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Abstract 

Accurate estimation of the lithium-ion battery state of charge plays an important role in the 

real-time monitoring and safety control of batteries. In order to solve the problems that the 

real-time estimation of the lithium-ion battery is difficult and the estimation accuracy is not 

high under various working conditions, a lithium-ion battery is taken as a research object, and 

the working characteristics of the lithium-ion battery are studied under various working 

conditions. In order to reduce the computational complexity of the traditional unscented 

Kalman algorithm, an improved unscented Kalman algorithm is proposed. Considering the 

importance of accurately estimating the initial state of charge for later estimation, the initial 

estimation value is calibrated by using the open-circuit voltage method. Then, the improved 

unscented Kalman filter algorithm based on a reduced-order model is used for assessing and 

tracking to realize real-time high-precision estimation of the state of charge of the lithium-ion 

battery. A simulation model is built and combined with a variety of working conditions data 

for performance analysis. The experimental results show that the convergence speed and 

tracking effect are good and that the estimation error control is within 0.8%. It is verified that 

the reduced order of the three-particle nonlinear transform unscented Kalman results in 

higher accuracy in the state-of-charge estimation of lithium-ion batteries. 
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1 Introduction 

 

Energy security and environmental protection play an important role in the development plan 

of the world’s economy. Pursuing new energy sources to replace traditional fossil fuels has 

become a focus of attention worldwide [1]. Lithium-ion batteries have been widely used and 

developed in the field of new energy due to their high energy density, high output power and 

high-cost performance [2]. With the wide application of lithium-ion batteries in the field of 

new energy, their health condition detection has received increasing attention. It is of great 

importance to accurately estimate the state of charge (SOC) of lithium-ion batteries for 

maximizing their performance and for realizing real-time state detection and safety control of 

lithium-ion batteries [3]. Lithium-ion batteries are often used under complex working 

conditions, and their state detection is susceptible to environmental noise [4, 5]. Moreover, 

the internal electrochemical reaction of the lithium-ion battery is complicated and is often 

accompanied by polarization effects and ohmic effects [6, 7]. The interference of other 

factors makes it difficult for traditional algorithms to obtain accurate real-time SOC 

estimation of the lithium-ion battery [8, 9]. Therefore, a method to establish an equivalent 

model of a battery and to use correct and appropriate algorithms to estimate the SOC of a 

battery is of great significance for the real-time monitoring and safety control of lithium 

batteries. This is also important for improving battery efficiency. Researchers have done a 



great deal of work on this [10–13]. In the SOC estimation process of the lithium-ion battery, 

the construction of a battery equivalent model occupies an important position [14, 15].  

Common battery models in current applications include electrochemical [16], neural network 

and equivalent circuit models [17–19]. The equivalent circuit model uses circuit knowledge 

to establish circuit equations to study the battery characteristics, and the resulting 

convenience has been widely used in the engineering field. At present, the commonly used 

methods in the estimation of the lithium-ion battery SOC are the open-circuit voltage (OCV) 

method, the Ampere-hour (Ah) integral method, the neural network method and the Kalman 

filter (KF) method [20–23]. The open-circuit voltage method uses the correspondence 

between the OCV and the SOC to obtain the SOC value [24, 25]. The Ah integral method 

uses the definition to calculate the SOC by integrating the current. The Kalman filter method 

obtains the optimal solution in terms of minimum variance through continuous iterative 

operations [26]. Due to the complex electrochemical reactions of batteries during use, they 

often exhibit strong nonlinear characteristics. In addition, there are some defects in traditional 

algorithms. Thus, the above methods are unable to accurately estimate the SOC of lithium-

ion batteries. In recent years, researchers have proposed some improved algorithms based on 

traditional algorithms to solve the problems of the difficult and low online estimation 

accuracy of lithium-ion batteries [27–33]. They used different algorithms to estimate and 

improve the SOC. However, they did not consider the complexity of the algorithm. In 

addition, the calculation of these algorithms is very complex, and how to reduce the 

computational complexity of the algorithms has a great impact on the real-time estimation of 

the SOC. In an effort to accurately describe the working state of the lithium-ion battery, 

considering the accuracy and computational complexity of the characterization, an improved 

UKF algorithm based on reduced-order modeling is used to estimate the SOC of lithium-ion 

battery, which reduced the computational complexity of the traditional algorithm. 

 

2 Mathematical analysis 

 

2.1 Equivalent circuit modeling 

 

The equivalent circuit model includes the internal resistance model, Thevenin model, PNGV 

model and so on. The internal resistance model takes the operating characteristics of the 

battery into account, and the structure is simple. Based on the internal resistance model, 

Thevenin model introduces the parallel circuit of resistance and capacitance to describe the 

polarization effect in the battery. It also simulates the dynamic characteristics of the battery. 

When compared with the PNGV model and the GNL model, the Thevenin model has a 

simple structure. In addition, it belongs to a nonlinear low-order model. It involves fewer 

parameters, and its accuracy can meet the requirements of engineering applications. On this 

basis, the effects of polarization on the voltage and SOC are fully considered, and the 

Thevenin equivalent circuit model is established to characterize the battery characteristics 

as shown in Fig. 1. 

 



 
 

In Fig. 1, Uoc represents the open-circuit voltage. Uo represents the terminal voltage. R is the 

ohmic internal resistance, and UR is the ohmic voltage, which is the battery voltage drop 

effect at the end of the discharge. The RC parallel loop is composed of a polarization resistor 

R1 and a polarization capacitor C1 for characterizing the polarization effect of the lithium-ion 

battery.U1 is the polarization voltage. 

 

2.2 State-space description 

According to Kirchhoff’s laws, the Thevenin model is analyzed, and the voltage and current 

expressions of the equivalent circuit are obtained as shown in Eq. (1): 

 

 
Among them, the OCV can be characterized by the state variable SOC, and a nonlinear 

function can be obtained. 

 

2.3 Three-particle unscented transform 

 

The unscented transformation (UT) is a better method for dealing with nonlinear problems, 

and it is an important part of the UKF. The fundamental principle is to obtain a finite number 

of sampling points depending on the statistical characteristics of the state variables and 

according to a certain sampling method. These points have the same mean and covariance as 

the original state. In other words, a finite number of points are used to approximate a 

Gaussian distribution. Then, the Sigma points set is transmitted nonlinearly using the state 

equation. After that, the transformed mean and covariance are obtained according to a certain 

weight distribution. SOC is a state variable, and the collection of sampling points is shown in 

Eq. (2):  

 

 



 

where n is the dimension of the state variable, λ is the scaling parameter, _SOC is the mean of 

the state variable and P is the covariance matrix. The corresponding weights are shown in Eq. 

(3): 

 

 
 

In the formula, β ≥ 0 and is usually 2. In addition, 0 ≤ α ≤ 1. k is the auxiliary scale factor. It 

generally satisfies the following relationship: κ = 3 − n, λ = α2 (n + κ) − n. After that, the 

original state is transferred backward by using the sampling point 

 

2.4 Improved unscented Kalman filtering 

 

Combined with the Thevenin model and considering the practical application, only the SOC 

is selected as a system state variable to realize reduced-order modeling. In addition, the 

terminal voltage U0 of the battery is taken as the observed variable of the system. The 

established battery state space expression is shown in Eq. (4): 

 

 
 

In the formula, the SOC value at the time k + 1 is predicted at the time k. Δt is the sampling 

interval time. QN is the rated capacity of the battery, and its actual value is subjected to 

capacity calibration. Ik is the current. Uoc, k+1 = f (SOCk+1) is the relationship between the 

OCV and the SOC of the lithiumion battery. wk and vk+1 are the process noise and observed 

noise, respectively. The implementation of the improved UKF can be divided into the 

prediction stage and the update stage. Let the value of the SOCk and the error variance matrix 

Pk be known. The specific process is as follows. 

 

3 Prediction stage 

 

The estimated value of the system state variable and the error variance matrix at time k + 1 

are shown in Eq. (5):  

 

 
 

SOCi(k) is the sampling point obtained by using the unscented transformation. uk is the input 

variable. SOC(k) is the mean value of the system state. Similarly, the error variance matrix of 

the time k + 1 is predicted as shown in Eq. (6): 

 



 
 

 

The Sigma sampling points are updated. Substituting the state quantity predicted value point 

that is set at time k + 1 into the observation equation to obtain the observation predicted value 

at the time k + 1 is shown in Eq. (7): 

 

 
 

The variance matrix of the measured values, the covariance of the state quantity and the 

measured quantity at the time k + 1 are calculated as shown in Eq. (8): 

 

 
 

4 Update stage 

 

The Kalman gain, the update system state variable values and the error variance matrix are 

calculated as shown in Eq. (9): 

 

 

The improved UKF implementation process is shown in Fig. 2.  

 
 



Since the state variable is only one dimension, the number of selected Sigma points is 3. The 

Sigma point is passed through the system state equation to derive the predicted point group. 

Then, the Kalman gain and the error between the true value of the observed variable and the 

prediction are used to continuously correct the predicted value. Finally, the optimal estimate 

of the system state 

variables can be obtained. 

5 Experimental analysis 

 

5.1 Test equipment and procedures 

 

An NMC battery with a rated capacity of 50 Ah is selected for the test. The main 

specifications of the battery are presented in Table 1.  

 

 
 

The instruments used in the test include a power cell large-rate charge and discharge tester, a 

threelayer independent temperature control, high- and low-temperature test chamber and 

other supporting experimental equipment, as shown in Fig. 3.  

 
 

Since the parameters in the model are affected by temperature, the test is carried out at 27 °C, 

and the model parameters need to be further improved at high and low temperatures. The 

battery ages due to recycling and other reasons. Thus, the actual capacity of the battery 

deviates greatly from the calibration capacity. Therefore, the capacity calibration of the 

lithium-ion battery must be performed first. In this study, online parameter identification 

increases the complexity of the algorithm, and the accuracy is not notably improved. 

Therefore, an offline identification method is selected. The battery is subjected to a pulse 

discharge experiment, and the battery model parameters are obtained by analyzing the 

operating characteristics. 

 

5.2 Parameter identification 

 



According to the above experimental steps, the lithium-ion battery capacity is calibrated first. 

The battery capacity is calibrated as 48 Ah at 27 °C. The pulse discharge test is conducted on 

the lithium-ion battery. The voltage curve of one of the pulse tests is shown in Fig. 4. 

 

 
 It can be seen from the voltage curve at the end of each constant current discharge in Fig. 4 

that the battery will gradually stabilize after a long period of time after the end of the 

discharge, which means that the internal chemical reaction and thermal effect have basically 

reached equilibrium. The battery voltage is open-circuit voltage, so the relationship between 

the OCV and the SOC can be obtained as shown in Fig. 5. 

 
An analysis of Fig. 4 shows that at the beginning of the discharge from t1 to t2, the voltage at 

the battery terminal drops sharply, which yields the ohmic internal resistance of the battery as 

shown in Eq. (10): 

 

 

In Fig. 4a, when the battery stops discharging at t3, the ohm effect disappears and the battery 

voltage suddenly changes. At the t4 ~ t5 stage, the battery voltage slowly rises. At this time, 

it is the zero input effect of the RC circuit in the circuit model. In addition, the battery 

terminal voltage can be expressed as shown in Eq. (11): 

 

 
 



In the formula, the time constant τ1 = R1C1. The parameters of R, R1 and C1 of different 

SOC states are sorted out as shown in Table 2.  

 

 
 

The characterization of the battery voltage in the actual operating conditions of the 

constructed Thevenin model is verified. The real voltage and current data under the cyclic 

discharge condition are imported into the equivalent model constructed by 

MATLAB/Simulink. The model is verified by combining with the previous parameter 

identification results. The estimated value is compared with the actual terminal voltage value, 

and the comparison result and the corresponding error are shown in Fig. 6a, b, respectively. 

 

 
 

Figure 6a shows the comparison between the estimated value of the battery terminal voltage 

and the true value under the cyclic discharge hold test. The blue solid line is the estimated 

value based on the constructed model, and the red solid line is the actual battery terminal 

voltage value. Figure 6b shows the variation of the simulation error. It can be seen from the 

figure that the estimated value has a good tracking effect on the true value. In addition, the 

average estimated deviation is about 0.03 V, which can characterize the value of the terminal 

voltage of the battery during operation. The analysis of the voltage comparison error shows 

that the voltage estimation error increases at the end of the battery discharge. On the one 

hand, the battery voltage changes dramatically at the end of the discharge, and the estimated 

value of the simulation lags behind the effect, which leads to a larger estimation error. On the 

other hand, it shows that the Thevenin model has shortcomings in characterizing the 

battery operating characteristics. 

5.3 Dynamic working condition analysis 

 

In order to verify the overall performance of the improved UKF algorithm in actual 

application, the accuracy, convergence and traceability of the model are studies under various 

experimental conditions. The current pulse discharge experiment and an experiment under 

dynamic stress test (DST) conditions are performed on the estimated models. 

 

5.3.1 Current pulse discharge experiment 

 



Considering that the battery is often in an intermittent discharge state in actual use, the model 

is further simulated and analyzed under the conditions of current pulse discharge. 

The experimental results are shown in Fig. 7.  

 

 
 

Figure 7a shows the actual SOC and the estimated value of the improved UKF. It can be seen 

from the figure that the improved UKF algorithm converges and that the tracking effect is 

good. When estimating the initial algorithm to quickly converge, the required time is about 

100 s to track the theoretical value. The estimated deviation is stable and within 0.7%. In 

addition, the overall performance is excellent. It is proved that the improved UKF has good 

convergence and tracking performance for SOC estimation. It is worth noting that when the 

battery is in a suspended state, the SOC estimation error becomes larger. This is due to the 

fact that when the battery is in a suspended state, there is a lag in the battery equivalent 

circuit model, which results in a failure to obtain the real-time and accurate battery terminal 

voltage. 

 

5.3.2 Dynamic stress test condition experiment 

 

In order to further verify the response of the model to the SOC of the lithium-ion battery 

under more complicated application conditions, the model is simulated and verified by 

experimental data of a customized DST condition. The DST working condition is more 

complicated and can better reflect the working status of lithium batteries. Under the same 

working condition, the Ah integral and the UKF algorithm are added to perform synchronous 

simulation analysis to compare the advantages of the improved UKF algorithm. The 

experimental voltage and current data of the DST working condition are shown in Fig. 8. 

 

 
The results of comparing the SOC with the real value and the estimation error using Ah, UKF 

and the improved UKF are shown in Fig. 9.  

 



 
 

In order to compare the estimated effects of the traditional UKF and the improved algorithm, 

the estimated SOC curve is partially enlarged and shown in Fig. 10. In order to verify the 

convergence effect of the algorithm in the estimation process and the tracking of the real 

value, the initial value of the algorithm is set to 0.9. The error results obtained by several 

algorithms for estimating SOC are shown in Table 3.  

 
Under the DST condition, in the initial stage of estimation, the Ah integral method cannot 

quickly converge to track the true value, and the estimation error is much larger than those of 

the others. In addition, the error becomes larger as the estimation time increases. Both the 

UKF and the improved algorithms are able to track the real SOC values, and they are stable at 

the end of the estimation. However, from the SOC estimation partial enlargement in Fig. 10 

and the estimation error comparison in Fig. 9, it can be seen that the IUKF can converge to 

the true value more quickly. The estimation error is kept within 0.2%. This verification 

illustrates the superiority of the improved UKF in estimating lithium-ion battery SOC. 

 

 



Conclusions 

 

It is important and difficult to accurately estimate the SOC of lithium-ion batteries. In this 

paper, Thevenin model was used to characterize the state and output characteristics of the 

lithium-ion battery, where the pulse discharge experiment was conducted to identify the 

parameters. In addition, the relationships between the circuit model parameters and the SOC 

of the lithium-ion battery in different discharge stages were also determined. On this basis, 

the traditional Kalman algorithm was improved. The improved algorithm reduced the 

complexity of the traditional algorithm by constructing a reduced-order model and can 

quickly estimate the SOC of the battery. The Simulink model was established on MATLAB 

and combined with experimental data under variousworking conditions for analysis. The 

results show that the improved UKF algorithm can estimate the SOC of the lithium-ion 

battery well. They also showed that the estimation error can be controlled within 0.5%, which 

verifies that the improved UKF has a high accuracy in the SOC estimation of lithium-ion 

batteries. 
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