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ABSTRACT
The operational cyber-physical system (CPS) state, safety and re-
source availability is impacted by the safety and security measures
in place. This paper focused on i) command injection (CI) attack
that alters the system behaviour through injection of false control
and configuration commands into a control system and ii) response
injection (RI) attacks that modifies the response from server to
client, thereby providing false information about system state. In
this project, we implemented deep learning (DL) multi-layered se-
curity model approach for securing industrial control system (ICS)
against malicious CI and RI attacks. We validated this approach
with two case studies: i) network transactions between a Remote
Terminal Unit (RTU) and a Master Control Unit (MTU) in-house
SCADA gas pipeline control system and ii) a case study of command
and response injection attacks. Based on this project result, we show
that the proposed approach achieved a significant attacks detection
capability of 96.50%. Also, demonstrated that performance of attack
detection techniques applied can be influences by the nature of net-
work transactions with respect to the domain of application. Hence,
robustness and resilience of operational CPS state and performance
are influenced by the safety and security measures in place which
is specific to the CPS device in question.

CCS CONCEPTS
• Security and privacy → Distributed systems security.

KEYWORDS
Advanced Persistent Threats(APTs), Command and Response Injec-
tion, Cyber-Physical Systems (CPSs), Industrial Control Systems
(ICS), Distributed Control System (DCS), Supervisory Control and
Data Acquisition (SCADA)

1 INTRODUCTION
Critical infrastructure are CPS that are responsible for maintaining
normal industrial plants operation such as gas pipelines, water treat-
ment and power plants. The CPS are control systems that composed
of interconnected computer-based networked and integrated cyber
physical components that monitor, control and exchange vital in-
formation through physical components [16], [17]. These physical
components consist of sensors, controller and actuators that aids
communicate [17]. Examples of such systems are Distributed Con-
trol System (DCS) and Supervisory Control and Data Acquisition
(SCADA) that contain control systems which are used in nuclear
power plants [13], water and sewage systems, and irrigation sys-
tems [11]. Figure 1 is a representation of simple SCADA system.
The computer systems used to control physical functions of the
operating systems are not immune to the threat of today’s sophisti-
cated cyber attacks and can be potentially vulnerable [16]. Potential

Figure 1: A Simple Scada System

threats can affect ICS device at different level; hence security of each
component is extremely important to avoid compromised to any
component [9]. ICS also utilizes diverse communication platforms
and protocols to increase efficiency, productivity reduce operational
costs and further improve organization’s support model [21].

The complexity of the ICS architecture, and the increased efforts
of control physical functions in processing and analysing data,
has lead to increased interactions between control network and
business network [21] - [19]. The possibility of attacks on control
systems in order to gain access to the physical part of ICS and
daily operational challenges due to these increased cyber-physical
interaction are on the high side [11] and [19].

Hence, ensuring the security of these systems are of very impor-
tant to avoid any operational disruption. However, this requires a
complex approach to identify and mitigate security vulnerabilities
or compromise at all levels within the ICS to maintain resource



SIN 2020, November 4–7, 2020, Merkez, Turkey Eke et al.

availability, system safety, integrity, confidentiality and authentica-
tion against the most dangerous type of attack known as APTs [2]
and malicious injection attacks.

Due to increased efforts in ICS’s data analytics, interaction be-
tween control network and business network, software usage has
also grown and adapted to new environments at a significant pace.
This technology advancements has greatly changed how we inter-
act with the connected world, as a result of these new technological
advancements, threat actors have also embraced and adapted to
this development to improve their own strategy in creating new
sophisticated malicious applications as highlighted in [21] and [12].

There is a clear need for intrusion detection / protection system
specifically for critical infrastructures (CIs) that can significantly
improve the security of such systems. Any compromise to these
systems caused by intrusion attacks can lead not only to disruption
of operation, huge financial loses but, more importantly, the risk to
the public safety.

The contribution of this paper can be summarised as follows:

• We propose an ensemble deep learning multi-layered
security detection approach for ICS devices.

• We implemented a multi-layered security detection
approach that takes into consideration the distributed and
multi-level nature of ICS architecture and reflect on the four
main SCADA cyber attacks.

• The achieved results suggest that the proposed approach
possess attack detection capability and demonstrated that
performance of attack detection techniques applied can be
influences by the nature of network transactions with respect
to the domain of application.

1.1 Paper Organisation
The remainder of the paper is organised as follows. Section 2 con-
tains a brief discussion of related work geared toward the security
of CPS. In section 3 detailed description of our approach is dis-
cussed. Experiments, evaluation metrics and analysis results are
discussed in Section 4. Section 5 and 6 presents the conclusion of
this paper and our future work respectively.

2 RELATEDWORK
This section contains a brief discussion of related work to support
the maintaining security and stability of CPS. The ability to de-
tect every possibilities of an active attack on an active CPS is a
global security challenge. There have been a number of successful
breaches of critical infrastructure. Stuxnet is one example of a so-
phisticated targeted cyber attack purposefully launched to target
critical nuclear infrastructure in Iran as highlighted in [4] and [3].

However, the four main recorded targeted attacks malware tai-
lored against ICS are STUXNET, BLACKENERGY 2, HAVEX and
CRASHOVERRIDE, where STUXNET is the first ever recorded for
disrupting physical industrial processes while CRASHOVERRIDE is
the second and also the first known to specifically target the electric
grid [20] and [22]. CRASHOVERRIDE is not unique to any vendor
or configuration but utilises the knowledge of grid operations and
network communications to cause disruption resulting to electric
outages and is not necessarily malware for espionage [15] and [10].

Numerous techniques have been proposed and successfully im-
plemented to detect these type of attacks. However, most of these
proposed works has led to a significant pool of solutions geared to-
wards addressing securing the CPS [5]. One of this threat detection
model in a specific critical infrastructures was carried out by Linda
et al. in [16] using a hybrid of two neural network learning algo-
rithms – the Error-Back Propagation and Levenberg-Marquardt,
for normal behavior modeling to develop an IDS using Neural Net-
work based Modeling (IDS-NNM). This IDS-NNM was achieved by
developing window based feature extraction technique; construc-
tion of training dataset using randomly generated intrusion vectors
from real network data.Their result shows the ability of IDS-NNM
to detect long and short intrusion attempts consisting of several
packets and achieved good detection rate while generating no false
positives when evaluated with previously unseen testing data.

Work in [17]which focused on generating a cyber defense system
that will maximizes the likelihood that a cyber-physical system
under sensor attack can still recover and reach the desired state
without a noticeable performance degradation using combination
of watermarking and resilient kalman filtering (RKF) technique
accompanied with a watermarking approach.

Also, in [1], the author considered a case of nonlinearities in
communication data flow in Automatic Generation Control (AGC)
system, applied stacked RNN-LSTM model as a detector and clas-
sifier in order to detect False Data Injection (FDI) attacks in AGC
systems and achieved accuracy of 94%. The authors focused on
three types of attack; the ramp, step and pulse attacks since attacks
in AGC target frequency deviation signals and tie-line power sig-
nals. Accuracy, sensitivity, specificity and precision were calculated
as metrics measure in order to validate their proposed model detec-
tion classification capability. Two case scenarios were implemented
using RMSprop optimizer to enhance the model performance and
archived a precision of 99.01% and 99.22%.

We implemented a multi-layered security detection approach
that takes into consideration the distributed and multi-level nature
of ICS architecture and reflect on the four main SCADA cyber at-
tacks using ensemble DL model on network transactions between
RTU and MTU. We expect that the ideas behind this analysis ap-
proach as presented in this paper will aid in the efforts to improve
and maintain the security of cyber-physical systems stability.

3 APPROACH
The ability to maintain the authentic communication settings such
as pressure set point, proportional integral derivative (PID) param-
eters, or relief valve control state within a SCADA system is a very
critical issue.

SCADA systems has a regular set of read and write commands
communication patterns that are repeated in a loop. For instance,
the system command writes the contents of all registers and coils
used, then the measured state of the system is read by the Mod-
bus read holding register command. Each of these commands are
followed by response. These operations are performed by pro-
grammable logic controller (PLC) and human machine interface
(HMI) using a standard SCADA communication protocol. The PLC
controller reads inputs, analyse current state, calculate responses,
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and write outputs while the HMI monitor and control the physical
process remotely.

To execute CI attacks, the attackers maliciously inject a com-
mand into the system server that modifies settings such as pressure
set point, PID within a SCADA system. On the other hand, the RI
attacks then alters the response coming from the server to client
thereby provide false system state information [18]. We have ex-
ploited the regular communication patterns in SCADA system using
deep leaning algorithms that has a nonlinearity feature to build a
model of normal behaviour and detect abnormal deviations

3.1 Our proposed model operates in three
layers

(1) Data input and probing layer
(2) Data analysis Layer
(3) Decision Layer (uses voting and probability confidence)

3.1.1 Data input and probing layer: consists of two modules; (i)
Data input which involves data gathering and raw sample / simu-
lated synthetic data been introduce into the system and (ii) Probing
Module - this involves data preprocessing the collected data.

• Normalisation - ZScore method of standardisation is used to
normalise all numerical features to preserve the data range
and introduce the standard deviation and variance to im-
proves model convergence speed during training.

𝑍 =
𝑥 − 𝜇

𝜎
(1)

Where 𝑍 is ZScore, 𝑥 is the individual data point, 𝜇 is the mean
of 𝑥 for a given attribute; that is uniform real number between 0
and 1, represented as Equation 2

𝜇 =
1
𝑛

𝑛∑
𝑖=1

𝑥𝑖 (2)

and Rho (𝜎) is the standard deviation as represented in Equation 3

𝜎 =

√∑ (𝑥−𝜇)2
𝑛

(3)

3.1.2 Data analysis Layer: The rate of attack detection is affected
by the parameters used as this parameters have direct impact on
attack detection, based on this, several experiments with different
network configuration were implemented to find the best optimal
values for parameters such as learning rate, network structure such
as number of hidden recurrent layer

The processed data are passed to this layer, data is analysed,
attack(s) are distinguished from normal activities, taken note of the
identified issued with class distribution and classifying rare attacks.
Result from this layer is passed to decision engine layer.

3.1.3 Decision Layer: This Layer operates using three approaches;
first, it receives information from analysis layer, extract the at-
tack step present. Secondly, it processes this information and links
attacks steps that are related. Lastly, it then uses voting and proba-
bility confidence to check if the attack is a potential chain of attack
campaign is found and if is consistent with other attack campaigns.

3.2 Recurrent Neural Network
The Decision Layer is implemented with ensemble RNNs variants
for data analysis. RNN is an effective class of artificial neural net-
work (ANN) used when dealing with sequence data. The RNN uses
previous inputs and outputs to adjust the weights of the networks,
thus creating a memory to improve its performance [14] It maps a
sequence of inputs to the outputs thereby controlling the informa-
tion flow signal with respect to time. Hence, RNNs is suitable for
dynamic real time network pattern analysis with time.

The formulated mathematical representations of the RNN com-
putational flow are represented in Equation 4

𝑠𝑡 = 𝑓𝑤 (𝑠𝑡−1, 𝑥𝑡 ) (4)

where fw is the recursive function. Given that a network has an in-
put layer 𝑥 , hidden layer 𝑠 and output layer 𝑜 . The current observed
input to the network at time step 𝑡 is denoted as 𝑥𝑡 , the hidden
state at time step 𝑡 is denoted as 𝑠𝑡 and 𝑠𝑡−1 represent the previous
hidden state.

Each hidden layers has a sigmoid activation function which can
be calculated with Equation 5, this function is applied to produce
non-linearity value by transforming the input into values usable
by the output layer.

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) = 1
1 + 𝑒−𝑥

(5)

Based on the pre-configured number of time steps during training,
the network screens the sequence data by creating a time window
to identify a temporal pattern across the features and labels within
this window. The same process is repeated within the network by
sliding over the entire data sequence while updates the weights
accordingly. With the assumption that parameters share the same
weight𝑊 across the whole sequence in each time step t reducing
the amount of parameter to be trained, this assumption is utilised
to compute the gradient for weight parameter across time step 𝑡 .
Hence at a given time 𝑡 , we have;

𝑠𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑠𝑥𝑡 +𝑊𝑠𝑠𝑠𝑡−1 + 𝑏𝑠 ) (6)

𝑠 𝑓 =
𝑒𝑥𝑡∑𝑛
𝑗=1 𝑒𝑥 𝐽

(7)

where 𝑠𝑡 is the calculated hidden layer, tanh is the hidden layer
nonlinear activation function, softmax function sf represented in
Equation 7 is used at the last layer in Equation 8. the weight shared
among the previous hidden state 𝑠𝑡−1, input state 𝑥𝑡 and output 𝑜𝑡
across all the time sequence 𝑡 are the weight shared between the
hidden s and output o across all the time sequence are𝑊𝑠𝑠 ,𝑊𝑥𝑠

and𝑊𝑜𝑠 respectively, while 𝑏𝑠 and 𝑏𝑜 are the bias terms for the
hidden state and output 𝑜 at time step 𝑡 .

𝑜𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑤𝑠𝑜𝑠𝑡 + 𝑏0) (8)

In order to minimise the cumulative network error, the loss, or
error as applied on this study is the cross-entropy loss which is the
sum of all input-output pairs errors in a sequence over all the time
steps t, is referred to as the loss L function, given as Equation 9,

𝐿 (𝑜,𝑦) = −
∑
𝑡

𝑦𝑡 (𝑥) 𝑙𝑜𝑔𝑜𝑡 (𝑥) (9)

where 𝑦 is the true probability distribution, 𝑜 is the predicted
probability distribution,𝑦𝑡 is the actual true probability distribution
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class value at time step 𝑡 and 𝑜𝑡 is the actual true predicted class
distribution value at time step 𝑡 , 𝑥 is an input and 𝑙𝑜𝑔 is natural log.

To derive the derivative of Equation9 with respect to the actual
true predicted class value 𝑜𝑡 as calculated with Equation 8, assume
𝐿 as the given objective function, 𝐿(𝑡) as output at current hidden
time 𝑡 and 𝐿(𝑡 + 1) as the output at the previous hidden state time
𝑡 + 1. Then, we have;

𝜕𝐿

𝜕𝑜𝑡
= −

∑
𝑡

𝑦𝑡
𝜕𝑙𝑜𝑔 𝑜𝑡

𝜕𝑠𝑡
= −

∑
𝑡

𝑦𝑡
1
𝑜𝑡

𝜕𝑜𝑡

𝜕𝑠𝑡
(10)

Then applying the chain rule to derive the gradient of the 𝑠 𝑓
from Equation 8, we arrive at Equation 11.

𝜕𝐿

𝜕𝑜𝑡
= − (𝑦𝑡 − 𝑜𝑡 ) (11)

Since the hidden state and output share the same weight𝑊𝑠𝑜

across the whole sequence in each time step 𝑡 reducing the amount
of parameter to be trained, weight can be differentiated at each
time step t as shown from Equation 12 to 17.

𝜕𝐿

𝜕𝑊𝑠𝑜
=
∑
𝑡

𝜕𝐿

𝜕𝑜𝑡

𝜕𝑜𝑡

𝜕𝑊𝑠𝑜
(12)

Then, we derive the gradient with respect to each bias 𝑏𝑜 unit
to achieve Equation 13,

𝜕𝐿

𝜕𝑏𝑜
=
∑
𝑡

𝜕𝐿

𝜕𝑜𝑡

𝜕𝑜𝑡

𝜕𝑏𝑜
(13)

Also, to derive the gradient with respect to weight𝑊𝑠𝑠 , we con-
sider the previous time step

𝑡 → t + 1

and arrived at Equation 14

𝜕𝐿 (𝑡 + 1)
𝜕𝑊𝑠𝑠

=
𝜕𝐿 (𝑡 + 1)
𝜕𝑜𝑡+1

𝜕𝑜𝑡+1
𝜕𝑠𝑡+1

𝜕𝑠𝑡+1
𝜕𝑊𝑠𝑠

(14)

Considering that weight𝑊𝑠𝑠 , and𝑊𝑜𝑠 shared across all the time
𝑡 sequence are similar. Likewise, in RNN model, the calculation
of the subsequent state hidden state 𝑠𝑡 depends partially on the
previous hidden state 𝑠𝑡−1. Hence, we arrived at Equation 15

𝜕𝐿 (𝑡 + 1)
𝜕𝑊𝑠𝑠

=
𝜕𝐿 (𝑡 + 1)
𝜕𝑜𝑡+1

𝜕𝑜𝑡+1
𝜕𝑠𝑡+1

𝜕𝑠𝑡+1
𝜕𝑠𝑡

𝜕𝑠𝑡

𝜕𝑊𝑠𝑠
(15)

We arrived at Equation 13 (15) by clustering the weight over the
whole sequence using the Backpropagation Through Time (BPTT)
from time step 𝑡 to 0 with respect to𝑊𝑠𝑠 , we get Equation 16,

𝜕𝐿 (𝑡 + 1)
𝜕𝑊𝑠𝑠

=
∑
𝑡

𝑡+1∑
𝑘=1

𝜕𝐿 (𝑡 + 1)
𝜕𝑜𝑡+1

𝜕𝑜𝑡+1
𝜕𝑠𝑡+1

𝜕𝑠𝑡+1
𝜕𝑠𝑘

𝜕ℎ𝑘

𝜕𝑊𝑠𝑠
(16)

Taking the gradient with respect to𝑊𝑥𝑠 over the whole sequence,
we applied the same process as from Equation 12 to 17.

𝜕𝐿 (𝑡 + 1)
𝜕𝑊𝑥𝑠

=
∑
𝑡

𝑡+1∑
𝑘=1

𝜕𝐿 (𝑡 + 1)
𝜕𝑜𝑡+1

𝜕𝑜𝑡+1
𝜕𝑠𝑡+1

𝜕𝑠𝑡+1
𝜕𝑠𝑘

𝜕ℎ𝑘

𝜕𝑊𝑥𝑠
(17)

For more understanding of how these equations are derived, please
check Hagan et al, in [7]

4 EXPERIMENT
The purpose of this study is to examine the performance of im-
plementing deep DL ensemble stacked RNN variants approaches
to detection false command and response injection attacks. We
have used network typologies and payload information values of
The New Gas Pipeline Dataset containing 214,580 Modbus network
packets with 60,048 packets that are associated with a cyber attack.
These attacks are categorised into 7 different attack categories with
35 different specific type of attacks [8] and [9]. These attack cat-
egories are narrowed down to four overall categories as follows:
Response injection (RI) attacks, Command injection (CI) attacks,
Denial of Service (DoS) attacks and Reconnaissance. Figure 2 shows
the number of records in each of the categories.

Two different tasks were implemented. The first task focused on
deriving hyper-parameter values for best performance model. In
the second task, the best hyperparameter values were implemented
in measuring the model performance. All the standard data mining
processes such as data cleaning and pre-processing, normalisation,
visualisation and classification were implemented in Python. The
batch size of 124 and epochs are run up to 500 with a learning rate
set in the range of 0.01-0.5 on a GPU-enabled TensorFlow network
architecture. All the 17 features were used as input vector with
70% as training set and 30% as validation set for the multi attack
classification. The training dataset were normalised from 0 to 1.
This was trained using sigmoid activation function through time
with ADAM optimiser, sigmoid function was used on all the three
gates and categorical cross entropy as loss function for error rate.

Also, these tasks were carried out with traditional machine learn-
ing (ML) classification algorithms - Decision Tree (DT). The ML
classification result was compared to Deep ensemble RNNs-CNN
result in order to further evaluate the detection capability of used
approach and report the result in Table 1 and 2.

4.1 Experimental Data
Figure 2 is the visualisation representation of The New Gas Pipeline
data classes records.

Figure 2: Four Main Attack Group and Normal Classes

4.2 Hyperparameters settings used
• Batch sizes: 32, 64 and 128
• Learning rate: 0.0002 to 0.00005 with polynomial decay over
all the epochs.

• No of iterations: 100 – 500epochs.
• Neural network: Four layers were used
• Each of the hidden layers has a sigmoid/ReLU activation
function applied to it to produce non-linearity. This trans-
forms the input into values usable by the output layer.



Detection of False Command and Response Injection Attacks for Cyber Physical Systems Security and Resilience SIN 2020, November 4–7, 2020, Merkez, Turkey

• The softmax function is applied to the output layer to get
probabilities of categories. This also helps in learning with
cross entropy loss function.

• Adaptive Moment Estimation (Adam) optimiser is used for
the back propagation to minimise the loss of categorical-
cross entropy.

• The dropout is used to alleviate the over-fitting (used as
regularization technique used to prevent over-fitting in Neu-
ral Networks. This randomly removes the units along with
connections.

4.3 Evaluation Metrics
Generally, accuracy is used as a traditional way of classification
performance measure. This matric measure is no longer appropriate
when dealing with multiclass imbalance data since the minority
class has little or no contributionwhen compared tomajority classes
toward accuracy [23]. For this reason, this study considered preci-
sion, recall, f1-score, overall accuracy, area under the curve (𝐴𝑈𝐶)
receiver operating characteristic (𝑅𝑂𝐶) and confusion matrix are
used to validate the approach of using RNN variants for detecting
false command and response injection attack and get a clearer un-
derstanding of the output. These metrics are calculated based on
True Positive (𝑇𝑃), True Negative (𝑇𝑁 ), False Positive (𝐹𝑃), and
False Negative (𝐹𝑁 ).

(1) 𝑇𝑃 - abnormal instances correctly predicted as abnormal.
(2) 𝑇𝑁 - normal instances correctly predicted as normal
(3) 𝐹𝑃 - normal instances incorrectly predicted as abnormal
(4) 𝐹𝑁 - abnormal instances incorrectly predicted as normal
(5) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) - is the ability of a classification model to iden-

tify only the relevant data points, that is the ratio of 𝑇𝑃
records over the sum of𝑇𝑃 and 𝐹𝑃 . Represented as Equation
18

𝑃 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃) (18)

(6) 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) – which is also known as probability of detection,
true positive rate𝑇𝑃𝑅or sensitivity 𝑆 is the ability of a model
to find all the relevant cases within data, that is the ratio of
the 𝑇𝑃 records over the sum of 𝑇𝑃 and 𝐹𝑁 . Represented as
Equation 19.

𝑅 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁 ) (19)

(7) 𝑓 1 − 𝑠𝑐𝑜𝑟𝑒 (𝑓 1) - is the weighted average of precision and
recall, that is the harmonic mean of precision and recall of
a class in one given metric, represented as in Equation 22,
where weight parameter is denoted by 𝛽2 generally set to 1
by default and which measures the trade-off between recall
and precision. Represented as Equation 20.

𝑓 1 =
(1 + 𝛽2).𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑟𝑒𝑐𝑎𝑙𝑙
𝛽2𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(20)

(8) 𝐴𝑈𝐶 − 𝑅𝑂𝐶𝑐𝑢𝑟𝑣𝑒 - The precision-recall curve shows the
trade-off between precision and recall at different threshold
settings, where AUCmeasures the degree of separability and
𝑅𝑂𝐶 represent the probability curve and also a useful tech-
nique for model output visualising, organising and selecting
classifiers based on their performance as described in [6]. A
high area under the curve represents both high recall and

high precision, where high precision relates to a low false
positive rate, and high recall relates to a low false negative
rate. High scores for both precision and recall show that the
model is returning accurate results 𝑃 , as well as returning a
majority of all positive results 𝑅. An ideal model with high
precision and high recall will return many results, with all
results labelled correctly. The AUC-ROC curve can also be
used as a scaler measure rather than the higher the AUC
value, the better the model [8].

𝐴𝑈𝐶 =
1 +𝑇𝑃𝑟𝑎𝑡𝑒 − 𝐹𝑃𝑟𝑎𝑡𝑒

2
(21)

(9) 𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑂𝑎𝐴𝑐𝑐) - Measures the rate of the cor-
rectly classified class instances of all the classes (attacks
and normal). An overall classification performance is an im-
portant performance matrix require to evaluate the overall
model performance rate, calculated as represented in Equa-
tion 22.

𝑂𝑎𝐴𝑐𝑐 =
(𝑇𝑃 +𝑇𝑁 )

(𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 ) (22)

4.4 Results and Discussions
To validate the approach of using the RNNs-CNN model for detect-
ing attacks statistical matrices such as true positive rate (TPR), false
positive rate (FPR), 𝑃 , 𝑅„ and 𝑓 1, are calculated (i) to evaluate the
ability of this approach to accurately detect and classify an attack
as abnormal and also (ii) to check the ability of this model to detect
different type of attacks accurately while focusing on CI and RI
attacks.

Table 1 contains the comparative summary result of the individ-
ual algorithms score, while Table 2 shows the overall of the study
approach performance score in detecting malicious CI and RI attack
groups. In this study, RNNs-CNN model was used as classifier and
detector and were able to achieve a significant result of 86.20%
overall average accuracy. Although, a closer observation of the
individual performance of each of the algorithm, LSTM shows a
better detecting rate for the CI and RI of this study interest with
93.30% and 92.04% respectively. We went further to implement the
same approach using ML algorithm “DT”, this turns out to yield
slightly higher score of 95.53% as in Table 2. Considering other
evaluation metrics used, our approach achieved a 𝑃 of 96.41% and
Sensitivity of 99.71.

Furthermore, the validation accuracy, loss rate and AUC-ROC
shows a clear view of the overall performance, the error rate and ac-
curacy validation as can been seen in can be visualised in Figures 8
- 16. However, there are some spikes in the validation accuracy and
loss as shown in Figures 9-16, following the individual model detec-
tion capability and loss per epoch, with micro and macro-average
ROC curve of 91% and 72% respectively obtained, it indicates that
the classifier performs well for each individual class.

• Confusion Matrix: Confusion Matrix: Figure 3-7 are the in-
dividually generated confusion matrix to show the predicted
and the actual true detection of all the four attacks group
for each of the algorithms used. Figure 2 shows the number
of instances of the CI, DoS, Normal, Reconnaissance and RI,
where DoS appear to have a fewer connection records while
normal contains the highest connection records. The model
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Table 1: Overall Performance for All Attacks Detection

Criteria Score
Recall 86.1
Precision 87.9
f1-score 82.1
TPR 96.5
FPR 0
Validation Loss 32.6
Detection rate 86.1
Overall Score
OaAcc (%) 86.2
micro f1 (%) 91
macro f1 (%) 72

Table 2: Comparative Result for CI / RI Attacks Detection

Algorithm LSTM (%) RNN (%) GRU (%) CNN (%) DT (%)
Criteria CI RI CI RI CI RI CI RI CI RI
Precision 96.41 76.54 95.73 100 96.47 89.92 96.47 89.92 97.77 72.4
Specificity 99.71 99.95 99.65 100 99.7 99.98 99.7 99.98 99.68 97.91
Detection rate 93.3 92.04 93.09 92.03 93.53 92.07 93.53 92.08 99.17 95.53

tends to learn the class with more records properly without
confusing their identity unlike those with fewer connections
records. This indicates data imbalance distribution problem.

Figure 3: Multi-Classification Confusion Matrix for LSTM

4.4.1 Visual Representations of Experimental Confusion Matrices:

5 CONCLUSION
In this study, we implemented a multi-layered security detection
approach based on Deep Leaning (DL), that takes into considera-
tion the distributed and multi-level nature of ICS architecture and
reflect on the four main SCADA cyber attacks. We went further to
implement attacks classification with ML “DT” classifiers as con-
tained in Table 1 and 2. The result of the implemented algorithms
achieved a competitive overall accuracy and detection rate with 0%
FAR and TPR of 96.50%. We also noticed a higher detection rate of
CI to RI from all the individual algorithms implemented, although

Figure 4: Multi-Classification Confusion Matrix for RNN

Figure 5: Multi-Classification Confusion Matrix for GRU

Figure 6: Multi-Class Confusion Matrix for CNN

CI has more connection records, the implemented approach appear
to be more suitable for classifying high-frequency attacks. The per-
centage detection rate achieved as represented in Table 2 shows a
slight detection capability for ML than DL for this study, however,
the overall result suggests that the RNNs-CNN model is a good
candidate for developing attack detection systems.
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Figure 7: Multi-Class Confusion Matrix for DT

Figure 8: AUC-ROC graph for all five Classes

Figure 9: Validation accuracy against epochs for LSTM

6 FUTUREWORK
This work on the implementation of an ensemble DL multi-layered
security detection approach on ICS device using The New Gas
Pipeline (NGP) dataset is an ongoing study. Further work will ex-
plore full implementation of APT Detection Framework Based on
Deep APT Step Analysis & Correlation (APT-DASAC) on NGP and

Figure 10: Validation accuracy against epochs for RNN

Figure 11: Validation accuracy against epochs for GRU

Figure 12: Validation accuracy against epochs for CNN

Figure 13: Validation loss against epochs for LSTM

a time-series dataset, compare and report the performance of this
model on these two domains.

Since our implemented approach showed a significant attacks
detection capability and demonstrated that performance of attack
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Figure 14: Validation loss against epochs for RNN

Figure 15: Validation loss against epochs for GRU

Figure 16: Validation loss against epochs for CNN

detection techniques applied can be influences by the nature of
network transactions with respect to the domain of application. As
suggested that the robustness and resilience of operational CPS
state and performance are influenced by the safety and security
measures in place which is specific to the CPS device in question.
Hence the need for further investigation in diverse domain in other
to ascertain this claim.The authors are currently engaged in work
in this domain.
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