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Abstract—This paper looks at potential vulnerabilities of the
Smart Grid energy infrastructure to data injection cyber-attacks
and the means of addressing these vulnerabilities through intelli-
gent data analysis. Efforts are being made by multiple groups to
provide to defence-in-depth to Smart Grid systems by developing
attack detection algorithms utilising artificial neural networks
that evaluate data communication between system components.
The first priority of such algorithms is the detection of anomalous
commands or data states; however, anomalous data states may
also result from physical situations legitimately encountered by
equipment. This work aims at not only detecting and alerting on
anomalies, but at intelligent learning of the system behaviour
to distinguish between malicious interference and anomalous
system states occurring due to maintenance activity or natural
phenomena, such as for instance a nearby lightning strike causing
a short-circuit fault.

Index Terms—Intelligent Analysis, Contextual Data, Artificial
Neural Networks, Malicious Interference, Machine Learning,
Smart Grid, SCADA Cybersecurity

I. INTRODUCTION

Electrical infrastructures around the world are currently
evolving from centralised, large-scale systems with compo-
nents which are largely offline or on private networks, con-
trolled where necessary by proprietary code, to much more
complex distributed systems incorporating a wide range of
“smart” software-controlled components and wider network
connectivity. The benefits of this are many: these systems are
able to incorporate multiple smaller power generators from
commercial wind farms to individual consumer solar panels,
and are able to route supply to demand in a far more efficient
fashion [14]. The need for efficiency of management and
operation of the increasingly complex landscape of technical
components in order to limit costs also now means that far
more internetworked software control systems are in play, and
that many, if not most, components can be controlled as well
as monitored remotely. However, this widens an attack surface
for malicious interference from actors and groups which do not
need geographic proximity to the systems they are attacking
[14]. Given how much damage can be done at a large scale by
taking electrical infrastructure offline, this is also an obvious
target for state-funded and well-organised groups. It is in
this context that defence-in-depth of Supervisory Control And
Data Acquisition (SCADA) systems and Industrial Control
Systems (ICS) is now a major concern. Traditionally, SCADA

systems have had a long life cycle with few updates, but
had limited vulnerability due to their relative isolation from
the outside world. Now, with the greater technical complexity
and connectivity, solutions far beyond patching are vital to
protect from malicious interference. In recent years, part of the
development of that defence-in-depth has been the addition of
machine learning algorithms to monitor network traffic of both
commands and sensor data, to detect both injected commands
and injected data which may be used to indirectly manipulate
the physical systems which are supposed to protect electrical
components from damage [15]. This paper is concerned with
the injection of false sensor data into an electrical substation’s
network to simulate voltage under-load or overload, with
the intention of making equipment tasked with maintaining
voltage equilibrium respond inappropriately, thus creating an
actual disequilibrium and destabilising the resource. What
complicates detection of this type of attack, however, is that
legitimate physical conditions, such as a lightning strike on
or near the substation, or electrical transmission lines taken
down for emergency maintenance, may result in sensor data
almost indistinguishable from maliciously injected anomalous
sensor readings. The specific focus of this research has been
the potential use of external data along with machine learning
profiling of “normal operation” vs. anomalous states in order
to better distinguish malicious data injection from legitimate
sensor states. The paper is structured as follows. In Section
2 we provide a literature review of some work on managing
Smart Grids through detection of malicious signal manipula-
tions. Section 3 covers the methodological aspect of the work
we have carried out, including the source of the simulated data
and novel data pre-processing procedures. Section 4 covers
the results and issues of implementation and testing in more
depth. Finally, Section 5 discusses the implications and further
concerns, as well as steps which could take this research
further.

II. LITERATURE REVIEW

A. Smart Grid technologies

In the past the energy grid has consisted of a large central
power generation unit or a small number of central units,
feeding high voltage current into a one-way high-voltage
transmission and distribution network. This was stepped down



to a lower voltage at substations geographically close to
customer endpoints, and much of the automated equipment
managing transmission and distribution was offline or had lim-
ited connectivity to central SCADA systems [12]. This system
is being replaced by the far more decentralised Smart Grid,
which not only includes traditional bulk power generators, but
also ties in numerous smaller systems of generation including
medium- and small-scale renewables. These may contribute
energy at high, medium or low voltages, and they must be
brought safely into the same transmission and distribution
system for redistribution to consumers.

Decentralised control for safety and efficiency becomes a
necessity in this grid architecture. The grid is often already
capable of ramping power generation up or down according
to variable demand (there are multiple load-following bulk
generators across the UK), but the time-variant nature of
energy distribution becomes vastly more complex with the
addition of an inevitably variable supply of wind and solar, in
which the level of generation is often mismatched to the level
of demand. As parenthetically noted in [21], many traditional
systems were designed to deal with “stable power systems
with [a] fixed topology”; the changing, unstable topology
of modern Distributed Energy Resources (DER) requires the
integration of Intelligent Electronic Devices (IEDs) and ICT
capabilities into sensors, voltage control, Remote Terminal
Units (RTUs) and other components for grid stability and
resilience [10]. These provide both real-time individual com-
ponent and aggregate monitoring of the system load, and
are able to efficiently manage stability of supply matched to
endpoint demand as well as maintaining the flow of voltage
and current through the grid components within acceptable
operational limits. In addition, costs to the energy companies
are reduced by allowing more manual control by remote
operators, rather than technicians on-site. The energy grid is
becoming a true cyber-physical system: demand-response and
supply reliability are both becoming governed by computerised
control systems over network communication, as noted in [5]
and [16]. Unfortunately this creates a built-in vulnerability to
remote malicious interference.

Fig. 1. Smart Grid Architecture

There are multiple possible forms of attack. Malware may
penetrate a SCADA system from a connected central corporate
or desktop computer, and then pivot to an Industrial Control
Systems (ICS), or malware exploiting substation communica-
tion protocols governed by IEC 61850 may be injected directly
into RTUs or other control units via their network connectivity
[12]. Denial of service attacks may be used to shut down
communication between DER components, or time-delay at-
tacks may use intrusion or network flooding to delay time-
critical commands or sensor data during transmission between
components [20]. Commands or sensor data from legitimate
sources may be intercepted on the network and either de-
stroyed or altered; or “spoofed” commands or data originating
from malicious actors may be fed into ICS networks with the
appearance of legitimacy. These potential attack routes depend
on targeting communication, sensing, or monitoring. There is
an additional route of attack, not considered in depth here, of
direct manipulation of a physical signal into a sensing device.
For example, Ju [9] looked at how manipulation of reported
bus voltage could be used to create massively inappropriate
power injection into a DER which uses distributed, local
control of reactive-power injection (“Volt/VAR control”) to
keep a resource at a voltage equilibrium, destabilising not just
the resource but “the voltage profile across the distribution
network” and resulting in widespread grid damage.

B. Intrusion Detection Systems for Smart Grid

Efforts to make the new Smart Grids more secure have been
underway at every stage of Smart Grid development, but for
the purposes of this research we are focusing on work done
in this domain since 2014. One of the early papers looking at
cyber attack on the grid through the manipulation of sensor
data is Isozaki et al. [7]. This is worth consideration as it lays
out quite clearly how the scenario for attack works, and a
proposed defence.

The authors of [4] provide the energy datasets that are also
used in a slightly altered form for our research. This work
addresses a more complex situation than the one outlined
above, and explicitly does so in a way which involves the
Phasor Measurement Unit (PMU) which is an integral part of
the cyber layer in the cyber-physical system that is the Smart
Grid. The PMU collects and monitors the status of a wide
array of system devices, “including relays, breakers, switches
and transformers”, in order to maintain a fine-grained control
with low latency and very short reaction times. This paper
also deals with the fact that breakers may be tripped and
power flow interrupted for natural events and for maintenance,
as well as by malicious interference, and notes that a good
Intrusion Detection System (IDS) should be able to tell the
difference. It is with this in mind that the energy datasets
in question involve maintenance events and “natural” faults
as well as normal operation and attack scenarios. A concise
overview of machine learning classifier algorithms and their
outcomes for the dataset is also provided in [4]. However,
timestamp data was explicitly removed from the energy dataset
for the purposes of their experiment, and the focus of the



paper is solely on the power states within the experimental
setup that was modelled, incorporating no other contextual
data. The current work will seek to extend that evaluation
by incorporating contextual data which should allow better
evaluation of the plausibility of an actual physical fault where
anomalous data may otherwise be classified as suspicious
– that is, to improve the accuracy of the identification of
malicious interference by further helping to eliminate false
positives. A paper by Anwar et al. [2] makes an explicit claim
that work on IDS for power systems until that time had ignored
the presence of actual physical faults. This was not strictly
true, but they do accurately point out that the majority of work
in the field relied simply on detecting anomalies or unexpected
deviations away from baseline values of normal behaviour,
and fail to adequately distinguish physical faults from attack
conditions. The strength of their work is that they consider
more complex fault types than in [4], going beyond tripped
breakers to look at measurements resulting from different
types of shorting faults. They use the same datasets as their
starting point, and work to improve accuracy of classification
through the use of Principal Component Analysis (PCA).
Wei and Mendis in [21] evaluate a relatively new machine
learning technique, Deep Belief Network, and its extension
Conditional DBN, against the more usual Artificial Neural
Network techniques for evaluation of complex patterns of
power system features. A strength of this work is that it
not only looks for a “physical coherence” of measurements
between components of the system, it is also capable of
tracking the change over time to aid in the verification of the
current state and the identification of corrupted values being
fed into the system. This, however, may in fact make the
algorithm more prone to the false positive identification of
sudden physical faults as being malicious attack. Kosek [11]
uses the more conventional Artificial Neural Network (ANN)
algorithms for anomaly detection, but the paper usefully looks
at the differences between “point” and “contextual” anomalies
– the former involving simply identifying measurements which
are anomalous in the global setting, and the latter being able
to distinguish measurements which would be anomalous in
certain contextual settings but acceptable in others. The latter
requires state awareness over time and is more accurate, and
in that respect confirms some of the above-referenced work;
usefully for the current project, it looks at the addition of
meteorological data and timestamping as inputs. The paper,
however, concentrates primarily on the customer consumption
side and local PV generation, rather than looking at substation
models, but the techniques for using contextual data can po-
tentially be applied. The authors of Tian et al. [18] raise valid
concerns about anomaly detection and the security of sensor
data and PMUs in the real world. They legitimately point out
that this is complicated by the fact that an attacker may also be
monitoring configuration changes and reacting dynamically;
however, it does point to interesting work to be done in the
future. Their work is weak in that their experimental model is
in a number of respects dissimilar from the physics of the real
world, and it goes outside the scope of the present project, but

it does raise ideas that future researchers would be advised to
take note of for real-world mitigation of data injection attacks
against sensor measurements.

III. METHODOLOGY

This particular research focuses on a potential situation
where a compromise has occurred which results in spoofed
or altered data being fed to sensors to induce inappropriate
grid behaviour. We look at the values reported as behaviour
data from components of a small simulated grid (two power
generators, four Intelligent Electronic Devices (IEDs), and four
breakers, arrayed along two lines, as illustrated in Fig. 2).

On Fig. 2, G1-G2represent generators, BR1-BR4 - break-
ers, IED1-IED4 - Intelligent Electronic Devices (IEDs) that
provide control of breakers, and B1-B3 indicate power buses
where Line 1 spans from B1 to B2, and Line 2 spans from
B2 to B3. Here, each IED controls one breaker.

The components of a Smart Grid may be said to have the
following “legitimate” operational states:

• normal operation;
• normal (pre-scheduled) maintenance;
• abnormal operation as response to physical component

damage or physically anomalous situations;
• recovery from damage or an abnormal state.
Malicious injected data may impersonate either the demands

of “normal operation” (for example, indicating that there is
increased or decreased demand on certain circuits, inducing an
“appropriate” response which in fact results in either overload
or underloading), or can be used to indicate component dam-
age where components are in fact operating normally, again
thus inducing a mismatched grid response. This paper looks
specifically at using contextual analysis involving multiple
sensor data, weather event data and developed profiles of
normal behaviour, in a machine learning tool for the detec-
tion of anomalous component behaviour in general and the
evaluation of anomalies in an extended context to best dis-
tinguish between legitimate grid response to a likely physical
event (such as a lightning strike which damages or disables
a grid component) and illegitimate manipulation. Behaviour

Fig. 2. Modern Substation Components



represented in the datasets includes both “natural” short-circuit
faults and malicious data injection attacks targeting voltage or
current control.Datasets of electricity substation sensor data
under different conditions (including those of malicious data
injection), in combination with a modified ”lightning strike
event” dataset tested for temporal and geographic correlation
(representing proof of concept that weather event data can
be usefully incorporated into behaviour analysis) are used to
develop and train a bespoke machine learning algorithm which
is capable of detecting malicious data injection on smart grids,
and distinguish that from weather related events.

A. Datasets of electricity substation sensor data

The datasets around which this work was based were gained
primarily from the repository made public by Tommy Morris,
in cooperation with others at the Mississippi State University
and Oak Ridge National Laboratory in the USA [4]. These
sensor and network datasets encompass the miniature model
substation components detailed above and were provided as 15
initial sets encompassing a mix of 37 different “natural” and
“attack” events in each. They are provided in .csv or ARFF for-
mat, and were modified for our purposes by adding generated
timestamps and removing fields that did not represent sensor
measurement data. The datasets collected from [4] included
multiple scenarios coded as shown in Table I.

TABLE I
ENERGY DATASET EVENT SCENARIOS

Scenarios Descriptions
Natural Event (Short-Circuit Faults)

1 short-circuit on Line 1
2 short-circuit on Line 1
3 short-circuit on Line 1
4 short-circuit on Line 2
5 short-circuit on Line 1
6 short-circuit on Line 1

Data Injection Attacks – Short-Circuit Fault Replay
7 short-circuit on Line 1 to force tripping command
8 short-circuit on Line 1 to force tripping command
9 short-circuit on Line 1 to force tripping command
10 short-circuit on Line 2 to force tripping command
11 short-circuit on Line 2 to force tripping command
12 short-circuit on Line 2 to force tripping command

Maintenance
13 Line 1 Maintenance Down
14 Line 2 Maintenance Down

Normal Operations (No Events)
41 Normal Operational Load Changes

The dataset includes 29 types of measurements (see Table
II) for each of four phasor measurement units (PMUs), where
each PMU is associated with one of the IEDs. This results in
a dataset with a total of 116 features.

The original records in these datasets were apparently
timestamped as series data, however by the time the datasets
were posted to the public repository all timestamps had been
removed. This being the case, a column was added and
timestamps were artificially generated, spaced out at every
30 seconds. This is not a realistic scenario, as measurement
sampling would realistically take place either on a much faster

TABLE II
ENERGY VALUE MEASUREMENTS

Feature Descriptions
PA1: VH – PA3: VH Phase A – C Voltage Phase Angle
PM1: V – PM3: V Phase A – C Voltage Phase Magnitude
PA4: IH – PA6: IH Phase A – C Current Phase Angle
PM4: I – PM6: I Phase A – C Current Phase Magnitude

PA7: VH – PA9: VH Pos.-Neg.– Zero Voltage Phase Angle
PM7: V – PM9: V Pos.-Neg.– Zero Voltage Phase Magnitude

PA10: VH – PA12: VH Pos.-Neg.– Zero Current Phase Angle
PM10: V– PM12: V Pos.-Neg.– Zero Voltage Phase Magnitude

F Frequency for relays
DF Frequency Delta (dF/dt) for relays

PA: Z Appearance Impedance for relays
PA: ZH Appearance Impedance Angle for relays
S Status Flag for relays

and narrower timescale, or on a wider one via a measurement
aggregator. For proof of concept this was deemed sufficient,
however. A column was also added to encompass a class
value of 0-3 for the overall class of the scenario, which would
be used for data analysis in the machine learning algorithms
(Table III).

TABLE III
CLASSIFICATION SETS

Class Type Scenarios
0 Normal Operation 41
1 Maintenance 13, 14
2 ‘Natural’ Fault 1, 2, 3, 4, 5, 6
3 Attack 7, 8, 9, 10, 11, 12

Finally, a column was added to the features of the dataset
to allow indication of correlation with a lightning strike (the
dataset described next), coded with a value of 0 for no
correlation, 1 for a correlation.

1) External weather datasets: In a live situation, lightning
data could potentially be harvested from NOAA-associated or-
ganisations, lightning-monitoring bodies which sell monitoring
subscriptions such as Vaisala [19], or UK lightning strike data
which is publicly available. For the purposes of this work,
however, it was decided to simulate lightning strike data in the
form of generating records of ”strikes” with random locations
and timestamps, within certain constraints. Since the training
and test data set for grid events is from a simulated network
without a real location, an arbitrary latitude and longitude
location was assigned to it for the purposes of the experi-
ment, and this assigned location was then used as the central
coordinate for generated random ”lightning strikes.” Values for
generated geographical locations of ”strikes” were constrained
to within ±0.000009 degrees latitude and ±0.0000005 degrees
longitude of the base location. In the real world, collection of
lightning strike data would likely be somewhat constrained to
relevant areas, but would still contain lightning strikes not near
enough to grid components to be relevant, so that some form
of pre-processing would be required to screen out irrelevant
lightning events. For the purposes of testing our proof of
concept we generated a relatively small number of lightning



strikes overall, but within that small number there still needed
to be enough generated values which corresponded closely
to the precise location of the substation. In order to ensure
this, the considered geographic coordinate spread could not
be overly wide. In addition, a deliberate skew was made in
the Python code used to generate the coordinate and timestamp
data to ensure that lightning strike events should correlate more
with the “natural fault” events noted in [4], rather than with
other event categories. It would have been simpler to randomly
designate a minimum number of ”natural” fault event records
as being correlated to a lightning strike; however, the pre-
processing of an additional lightning event dataset to test
for potential geographical and temporal correlation with fault
events was deemed valuable by the researchers as something
similar would need to be done in any live situation, as noted
above. Thus, the decision was made to generate the random
”lightning strikes” and process these for correlation with the
energy dataset events in a ”normal” fashion. Screening the
generated ”lightning strike” dataset for potential correlations
involved a simple test of records for location within ±0.000001
latitude and ±0.000001 longitude of the base location, and
occurrence within the 5 seconds previous to the timestamp of
any given measurement within the energy dataset.

In some work that has already been done in the field with
machine learning algorithms for the detection of anomalous
states, time-series measurements were used to build a profile
of what normal deltas would be, and Markov Models used to
flag deviations [1]. We are proposing ANN-based algorithms
for this detection and flagging of anomalous states, described
next.

B. Data Pre-processing

To prepare the data prior to develop any model, in this study
we used to novel approaches of Outlier Removal and Missing
data replacement.

1) Outlier Removal: By removing the noise from the
dataset we are technically removing the insignificant features
from the dataset. When we have the significant features within
the dataset the next step is to normalise the dataset. Outlier in
input data not only can skew and mislead the training process
but also can increase training time significantly. However one
of drawbacks is to have the required information about the
parameters and their distribution before trying to reduce the
outlier data. Which not usually something viable and usually
visual tools are used to visually identify the distribution in the
dataset. Whereas when we are developing a framework this
issue need to be dealt with automatically. As it was discussed
earlier a distance-based approach was introduced to overcome
this statistical approach. In particular [3] defines distance-
based approach into 9 phases of :

• Data collection
• Compute the distances of each data
• Identifying maximum distance value of data
• Determining threshold distance value using identified

maximum distance

• Compare between threshold distance value and distance
of each data

• Determine threshold value(t)
• Determine the distance in comparison to threshold
• Test and identify outlier
• Use Manhattan Distance Technique (MDT) to analyse the

data
MDT is used for single dimension data which is used to

identify the sum of the absolute distance between elements of
parameters (see equation 1).

d(ti, tj) =

k∑
h=1

∣∣(tih − tjh)∣∣ (1)

We will calculate MDT for each parameters using Scikit-
learn library.

Then the following steps will be taken to remove outlier
data from the dataset:

• select the attributes where MDT is higher than the average
distance of the parameter elements.

• set predefined replacement value. the predefined replace-
ment value is ”NAN”. This value will be used to mark
records with outlier values. Although this feature could
be used to eliminate outlier data but sometimes available
data is so important and limited that records cannot be
simply removed by having outlier data.Therefore this
parameter for such cases could be set to ”MISSING” and
handled in the next step of missing data replacement.

• scale down each of the selected parameters between 0
and 1

• calculated the standard deviation σ for each parameter
elements(see equation 2)

σ =
√
µ2 (2)

• compare the element value to standard deviation. if dis-
tance is more than the default value of 0.3 (value can be
modified) then mark the parameter with the predefined
value.

• scale back the parameters to original
• remove records with the predefined attributes of ”NAN”.
2) Missing Data Replacement: In machine learning, al-

though missing data can be cause by the faulty sensor or
human error, but sometimes it could potentially be the ex-
pected value. According to [13] Missing data values can be
divided into two types: ”(1) values that are missing at random
or for reasons unrelated to the task at hand”, ”and (2) values
whose absences provides information about the task at hand”.
Therefore it is important before trying to replace or remove a
missing data we need to first understand if the missing data
is representing a lack or information or it is caused by a
fault or an error. In this study we do not deal with the case
two scenario, where missing data is actually representing an
information. The main focus of this study on the first scenario
where the missing data caused due to a problem and it requires
to be replaced. Some of the most used approaches to deal



with missing data is already discussed in the literature review
chapter which includes MLP, SOM and KNN. Amongst those
KNN has been adapted as preferred method of dealing with
the missing data.

To replace the value of the parameters with the assigned
value of ”MISSING” from the Outlier removal phase, we
feed in the data into a KNN model.The model will find the
closest neighbours using distance metric to ultimately replace
the MISSING value. The following steps are taken to replace
the missing value:

• Select all the parameters which include ”MISSING”
values.

• for each parameter we create a list of values excluding
”MISSING” values.

• the filtered array for each parameter is given to KNN
model to find the closest neighbours using according to
a distance metric.

• from the original dataset we find the neighbouring ele-
ments of the ”MISSING” .

• we then find the clusters the neighbouring values belong
to and we calculate the weighted average of the neigh-
bouring clusters to replace the ”MISSING”.

It means if for instance x is nth element of an input array
(i.e., mn = 1) which is missing , once k which is the nearest
neighbours to the element identified then x is estimated using
corresponding nth feature value of ν. [8].

ν = {vk}Kk=1 (3)

Moreover, after removing noises and replacing missing data,
data were altered furthur as follows:

• Removed the features for SNORT and logs, as we are
looking at line and component data only.

• Added and populated a broad category classifier column
(0-3)

• Added timestamps to the rows for tests for potential
lightning correlation.

• Added and populated a feature for potential lightning
correlation.

• ‘inf’ values replaced by a default value of -999999.
• Removed the timestamps.
• Removed the scenario column and separated the classifi-

cation column from the datasets to be used as the labels
for testing and training.

The machine learning algorithms deemed to be most suitable
in the chosen problem domain are Support Vector Machines,
as these can deal with high-dimensional data. Also in recent
years it is proven that deep neural networks can cope well with
multi-dimensional datasets and capable of forming a reliable
and effective models. Firstly, the substation sensor dataset was
analysed using the SVC algorithm supplied by Python’s Sci-
kit Learn module with default hyper-parameter values (‘RBF’
kernel, no class weighting and C=1.0). Secondly, the dataset
underwent the analysis through a bespoke developed neural
network model. To prepare the data fit for both SVM and

ANN machine learning algorithms, data cleaning, conversion,
normalisation and reduction have been applied to the chosen
dataset. During the data cleaning stage as well as replacing
null, text and missing values with numbers, dataset record also
needed to be scaled down to the range between 0 and 1.

In addition, the class column from the dataset contains
values ranging from 1 to 14 with a further class of 41. To be
able to classify the dataset in a steady format, a data encoder
is used to transform the class labels between the range 0 to
15. (see Algorithm 1)

Algorithm 1 Data Processing
1: data Processing (dataset)
2: UnitToDrop← 35%
3: repeat
4: for i← 1, rows do
5: Outlier removal
6: Missing data replacement
7: scale down values to the 0 to 1 range
8: end for
9: until data is scaled and normalised

10: Split Training and Test based on UnitToDrop
11: repeat
12: Reshape Training Dataset
13: for i← 1, rows do
14: encode classification values
15: range classification from 0 to 15
16: end for
17: until training and test datasets are reshaped
18: Return (trainingDataset, testDataset)

The datasets were shuffled and partitioned for training using
Pandas and Numpy library, with 65% of each dataset assigned
for training and 35% of each dataset assigned for testing.
Moreover, to train the models further, additional libraries Sci-
kit Learn, Tensorflow and Keras have been used. For the
visualisation, i.e. generation of the confusion matrices and
visual diagrams, the matplot library has been used.

Fig. 3. SVM Confusion Matrix



IV. RESULTS

In this section we compare two supervised machine learn-
ing algorithms applied to data analysis of malicious signal
manipulation in Smart Grid systems.

A. Support Vector Machine

The first run, Dataset 1 through a default python SVC Sup-
port Vector Machine, achieved an accuracy of 41.3%. Running
the dataset through again with default algorithm settings, but
with all ‘inf’ records removed, boosted the accuracy to close
to 44%, and expanding C to 3.0 rather than 1.0 to make
classification borders somewhat harder, boosted accuracy to
45%, with the following confusion matrix (see Fig. 3 3).

The skew towards a diagnosis of “natural fault” is obvious.
What is not immediately obvious is why - which can poten-
tially become an issue requesting further investigation. When
the algorithms were run with all the rows containing ‘inf’
values removed (although that accounted for several hundred
records out of each of the 15 original datasets) rather than
given substitute values, in general that added an additional 2-
4% accuracy to the accuracy scores achieved, so this may be
counted as marginal but not spectacularly successful. Since
missing or out-of-bounds values are unfortunately a common
occurrence in real-world sensor sampling, however, this is un-
doubtedly an issue that could be better addressed, although no
suggestions presented themselves at the time of writing. The
larger, consolidated dataset C2 run through the above SVM
achieved 43.4% accuracy, probably largely on the strength
of the greater number of records available in the dataset for
training.

B. Artificial Neural Network (ANN)

To achieve better results in this study by improving the accu-
racy of the SVM model, a new bespoke neural network model
has been developed. The model uses total of 6 dense/fully
connected layers in conjunction with dropout technique before
the last dense layer.

Fig. 4. ANN Confusion Matrix

Prior to using dropout technique, the model was generating
elevating loss values, which clearly indicated overfitting. How-
ever, by deploying dropout, loss value gradually and steadily

decreases. Dropout is a technique proposed by Srivastava [17],
where a random proportion of the neurons in a layer are
dropped during training. The fact that they are “dropped-out”
randomly means that their contribution to the activation of
downstream neurons is temporally removed to avoid overfit-
ting the model. Through multiple trials the model developed
for this study, can generate an accuracy of 98.8%, over a total
of 1000 iteration.

Figure 4 shows the confusion matrix of the tested dataset
against the developed model.

The model can generate high accuracy eventually, but to
get to such accuracy a large number of training iterations
(the x-axis on the figures) are required. The model accuracy
can potentially improve with even more training iterations.
However, for this study the model was trained over 1000
iterations. Figure 5 illustrates the gradual improvement of the
model accuracy.

Also Figure 6 shows the gradual error elimination and
gradual decrease of loss rate, which indicate that the model
is not suffering from overfitting, and continued training over
time can gradually improve the model’s accuracy and reduce
the loss value.

V. CONCLUSION AND DISCUSSIONS

The growing complexity of Smart Grids necessitates ex-
ploration of various approaches to monitoring, optimisation,
and more importantly, securing modern power generation and
distribution systems. These new approaches need to provide
advanced data analytical capabilities for making sense of the
data, situational awareness, and the capacity to quickly detect,
and ultimately withstand, abnormal conditions - both natural
and of malicious nature.

Fig. 5. ANN Model Accuracy

In the present study we suggested an approach to effective
detection of operational anomalies in Smart Grid systems
based on machine learning algorithms that are capable of
processing both substation sensor and contextual data. Al-
though the performance of the chosen algorithms substantially
differ, the ANN-based approach gives us a powerful and quite
effective tool for achieving the desired outcome, but is best
done with a technique which controls overfitting, provided
here by dropout. Testing needs to be extended to further



situations to determine the degree of value added by the
inclusion of lightning or other contextual weather data. In
addition, in realistic situations an energy measurement dataset
would be heavily skewed towards normal operational states,
but even the number of faults would be many orders of
magnitude larger than the number of lightning strikes in an
area, so work must be done to manage how the algorithms may
be trained in the presence of extraordinarily unequal datasets.

Overall, there are a number of steps that could be taken
in future extensions of this particular research project. First
and foremost among them would be an exploration of the
type of Principal Component Analysis done in [6], in order
to identify more exactly what the highest-value features of the
datasets are and to allow dimension reduction. In addition to
that also the developed neural network model can be retrained
with additional dataset and can go live on production using
platform such as Tensorflow Serving to detect malicious signal
manipulations on real-time.

Fig. 6. ANN Model Loss
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