e

76 in electrochemical sensor fabrication. Many different earth-abundant metal oxide nanoparticles 

77 like cobalt oxide [26], manganese oxide [37] and nickel oxide [34], have been used as electrode 

78 materials for electrochemical determinations. Amongst these compounds, Co3O4 nanoparticles 

79 have attracted much interest because of their catalytic ability, large surface area, high activity 

80 and strong stability [38]. The cobalt oxide nanoparticles have been used in different fields as 

81 catalysts, energy storage units and electrochemical sensors [39,40]. Puangjan and Chaiyasith 

82 [26] produced a novel Co3O4 and ZrO2 nanoparticles nanocomposite with reduced graphene

83 oxide on to a fluorine-doped electrode for the determination of GA. Their nanocomposite 

84 electrode was used for the simultaneous determination of GA, caffeic acid (CA) and 

85 protocatechuic acid (PA). Co3O4 nanoparticles acted as a composite with zirconia in the 

86 determination of GA, CA, and PA. However, the recorded properties of cobalt oxide 

87 nanoparticles alone, have not previously been explored for the development of electrochemical 

88 sensors for GA determination in wine matrices. Hence, for the first time this study was 

89 performed, to use the physicochemical properties of Co3O4 nanoparticles to produce a novel 

90 nanomaterial-based electrochemical sensor for fast, sensitive, cost-effective, and selective 

91 analysis of GA in wine samples.

92 2. Experimental

93 2.1 Chemicals and reagents

94 All chemicals and reagents were of analytical grade and were used as purchased with no further 

95 purification unless otherwise stated. Gallic acid (anhydrous), cobalt (II) nitrate hexahydrate 

96 (Co(NO3)2.6H2O) (purity: ≥ 98%) and sodium hydroxide pellets (NaOH), Graphite powder and 

97 paraffin oil were purchased from Sigma Aldrich (London, UK). Potassium ferricyanide  

98 (purity: ≥ 99%), potassium chloride (KCl), disodium hydrogen orthophosphate (Na2HPO4), 

99 sodium dihydrogen orthophosphate (NaH2PO4) were from Merck (Darmstadt, Germany). 

100 Stock of buffers and gallic acid solutions were kept protected from light at 4 °C. All aqueous 
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101 solutions used in this study were made with doubly distilled water with a 18.2         MΩ.cm 

102 resistance value. Wine samples were made from commercially available wines from a local 

103 store in the city of Aberdeen. 

104 2.2 Instrumentation and Apparatus

105 Voltammetric measurements and all other electrochemical measurements were carried out 

106 using Ivium vertex One potentiostat-galvanostat with Ivium software (Eindhoven, 

107 Netherlands). A standard three-electrode cell set-up was used for all the studies, including the 

108 modified-CPE as the working electrode, a platinum wire electrode as the auxiliary electrode 

109 and an Ag/AgCl (saturated KCl) as a reference electrode. Meanwhile, all potentials recorded 

110 in the study were done in reference to the Ag/AgCl reference electrode. The morphology of the 

111 electrode surface and elemental analysis were studied using scanning electron microscopy 

112 (SEM) and an energy dispersive x-ray analysis (EDXA) spectrum. The measurements were 

113 done with a Carl Zeiss variable pressure scanning electron microscope (Oberkochen, 

114 Germany), fitted with an Oxford Instrument and energy dispersive X-ray analysis system. The 

115 Fourier transform infrared (FTIR) spectrometer used for the chemical bonding analysis was a 

116 Thermo Scientific Nicolet iS50 FTIR Spectrometer (Waltham, MA, USA). The 

117 thermogravimetric analysis (TGA) measurement was carried out on a PerkinElmer STA 6000 

118 instrument (Waltham, Massachusetts, USA) in an oxygen atmosphere. The size 

119 characterisation of the synthesised Co3O4 nanoparticles, was done by dynamic light scattering 

120 (DLS) using a Malvern Zetasizer Nano ZS (Malvern, UK). All pH measurements were done 

121 with a Fisher Scientific Mettler Toledo Benchtop pH meter (Loughborough, UK). Meanwhile, 

122 pH adjustments of buffer solutions were done with sodium hydroxide (1 x 102 mmol L-1) for 

123 pH increase or phosphoric acid (10 mmol L-1) to lower the pH. HPLC analysis was carried out 

124 with a Shimadzu HPLC system consisting of LC-20AD prominence liquid chromatography, 
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125 using a SIL-20A autosampler and an SPD-M20A diode array detector (Kyoto, Japan). The 

126 columns used for the measurements were the C18 ODS Hypersil-Keystone LC -18 (150 x 4.6 

127 mm i.d., 3mm) in conjunction with a Supelguard LC 18 (2cm x 2.1 mm i.d.) guard cartridge 

128 column. The software used for all the analysis was the Shimadzu LC solution software (Kyoto, 

129 Japan).

130 2.3 Synthesis of Cobalt Oxide nanoparticles

131 Cobalt oxide nanoparticles (Co3O4) was synthesised by a co-precipitation method previously 

132 described [41]. Cobalt (II) nitrate hexahydrate (Co(NO3)2.6H2O) (5.82 g in 20 ml; 1M) and 

133 NaOH in a 1:2 M ratio (molar ratio), were dissolved in distilled water (20 mL), while stirring 

134 constantly. Using the molar ratio, NaOH solution (2 x 103 mmol L-1) was added dropwise to 

135 Co(NO3)2.6H2O ( 1 x 103 mmol L-1), under constant stirring for 2 hr at room temperature ( ~ 

136 25 °C). The solution mixture was then left to settle overnight at room temperature. Cobalt 

137 hydroxide sludge was found to settle at the bottom of the flask the next day. Meanwhile, the 

138 excess solution on top of the sludge was carefully decanted and the precipitated sludge was 

139 then separated using a centrifuge (15000 RPM for 15 mins). The residue was then heated for 5 

140 hrs at 80 °C to form a black colour compound (~ 80 % yield).

141 The cobalt oxide nanoparticles synthesised were characterised by measuring the particle sizes 

142 with a Zetasizer and other physical structures studied, using SEM, EDXA, and FTIR.

143 2.4 Preparation of the modified Carbon Paste Electrodes

144 Graphite powder and paraffin oil binder mixture ratio for the bare CPE were optimised for the 

145 best results. The bare CPE was prepared by thoroughly mixing and grinding in graphite powder 

146 and paraffin oil (70:30; w/w) ratio into a homogenous paste using an agate mortar and pestle 

147 for 30 min. The homogenous paste was then transferred into a solvent-resistant Teflon tube of 
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148 2.87 mm internal radius and smoothened on a weighing paper. The other end of the filled Teflon 

149 tube was connected to copper wire to provide a connection. The modified CPE was prepared 

150 by mixing graphite powder, Co3O4 nanoparticles and paraffin oil in a 60:10:30 (w/w/w) ratio. 

151 The mixture was thoroughly grounded with an agar mortar and pestle for about 30 mins and 

152 then the paste was transferred into a Teflon tube.

153 2.5 Preparation of wine samples

154 The measurement of the GA content in the wine samples was carried out using differential 

155 pulse voltammetry (DPV), by recording the voltammograms produced by spiked samples of 

156 the wine. Each wine sample (1 mL) was made up to 10 mL in a voltammetric cell with 

157 phosphate buffer solution (10 mmol L-1, pH 2.0).  In all the samples, their pH was adjusted to 

158 2.0 with phosphoric acid (10 mmol L-1). In measuring the spiked samples of the wine, aliquots 

159 amount of gallic acid solution ((1 mL, 10 mmol L-1) were added to the wine sample, while 

160 stirring for 2 mins followed by the recording of the voltammogram.

161 2.6 Electrochemical measurements

162 The electrochemical oxidation of gallic acid on the surface of the cobalt oxide nanoparticles-

163 modified carbon paste electrode (CoO-NPs-CPE) was carried out using CV and DPV. The 

164 cyclic voltammograms were carried out in a potential scan range of 0.0 to +1.5 V and a scan 

165 rate of 100 mVs-1. For the differential pulse voltammetry, measurements were done at a 

166 potential scan range of 0.0 to +1.5 V, with a pulse amplitude of 0.08 V and a pulse period of 

167 0.2 s. All the electrochemical analysis of GA on the surface of all the carbon paste electrodes, 

168 were done in phosphate buffer (1 x 102 mmol L-1, pH 2.0) at room temperature.

169 Electrochemical impedance spectroscopy (EIS) of the bare and modified CPE was carried out 

170 to ascertain the impedance changes between the bare and modified electrodes. The frequency 
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171 range of 100 KHz-0.1 Hz was used for the EIS measurement at a potential of 0.4 V in 1 x 102 

172 mmol L-1 KCl containing 5 mmol L-1 [Fe(CN)6]3-/4- redox solution.

173 3. Results and discussion

174 3.1 Characterisation of Co3O4 nanoparticles-modified CPE

175 The synthesised Co3O4 nanoparticles were analysed with SEM, EDX, FTIR, and TGA. The 

176 SEM and EDXA were used to study the morphology and elemental composition of the 

177 nanoparticles. Fig 1 shows the SEM images and EDXA analysis, with the morphology, 

178 microstructure, and the elemental composition of the Co3O4 nanoparticles (Fig 1(a)) and the 

179 CoO-NP-CPE (Fig 1(b)). The SEM images show non-homogenous size distributions of cobalt 

180 oxide nanoparticles, ranging from 60 nm to 280 nm as demonstrated by the Dynamic Light 

181 Scattering (DLS) results (Fig. 1(d)). This is in line with Yang, Liu, Martens, & Frost, (2010) 

182 who showed particles sizes of 100 nm to 600 nm. The elemental composition (Fig 1(c)) of the 

183 nanosized cobalt oxide compound shows the proportional atomic ratio (3:4) of cobalt and 

184 oxygen. Meanwhile, the CoO-NP-CPE paste (Fig 1(b)), shows also a non-homogeneous 

185 morphology, with the milky coloured presence of the paraffin oil binder. The nanosized 

186 composition of the CoO-NP-CPE as shown in Fig 1(b) contributed to the peak current 

187 enhancement and provided better mass transport when used, as seen in later experiments.   

188 Fig 1. (a) The SEM Image of Cobalt oxide nanoparticles showing the morphology of the nanoparticles 

189 with (Inset) Co3O4 in 100 nm (b) SEM Image of CoO-nano-CPE, with the paraffin holding the Cobalt 

190 oxide nanoparticles and graphite together (c) EDXA analysis of Cobalt oxide nanoparticles (d) Size 

191 distribution of cobalt oxide nanoparticles using a Zetasizer. 

192 The FTIR characterisation of the cobalt oxide nanoparticles was carried out in the mid-infrared 

193 range (MIR) of 400 to 4000 cm-1 (Fig. S1), set in transmittance mode, with a resolution of 4 

194 cm-1 and scanned 32 times. From the FTIR spectrum, the absorption peak at 558 cm-1 is

195 assigned to the Co-O stretching vibration, as octahedrally coordinated by the Co3+ ions. 

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472



9 | P a g e

196 Meanwhile, the 658 cm-1 absorption band is attributed to the bridging vibration in Co2+ ion, 

197 which in this case is tetrahedrally coordinated [43]. The strong absorbance as seen at 1340 cm-1 

198 could be attributed to traces of unreacted Na-OH. On the other hand, water absorbed by the 

199 Co3O4 nanoparticles is linked to the 3400 – 3600 cm-1 bands attributed to the O-H stretching 

200 and bending [44].

201 The thermogravimetric analysis (TGA) of the cobalt oxide nanoparticles (Fig. S2) was carried 

202 to ascertain the thermal stability of the nanoparticles. The oxygen flow rate of the TGA was 20 

203 mL min-1 and the rate of heating of the sample was 10 °C min-1 using α-alumina crucibles, from 

204 room temperature to 900 °C. From the analysis, the TGA profile showed three main step-

205 downs. The first step started with an initial weight loss up to 150 °C which could be mainly 

206 attributed to the evaporation of water molecules absorbed on the CoO-NP. The temperature 

207 then rises for the second step of weight loss from 210 °C to 500 °C  which is attributed to the 

208 volatilisation and combustion of organic species with the formation of the pyrochlore phases 

209 [45]. The last weight loss step from 500 °C to 650 °C is attributed to the decomposition of the 

210 pyrochlore phases to the CoO-NPs pure phases. With no further significant weight loss up to 

211 900 °C on the TGA curve, suggesting the formation of a decomposed cobalt oxide product. 

212 The results of the characterisation confirm the synthesis of cobalt oxide nanoparticles which 

213 were used for the modification of the carbon paste electrode.

214 3.2 Electrochemical characterisation of CoO-NPs-CPE 

215 The electrochemical determination of GA (10 mmol L-1, pH 2.0) in phosphate buffer (1 x 102 

216 mmol L-1) was carried out using bare CPE and the cobalt oxide nanoparticles-modified CPE 

217 (CoO-NPs-CPE). Using Cyclic voltammetry as shown in Fig 2(a), at a scan rate of 100 mVs-1 

218 and a scan potential range of 0 to +1.5 V in the absence of GA; there was no anodic peak 

219 current. However, when GA (10 mmol L-1, pH 2.0) was measured using CPE and the CoO-
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220 NPs-CPE, there were noticeable anodic peak currents respectively at a peak potential of 0.61 

221 V (Fig. 2(a)). The peak currents produced by CoO-NPs-CPE showed up to a 25% positive 

222 enhancement of the peak current produced by the CPE. This demonstrates the effect of the 

223 Co3O4 nanoparticles on the CPE electrode, as it increases the electroactive surface area of the 

224 electrode. The effect of the CoO-NPs on the CPE was also demonstrated in the measurement 

225 of 5 mmol L-1 [Fe(CN)6]3-/4- redox solution (Fig.2(b)), where the modified electrode (CoO-

226 NPs-CPE) shows an enhanced peak current relative to the peak current of the bare CPE. 

227 Electrochemical impedance spectroscopy (EIS) serves as an effective method to monitor and 

228 understand the chemical changes that have occurred in the course of modifying the electrodes 

229 from CPE to CoO-NPs-CPE. The EIS measurement was carried out in a [Fe(CN)6]3-/4- (5 mmol 

230 L-1) redox solution and the Nyquist plot produced (Fig 2(c)). The Nyquist plot of the impedance

231 spectra shows a semi-circular domain and smaller linearly inclined domain. The semi-circular 

232 portion at the high frequencies indicates the reaction had undergone an electron transfer limited 

233 process. Meanwhile, the diameter of the semi-circular portion provides us with the electron-

234 transfer resistance (Rct). The Nyquist plot of the impedance of the bare CPE (black curve) (Fig 

235 2(c)) exhibits an apparent interfacial electron-resistance (Rct). For the CoO-NPs-CPE the semi-

236 circular part shows a reduced diameter as compared to the bare CPE, depicting an increased 

237 and facilitated interfacial electron transfer. This shows that, the use of cobalt oxide 

238 nanoparticles to modify the CPE helps to decrease the electron transfer resistance, as compared 

239 to the bare CPE.

240 Fig 2. (a)  Cyclic voltammetry of GA (10 mmol L-1) at the CoO-NPs-CPE and bare CPE in 1 x 102 

241 mmol L-1 phosphate buffer of pH 2.0 at a scan rate of 100 mVs-1. (b) The cyclic voltammograms of 5 

242 mmol L-1 [Fe(CN)6]3-/4- redox solution, using bare CPE and CoO-NPs-CPE, (c) Nyquist plot showing 

243 the EIS measurements of [Fe(CN)6]3-/4- (5 mmol L-1) using the bare CPE and CoO-NPs-CPE (inset) The 

244 equivalent circuit used for the calculation 
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245 The effective reactive surface area of the modified electrode was also studied, using the 

246 electrodes to determine KCl (1 x 102 mmol L-1) solution in [Fe(CN)6]3-/4- (1 mmol L-1) using 

247 CV at different scan rates (100, 200, 250, 300, 350, 400, 450 mVs-1). From the voltammograms 

248 produced (Fig. S3(a)) the plots of peak currents (Ip) vs square root of scan rate (ν1/2) (Fig. S3(b)) 

249 was generated and used for the determination of reactive surface area, using the Randles-

250 Śevƈik equation thus: - 

251 …….. Eq. 1𝐼pa = (2.69 𝑥 105)𝑛
2

3 𝐴 𝐷
1

2 𝜈
1

2𝐶0

252 Where Ipa is the anodic peak current, n is the number electrons involved in the transfer, in the 

253 course of the redox reaction, A is the effective surface area of the electrode, D is the diffusion 

254 coefficient for K3[Fe(CN)6] which is 7.6 x 10-6 cm2s-1, ν is the scan rate and C is the 

255 concentration of K3[Fe(CN)6]. From the plot of Ip vs ν1/2 the anodic peak currents produced the 

256 linear regression equation of Ip = 64.827 ν1/2 + 176.92, R2 = 0.9983 and the cathodic peak 

257 currents gave Ip = -97.399 ν1/2 - 492.72, R2 = 0.9997. Using the Randles-Śevƈik equation, the 

258 effective surface area was calculated to be 0.088 cm2 for CPE and 0.321 cm2 for the CoO-NPs-

259 CPE. From the calculation, it can be seen that the effective surface area of the CPE was less 

260 than that of the CoO-NPs-CPE. This shows that, the cobalt oxide nanoparticles served as an 

261 effective modifier that increased the surface area of the electrode.

262 3.3 Electrochemical behaviour of gallic acid on the CPE

263 The electrochemical behaviour of the GA on the surface of the modified and 

264 unmodified electrodes was studied using CV. GA (10 mmol L-1, pH 2.0) was oxidised on the 

265 faces of three different electrodes, in a phosphate buffer (10 mmol L-1), at a scan rate of 100 

266 mVs1. As shown in Fig. 3, bare CPE, bulk Co3O4 (bulk-CoO-CPE) and CoO-NPs-CPE 

267 produced anodic peak currents in the scan potential range of 0 to +1.5 V at room temperature. 

268 Meanwhile, there was no peak seen when the electrodes were used on phosphate buffer alone, 
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269 through the same potential range of 0.0 to +1.5 V.  The voltammograms (Fig.3) shows the 

270 anodic peak currents produced by all the electrodes in the presence of GA, as two oxidation 

271 peaks. The first oxidation peak is much more prominent than the second and is the peak used 

272 for the determination of GA.

273 The oxidation peak current of GA when using bare CPE, bulk-CoO-CPE and CoO-

274 NPs-CPE produced peak current at peak potentials of 0.6 - 0.67 V as can be seen in Fig 3. From 

275 these voltammetric results, CoO-NPs-CPE showed the highest oxidation peak current as 

276 compared to the other electrodes. This demonstrates the effect of the cobalt oxide nanoparticles 

277 in the CPE modification and the GA oxidation, where the peak current was enhanced.

278 Fig 3. Cyclic voltammograms of 10 mmol L-1 GA at Co3O4 nanoparticles-modified CPE, bulk Co3O4 

279 nanoparticles-modified CPE and bare CPE in 1 x 102 mmol L-1 phosphate buffer of pH 2.0 at a scan 

280 rate of 100 mVs-1

281 On the other hand, the bulk CoO-CPE that was used for the modification of CPE, produced a 

282 negative effect on GA oxidation. The peak current produced by the bulk CoO-CPE was less 

283 than those of the bare CPE and CoO-NPs-CPE. Showing peak currents of the electrodes as 

284 CoO-NPs-CPE > bare CPE > bulk CoO-CPE. This might be as a result of  reduced electroactive 

285 surface area attributed to the bulk cobalt oxide, as compared to the cobalt oxide nanoparticles 

286 in the carbon paste electrode. This is because the increased electroactive surface area of metal 

287 oxide nanoparticles tend to enhance the peak currents of the modified electrode [22,36,46].

288 The enhanced peak current of the oxidised GA, when CoO-NPs-CPE was used may be 

289 due to the higher surface area and the adsorptive capacity of the modified electrode surface. 

290 The more GA is adsorbed on the surface of the modified electrode the higher is the 

291 accumulation efficiency and increase in the surface concentration. However, it can be observed 

292 from the voltammograms shown in Fig 3 that, the peak potential at the determination of GA on 

293 CoO-NPs-CPE shows a little positive shift of 0.01 V as compared to that of the bare CPE. This 
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294 shows that, the cobalt oxide nanoparticles did not catalyse the oxidation of GA, but enhanced 

295 the peak current generated by the oxidation reaction. Had there been any catalysis, the peak 

296 potential would have had a negative shift to the bare CPE. The reduction of peak potential 

297 would have meant a faster reaction with less overpotential. Hence, the peak current 

298 enhancement was not attributed to electrocatalysis but the increased electroactive surface area 

299 from the cobalt oxide nanoparticles used

300 Furthermore, the two oxidation peaks produced by GA on the surfaces of the electrodes 

301 in the course of the anodic sweep from 0.0 to 1.6 V is consistent with other GA measurements 

302 in literature [22,36,47,48]. The first peak is attributed to the formation of the semiquinone 

303 radical, which is then oxidised to the quinone form as the second peak with poor resolution. 

304 The first peak is from the galloyl group and the second peak then develops from the third 

305 hydroxyl (-OH) group on the galloyl moiety of the gallic acid. This is because, normally the 

306 carboxylic group (-COOH) is oxidised at a peak potential of 2.0 V and give off CO2 as bi-

307 product [49]. Meanwhile, the two oxidation peaks, in this case, occur at 0.61 V and 0.9 V. One 

308 electron and one proton are said to have been transferred in each of the reaction processes, 

309 without any peak on the reverse scan. This confirms an irreversible reaction. The gallic acid 

310 oxidation mechanism (Fig. S4) depicts the oxidation of GA in acidic condition, showing the 

311 two peaks.

312 3.4 Effect of pH on Gallic Acid Oxidation

313 The effect of the pH on the electroanalytical performance of the CoO-NPs-CPE on the 

314 detection of GA, was studied using CV and the voltammograms recorded as seen in Fig. S5(a) 

315 and S5(b). The modified electrode was used to measure GA (1 mmol L-1) in phosphate buffer 

316 (1 x 102 mmol L-1) at pH values of 2.0, 4.0, 6.0, 8.0 and 10, at a scan rate of 100 mVs-1. From 

317 the literature [22] it can be seen that GA oxidation is influenced by a protonation reaction (Fig. 
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318 S5), thus suggesting its oxidation is influenced by the pH condition of the buffer. From the 

319 voltammograms recorded in Fig. S5(a) and S5(b), the anodic peak currents of GA decreased 

320 with the increasing pH values and a negative shift of the anodic peak potentials. The best-

321 resolved peak current from the voltammograms, was the peak current produced at pH 2.0. It 

322 could be deduced from the results that the oxidation procedure of gallic acid is related to H+ 

323 ions of the solution, as seen in Fig. S4. The results show that the GA oxidation peak currents 

324 decrease linearly with the increase in pH value of the solution. This produce a non-linear 

325 equation of Ip = -2107 pH + 32.755 and R2 = 0.9203 (Fig. S5(d)).  Meanwhile, the plot of peak 

326 potential (Ep) vs pH showed a good linear relationship in the pH range of 2.0 to 8.0, that 

327 produced a linear regression equation of Ep = -0.058 pH + 0.655 and R2 = 0.9938. From the 

328 linear regression equation, the slope Ep/pH of the regression line is 58 mV/pH. This is almost 

329 equivalent to the Nernstian value of 59 mV/pH at room temperature, for an equal number of 

330 protons and electrons transfer reactions. The oxidation reaction of GA on the surface of CoO-

331 NPs-CPE is two electrons and two protons process (Fig. S4). With the positive shift of the 

332 oxidation peak potential as the pH decreases, it indicates that, GA needs higher potential for its 

333 oxidation at low pH values. However, based on the peak currents produced, pH 2.0 was used 

334 for subsequent experiments, which is in line with other works in the literature [22,36,47]. 

335 Just looking at the colour changes observed (Fig. S6) with GA in different pH, suggests 

336 an influence of pH in GA oxidation. UV spectrophotometer was used to measure the colour 

337 changes of the different GA acid solutions at different pHs at 280 nm and the absorbance 

338 recorded (Table 1). From the absorbance results, the higher pH solutions show an extensive 

339 change in colour which can be attributed to the reduction of GA caused by its exposure to light. 

340 This phenomenon just confirms the effect of pH in GA oxidation. Hence all GA solutions were 

341 protected from light by wrapping the glassware with aluminium foil and refrigerated at 4 °C. 

342 Table 1. The absorbance values of GA (1 mmol L-1) at different pH at the wavelength of 280nm
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343 3.5 Effect of scan rate on Gallic Acid Oxidation

344 The influence of the scan rate on the electrooxidation of GA on the surface of the CoO-

345 NPs-CPE was also studied using CV. GA (1 mmol L-1) in phosphate buffer (1 x 102 mmol L-

346 1, pH 2.0) was measured, within the scan rate range of 25 – 1000 mVs-1, at room temperature 

347 (Fig. S7(a)). From the results of the scan rate, it can be seen that the oxidation peak currents 

348 (Ip) of GA increased linearly with the scan rate (ν) within the range of 50 – 400 mVs-1. This is 

349 an indication that, the electrode interaction process was an adsorption-controlled process, with 

350 a linear regression equation of Ip = 0.1979 ν + 11.831 with R2 = 0.9966 (Fig. S7(b)) [50]. 

351 On the other hand, the peak potentials show a slight positive shift as the scan rate increases, 

352 with a linear increase in peak currents. This suggests that there is a kinetic limitation in GA 

353 reaction at the surface of CoO-NPs-CPE.

354 3.6 Effect of CoO-NPs concentration on the CPE mixture

355 The effect of the concentration of cobalt oxide nanoparticles (CoO-NPs) in preparing 

356 the modified-carbon paste electrode was studied using CV. Cobalt oxide nanoparticles (0.5 g, 

357 0.1 g, 0.15 g and 0.2 g) were weighed and mixed with graphite powder of appropriate ratio 

358 (Making up the graphite to 70% of the CPE and Paraffin 30%; w/w). The modified electrodes 

359 were then used for the electrochemical determination of GA (10 mmol L1) in phosphate buffer 

360 solution (1 x 102 mmol L-1, pH 2.0) and a scan rate of 100 mVs-1. From the results (Fig. S8), 

361 the CoO-NPs-CPE that had 10% cobalt oxide nanoparticles showed the highest current and 

362 most resolved peak. Therefore, the 10% cobalt oxide nanoparticles-modified CPE was 

363 subsequently used for further experiments and electrochemical determinations of GA.

364 3.7 Calibration curve and the limit of detection of GA determination
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365 Differential pulse voltammetry (DPV) was used for the determination of the calibration 

366 curve and the limit of electrochemical detection (oxidation) of GA at the surface of the CoO-

367 NPs-CPE. The DPV was recorded at a potential range of 0 to + 1.5 V, the scan rate of 100 mVs-

368 1, pulse amplitude of 80 mV and a pulse period of 0.2 s. Using the optimised conditions 

369 voltammograms were recorded from the oxidation of increasing concentrations of GA in 

370 phosphate buffer (1 x 102 mmol L-1, pH 2.0) on the surface of the CoO-NPs-CPE (Fig. 4). The 

371 recorded results were then used for the determination of the calibration curve and the limit of 

372 detection (LOD) of the modified electrode. 

373 From the results in Fig. 4, it is observed that the anodic peak currents changed linearly 

374 with the increasing GA concentration from the concentration range of 1 x 10-4 to 1 x 10-2 mmol 

375 L-1.  However, the linearity of the increasing peak current relative to the increase GA

376 concentration was specifically between 1 x 10-4 to 1 x 10-3 mmol L-1, within the examined 

377 concentration range of 1 x 10-4 to 1 x 10-2 . DPV produced voltammograms of GA with two 

378 peaks at peak potentials of 0.55 V and 0.9 V, respectively. The peak potential showed a slight 

379 positive shift with increasing concentration of gallic acid, as can be seen in Fig 4 (a). The 

380 corresponding analytical calibration curve, as shown in Fig 4 (a) inset shows a linear 

381 relationship between the peak current (Ip) and the gallic acid concentration as seen in Fig 4 (a)

382

383

Fig 4. (a) Differential voltammograms of various concentrations of GA at CoO-nano-CPE in a 1 x 
10-2mmol L-1 phosphate buffer at pH 2.0 at scan rate of 100 mVs-1, with voltammograms (a-j) 
that 384 corresponds to the following concentrations a) Blank PBS, b) 1 x 10-4 mmol L-1, c) 2.5 x 10-4 mmol L-

385 1, d) 5 x 10-4 mmol L-1, e) 7.5 x 10-4 mmol L-1, f) 1 x 10-3 mmol L-1, g) 2.5 x 10-3 mmol L-1, h) 5 x 10-3

386 mmol L-1, i) 7.5 x 10-3 mmol L-1,  j) 1 x 10-2 mmol L-1 (inset) Plot of concentration of GA against peak 

387 currents. (b) The plot of the Peak Current (Ip) against the concentration of GA, showing the effect of 

388 concentration on the electrochemical behaviour of increasing GA concentration, using CoO-nano-CPE 

389 at a scan rate of 100 mVs-1

390 The first and major peaks from the DPV voltammograms produced from the different GA 

391 concentrations were used to create the calibration graph (Fig. 4(a) inset and Fig. 4(b)). The 
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392 linear relationship is depicted in the linear regression equation, which is also the calibration 

393 curve as Ip = 11285.86 C – 0.07936 (IP: µA, C: mmol L-1) and R2= 0.9934 from 1 x 10-4 mmol 

394 L-1 to 1 x 10-2 mmol L-1 as seen Fig. 4 (b). Meanwhile, the limit of detection (LOD) defined as

395 (3 x StdBlank)/m where StdBlank is the standard deviation of the blank and m is the slope; was 

396 found to be 1.52 x 10-4 mmol L-1 (S/N=3) and concentration range 1 x 10-4 mmol L-1 to 1 x 

397 10-2 mmol L-1.  The CoO-NPs-CPE showed a relatively wide linear dynamic range and the low

398 limit of detection was comparable to others in the literature, where the limit of detections are 

399 between the range of 2.09 x 10-6 to 1.5 x 10-9 mmol L-1 [22,25,26,48].  This is based on the 

400 fact that, the maximum permitted GA concentration in the EU and North America antioxidant 

401 limit guidelines is 1.2 x 102 mmol L-1 to 6.0 x 103 mmol L-1. The LOD from this electrode is 

402 below this limit, hence would be suitable for use in GA determination of GA concentration 

403 even at high concentrations. 

404 Table 2. Metal Oxide Nanoparticles (MO-NPs) and Metal Nanoparticles composites in different 

405 electrochemical sensor systems for the determination of Gallic acid.

406 3.8 Reproducibility and repeatability of the method

407 The reproducibility of using CoO-NPs-CPE for the electrochemical determination of GA (5 x 

408 10-1 mmol L-1) was studied using DPV. This was carried out by measuring the GA with six

409 newly prepared CoO-NPs-CPE (prepared on different days). The results (Fig. S9(a)) show a 

410 relative standard deviation of the peak currents produced was 4.56%. This suggests a relatively 

411 good reproducibility of the preparation procedure of the electrodes.

412 Furthermore, the repeatability of the method was studied, by taking six independent 

413 measurements of GA (5 x 10-1 mmol L-1) in phosphate buffer (1 x 102 mmol L-1, pH 2.0) with 

414 a CoO-NPs-CPE. From the result of the measurement (Fig. S9(b)), the relative standard 

415 deviation of the voltammograms produced was 0.66%, showing a very good repeatability.

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003



18 | P a g e

416 3.9 Stability of the modified electrode

417 The long-term storage stability of the modified electrode (CoO-NPs-CPE) was studied by 

418 keeping the electrode at room temperature, then used twice to detect GA (5 x 10-1 mmol L-1) 

419 after  15 and 30 days, respectively using DPV.  The recorded voltammograms for the first day, 

420 15th day and 30th day showed peak currents with RSD of 6.32% (Fig. S10), which demonstrated 

421 a good stability.

422 3.10 Interference study

423 The selectivity of the CoO-NPs-CPE was studied by determination of GA (10 mmol L-1), using 

424 DPV conducting interference experiments in the presence of different metals ions (K+, Cl-, Na+, 

425 Fe3+) and other organic (antioxidant) compounds (ascorbic acid and quercetin). The use of 

426 those cations and organic compounds was because of their potential properties to complex or 

427 interfere with the electrochemical determination  gallic acid respectively [51]. The results in 

428 Fig. S11, showed RSD values of less than 5%, suggesting the ions and the organic compound 

429 did not interfere with the determination of GA.

430 3.11 Analytical application of the modified electrode in the 

431 determination of GA in Wine

432 The modified carbon paste electrode was used for the determination of GA content in red and 

433 white wine. The presence of GA in red and white wine samples have previously been analysed 

434 by electrochemical determination and HPLC analysis [22,50]. The wine (Australia and USA) 

435 samples were diluted with phosphate buffer (10 mmol L-1) and the pH adjusted to 2.0 with 

436 phosphoric acid (1 x 102 mmol L-1). The wine samples were then spiked with standard solutions 

437 of GA to obtain a GA range from 0 – 2.3 mmol L-1 followed by the recording of their 

438 corresponding DPV voltammograms Table 3, (Fig. S12(a) and Fig. S12(b)). The results 
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439 showed that with CoO-NPs-CPE exhibited anodic peaks in the absence of GA. This suggests 

440 that the cobalt oxide modified CPE electrode detected GA or showed an antioxidant capacity 

441 in these wine samples (Fig. S12). The anodic peak current produced by the wine sample is 

442 generally attributed to the total antioxidant capacity of the sample as described by Kilmartin et 

443 al., (2001), Makhotkina and Kilmartin, (2009) and Lopez-Velez et al., (2003) [52–54]. Hence, 

444 the use of the standard addition of GA to confirm the presence of GA in the wine sample. On 

445 the other hand the confirmation of the presence of GA in the wine samples was carried out 

446 using HPLC (Fig S14) and the results were in line with Ragusa et al., (2019); where they found 

447 GA in Negroamaro and Primitivo red wines from Salento.

448 Table 3. Results of the analysis of GA in spiked Red Wine and White Wine

449 Furthermore, in the course of the determination of GA in the red wine sample there was an 

450 unusual observation. As the standard solution of GA, that was being used for the spiking was 

451 increased, there was a third peak observed in the voltammograms (Fig. S13). In the 

452 determination of GA in the red wine using CoO-NPs-CPE, the normal first and second peaks 

453 of GA were noticed at peak potentials of 0.59 V and 1.02 V, while, the third unusual peak is 

454 seen at a peak potential of 0.76 V. This third peak could be attributed to the activation of another 

455 compound in the red wine as the GA concentration increases in the red wine sample.

456 4. Conclusions

457 In this work a novel Co3O4 nanoparticles-modified carbon paste electrode was successfully 

458 prepared and used for the electrochemical determination of GA in phosphate buffer (1 x 102 

459 mmol L-1, pH 2.0) using CV and DPV. The CoO-NPs-CPE showed excellent activity on GA 

460 oxidation and an enhancement in peak current of 25% as compared to the bare CPE. The 

461 modified carbon paste electrode demonstrated good stability, reproducibility, and repeatability. 

462 The selectivity of the modified electrode was demonstrated by using the electrode to determine 

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121



20 | P a g e

463 GA in the presence of some interferant foreign species, like K+, Cl-, Na+, Fe3+, ascorbic acid 

464 and quercetin. The characteristics of the modified electrode led to its use in the determination 

465 of GA in red and white wine. With the low cost and ease of fabrication, the CoO-NPs-CPE 

466 would be a suitable sensor for the determination of other phenolic compounds in food matrices.
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mmol L-1 [Fe(CN)6]3-/4- redox solution, using bare CPE and CoO-NPs-CPE, (c) Nyquist plot showing 

the EIS measurements of [Fe(CN)6]3-/4- (5 mmol L-1) using the bare CPE and CoO-NPs-CPE (inset) The 

equivalent circuit used for the calculation.

Fig 3. Cyclic voltammograms of 10 mmol L-1 GA at Co3O4 nanoparticles-modified CPE, bulk Co3O4 

nanoparticles-modified CPE and bare CPE in 1 x 102 mmol L-1 phosphate buffer of pH 2.0 at a scan 

rate of 100 mVs-1

Fig 4. (a) Differential voltammograms of various concentrations of GA at CoO-nano-CPE in a 1 x 10-
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List of tables

Table 1. The absorbance values of GA (1 x 10-3 mol L-1) at different pH at the wavelength of 280nm

pH Values Absorbance (Wavelength 280 nm)

1 2.0 2.205 ± 0.02

2 4.0 3.09 ±  0.02

3 6.0 3.52 ± 0.06

4 8.0 33.92 ± 0.6

5 10 37.49 ± 0.15

Table 2. Metal Oxide Nanoparticles (MO-NPs) and Metal Nanoparticles composites in different 
electrochemical sensor systems for the determination of Gallic acid.

Electrodes Method Medium 

Analysed

Linear 

Range (mol 

L-1)

Limit of 

Detection 

(mol L-1)

Reference

1 ZnO-NPs-CPE CV, DPV Red Wine 1 x 10-6 –

 5 x 10-5

1.86 x 10-7 [25]

2 SiO2-NPs -GrO 

nanocolloids-GCE

CV, DPV Red and 

White wine

6.25 x 10-6 to 

1 x 10-3

2.09 x 10-6 [22]

mailto:c.fernandez@rgu.ac.uk


3 Amorphous Zirconia-

CPE

CV, DPV Red and 

White Wine

1 x 10-6 – 

1 x 10-3

1.24 x 10-7 [36]

4 ZrO2/Co3O4/rGO-FTO CV, DPV Fruit juice, 

Tea

6.24 x 10-9 – 

4.8 x 10-7

1.56 x 10-9 [26]

5 Bismuth-NPs-MWCNT-

CPE

CV, 

Amperometry

Clove and 

Green Tea

1 x 10-6 –    1 

x 10-4

1.6 x 10-7 [14]

6 TiO2-NPs-CPE CV, DPV Green and 

Black Tea

2.5 x 10-6 - 

1.5 x 10-4

9.4 x 10-7 [48]

7 CoO-NPs-CPE CV, DPV Red and 

White Wine

1 x 10-4 to 1 x 

10-2

1.52 x 10-6 This Work

Table 3. Results of the analysis of GA in spiked Red Wine and White Wine

Australian Wine
Sample Added 

(mmol L-1)
Found 

(mmol L-1)
Relative Error Recovery (%)

Red Wine 0.0 0.688 - -
0.9 0.787 ±13 87
1.6 1.599 ±0.7 99.93
2.31 2.35 ±1.73 101.73

White Wine 0.0 0.076 - -
0.9 0.995 ±10.5 110.5
1.6 1.658 ±3.63 103.63
2.31 2.23 ±3.46 96.54

United States of America Wine
Added 

(mmol L-1)
Found 

(mmol L-1)
Relative Error Recovery (%)

Red Wine 0.0 0.844 - -
0.9 0.931 ±3.4 103.4
1.6 1.501 ±6.19 93.81
2.31 2.33 ±0.87 100.87

White Wine 0.0 0.0083 - -
0.9 0.911 ±1.2 101.2
1.6 1.582 ±1.12 98.88
2.31 2.271 ±1.69 98.31
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S1 The FTIR Characterisation
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Fig. S1. FT-IR Image showing the spectra of Co3O4 nanoparticles
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S2 The Thermogravimetric Analysis (TGA)
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Fig S2. TGA result in the analysis of cobalt oxide nanoparticles

S3 Effective Surface Area Measurement
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Fig. S3. (a) Cyclic voltammograms of [Fe(CN)6]3-/4- (1 mmol L-1) measured with CoO-NPs-CPE at 

increasing scan rates of 100-450 mVs-1 (b) Plots of Ip vs ν1/2 used for the calculation of the reactive 

surface area.
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S4 The Reaction Mechanism of Gallic Acid oxidation

OH

HO

HO

O

OH

OH

O

HO

O

OH
H e

H e

OH

O

O
OH

O

Gallic acid (GA) Semi-quinone radical Quinone

Fig. S4. The reaction mechanism of the oxidation of Gallic acid, showing the two peaks (semiquinone 

radical and the quinone)

S5 Effect of pH on Gallic acid Oxidation

0.0 0.5 1.0 1.5
-200

0

200

400

600

800

1000

I p
 /

A

E /V vs Ag/AgCl

pH2
pH4
pH6
pH8
pH10

0.0 0.5 1.0 1.5
-50

0

50

I p
 /

A

E /V vs Ag/AgCl

pH2
pH4
pH6
pH8
pH10

A B



4 | P a g e

2 4 6 8 10

8

12

16

20

24

28

32

36

I p
 /

A

pH

Ip = -2107 pH + 32.755
R2 = 0.9203

DC
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currents (d) Non-linear plot of peak current (Ip) vs pH (e) Linear plot of peak potential (Ep) vs pH
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S6. Colour changes of GA solutions at different pH

Fig. S6. Images of Gallic acid solutions at different pH, showing a very dark solution at a pH 10, that 

becomes brighter as the pH reduces to pH 8 to pH 2.

S7. Effect of Scan rate on Gallic acid oxidation
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Fig. S7 (a) CV voltammograms of 1 x 10-3 mol L-1 GA in 1 x 10-1 mol L-1 Phosphate buffer solution at 

pH 2.0, showing different scan rates ranging from 50 -1000 mVs-1 (b) Plot of the scan rates from 50-

400 mVs-1 against the peak current. 
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S8. Effect of Cobalt Oxide nanoparticles concentration on the CPE mixture
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Fig.S8 Voltammograms showing changes in the constitution of the carbon paste electrode using 5%, 

10%, 15% and 20% Cobalt oxide nanoparticles constituted in the modified CPE. This was used to 

determine 1 x 10-2 mol L-1 GA in 1 x 10-1 mol L-1 phosphate buffer at pH 2.0 using CV at a scan rate 

of 100 mVs-1

S9 Reproducibility and repeatability of the method
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Fig. S9 DPV voltammograms of 5 x 10-4 mol L-1 Gallic acid showing (a) Reproducibility of the CoO 

nanoparticles modified CPE (b) Repeatability of the CoO nanoparticles modified CPE

S10 Stability of the method
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Fig. S10. DPV voltammograms of 5 x 10-4 mol L-1 Gallic acid, showing voltammograms measured by the same 

electrodes after 0 days, 15 days and 30 days: showing stability. 
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S11. Interference Study

Table S2. Effects of various foreign species on the determination of GA (1 x 10-2 mol L-1)

Interfering Species and Ions Concentration (mol L-1) Relative Standard Deviation (%)

1 K+ 1 x 10-1 ±2.54

2 Cl- 1 x 10-1 ±2.77

3 Na+ 1 x 10-1 ±4.51

4 Fe3+ 1 x 10-1 ±0.61

5 Ascorbic Acid 1 x 10-3 ±3.7

6 Quercetin 1 x 10-3 ±4.16

S12. Voltammograms of GA determination in Wine Samples

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0

2

4

6

8

10

12

14

16

18

20

I p
 /


A

E / V vs Ag/AgCl

White Wine Blank
0.9mM
1.6mM
2.31mM

0.0 0.5 1.0 1.5 2.0 2.5
0
2
4
6
8

10
12
14
16
18
20

I p
 /

A

Conc./mM

Ip = 6.095 Conc.(mM) + 4.344
R2 = 0.9918

A B

Fig. 12. (a) Voltammograms of aliquots of  1 x 10-2 mol L-1 of GA added into White Wine using a standard 

addition method (b) Calibration curve of the standard addition of Gallic acid.
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S13. Voltammograms of GA determination in Wine Samples
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Fig 13. (a) Voltammograms of aliquots of  1 x 10-2 mol L-1 of GA added into Red Wine using a 
standard addition method and the presence of the third peak.

S14. HPLC Analysis of wine samples to validate the presence of GA in the Wines.
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Fig 14. (a)  Chromatogram of Gallic acid standard at retention time 3.13 mins. Giving the time Gallic 

acid would be expected in a Red or White wine.
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Fig 14. (b) Chromatogram of Red Wine showing the Gallic acid peak at retention 3.16 min.
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Fig 14. (c) Chromatogram of White Wine showing the Gallic acid peak at the retention time 3.12 min 
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