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Abstract 
This paper proposes a novel way to study the casing structural integrity using two 

approaches of finite element analysis (FEA) and machine learning. The approach 

in this study is unique, as it captures the pertinent parameters influencing the 

casing buckling and the evaluation of the magnitude of each. In this work, the 

effect of combined loading using multiple parameters to establish the relationship 

and effect of each on stress, displacement and ultimately casing safety factor is 

revealed. 

The optimised result show remarkable improvement in reducing the total 

deformation, the von Mises and increasing the safety factor of the casing under 

combined loading condition. The optimised casing shows 89% reduction in total 

deformation and 87% reduction in von Mises in comparison to unoptimised 

simulation result. In addition, the safety factor of 3.3 is obtained against the initial 

predicted stress of 932.46 MPa with a corresponding safety factor of 0.8129.  

Real time parametric prediction and optimisation using Lunar and Quasar 

(ODYSSEE software package) enabled the examination of the casing structural 

responses based on the pertinent parameters. In effect, a very good agreement 

was found between “KNN” and Lunar predictions on parameters influencing casing 

buckling phenomena and the corresponding Mises stress. Lunar optimisation 

provided the ideal parameter values for the attainment of pre-define von Mises 

stress as a function of other factors. This quick approach shows both accuracy and 

validation of the two independent procedures arriving at the same conclusion. We 

found that concurrent investigation of the casing buckling attributing factors and 

optimisation using FEA and ODYSSEE package is sufficient to maintain casing 

structural integrity during shale gas extraction process. 

Key words: Casing deformation, Shale gas well, Prediction, Optimisation, Machine 

learning, Artificial Intelligence 

1. Introduction 

Advances in horizontal well drilling and hydraulic fracturing is now enabling the 

extraction of shale gas and oil in commercial quantities. However, during shale 

gas fracturing process (stimulation), the interaction of hydraulic fractures and rock 

formation is buckling and even shearing the steel casing leading to lack of access 

into the well and costly delays in drilling out bridge plugs in the process (Jacobs 

2020; Guo et al. 2018; Xing et al. 2017; Lian et al. 2017). In more severe cases, 

this can lead to complete loss of access to the lateral section of the wells. The 



2 
 

casing failure under this circumstance is considered to be intra-well phenomena 

that can take several forms and has no universal driver. 

The literature has documented some of the major reasons attributed to the casing 

buckling and deformation phenomena based on field experience from notable 

shale gas provinces. For example, in China - Xi et al. (2019) pointed out that fault 

slippage in multistage fracturing caused casing shear failure. Also, according to Xi 

et al. (2018) and Wang et al. (2018) fracturing activates pre-existing fractures 

that lead to casing shear buckling. Analysis of casing failures in the Granite Wash 

play in the western Anadarko Basin also identified poor cementing to be 

responsible for casing buckling (Carpenter 2019). 

However, Lin et al. (2017) established that rock mechanical strength reduces most 

in Longmaxi Formations at a slip angle of 450 and continue to be destabilised with 

increase in number of stimulated stages along the lateral section of the wells. As 

a result, the casing structural integrity is compromise which translate to lack of 

access into the wells to drill-out bridge plugs. The casing stresses are further 

amplified due to thermal and pressure in volume fracturing of shale gas wells (Xi 

et al. 2018).  In addition, Haghshenas et al. (2017) and Liu et al. (2017) pointed 

out that casing deformation is due to imposed additional load by fracture slip and 

weak bedding plane through the wellbore in the process of hydraulic fracturing. 

The studies of Mohammed et al. (2020) and Yin et al. (2018) show that creep load 

(slippage) lead to an increase of transverse displacement and stresses on the 

casing.   

According to Yu et al. (2019) overlapping, asymmetric stimulated zones in 

adjacent stages effectively increase the resultant shear force on the casing that 

may lead to its failure (“S” shaped deformations). Besides, Lian et al. (2015) and 

Wang (2016) attributed casing buckling to fluctuations in in- situ stresses as a 

result of fracturing pressure. Furthermore, Mohammed et al. (2019) review on 

casing failure pointed that the casings are subjected to material degradation due 

to perforations, varying local loads - in situ stresses, induced stresses due to 

stimulation, natural fracture activation and propagation, slip and shear during 

their installation and operation leading to different kinds of casing failure modes. 

In contrast, different countermeasures are being proposed in the literature 

corresponding to specific scenarios to avoid casing failures. For example, 

simulation results on shale gas horizontal wells suggest avoiding natural fractures 

and nearby faults during shale gas stimulation can reduce casing failure (Guo et 

al. 2018). Furthermore, using cement with an elastic modulus smaller than 10GPa 

and higher casing grade can significantly reduce casing buckling phenomena in 

such wells (Guo et al. 2018). However, Zhang et al. (2020) pointed out that casing 

grade and cement sheath thickness have limited impact on casing deformation. 

While a new analytical study by Liu et al. (2020) developed a model for the 

prediction of time dependent stresses and pore pressures near the wellbore. 

In addition, Yin et al. (2018) investigated casing shear deformation induced by 
fracture slip during multistage hydraulic fracturing in a particular well in China. 

The study established that increasing casings’ flexural strength does not prevent 
deformation. However, low slip angle and using cement with low elastic modulus 

is minimising the potentials of casing failure phenomenon (Guo et al. 2018; Yin et 
al., 2018; Xi et al., Yan et al., 2019). Meanwhile, Yan et al. (2019) suggested that 
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reducing the fracturing pressure is sufficient to maintained casing integrity during 

stimulation process. The study of Lian et al. (2015) and Lin et al. (2017) indicated 
that the key to solving casing deformation and/or buckling is reasonable spacing 

in the design of multi- stage hydraulic fracturing. 
The established procedure in the design of casing for oil and gas wells involves 

casing grade selection and an estimation of the various loads expected to occur 
on the casing with some safety margin based on predicted downhole conditions of 
that particular well. However, this procedure is inadequate and cannot be 

generalised to adequately meet the design requirement for shale gas wells where 
casing –cement and formation rock are bonded together with induced stresses 

during fracturing. 
 
These propositions are case specific and cannot be generalised to address casing 

buckling phenomena as noted above. Therefore, in this study, finite element 

modelling (FEM) is conducted together with design exploration using ANSYS 

design explorer and Lunar to determine the relationship between the main 

attributing parameters. In addition, using Lunar, Quasar and machine learning 

approaches, strength and weakness of the parameters that are sensitive to casing 

buckling in the process of shale gas wells hydraulic fracturing are evaluated and 

optimisation performed to guide future casing selection and design strategy in 

shale gas well development. 

As noted above, despite designing of the casing for shale gas wells, during shale 

gas stimulation, the interaction of hydraulic fracturing and formation 

geomechanics is buckling and shearing the casing leading to buckling and 

deformation. Hence, different finite element modelling has been conducted (see 

Figure 4 for an overview) to evaluate the structural responses of the casing in 

shale gas wells covering static and dynamic situations. The significance of these 

modelling is to circumvent the limitation of conventional design to predict the 

casing responses and aggregate the various scenarios of finite element modelling 

(FEM) for optimisation using machine learning.  

2. The casing Buckling/Deformation Phenomena 

As pointed above, the casing deformation phenomena is a combination of more 

than one attributing factor (Mohammed et al., 2019). The predominant factor is 

often depended on the casing specific failure mode. The complex inter- 

relationship between these factors remains an engineering challenge to engineers 

and researchers in tackling this problem during shale gas horizontal wells 

development. For instance, Yu et al., (2019) presented a complicated casing 

buckling failure owing to in-situ stress and stress re-distribution during shale gas 

well development. This is presented in Figure 1. The stress keeps on increasing 

from stage 8-10 as shown. After the 10th stage, the P110 casing grade is 

permanently deformed reaching a maximum of 773.8MPa (Yu et al., 2019). 
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Figure 1: XY-1 well: Casing buckling in shale gas horizontal well located 

in Sichuan Basin, China (Yu et al., 2019).  

The magnitude of the microseismic moment is usually in the range of 2–4 as 

established by Bao and David, (2016). However, Yan et al., (2019) pointed out 

that exceptional microseism appeared on fault groups, indicating that the fault is 

activated during multistage fracturing. Further analysis into the well section that 

experience unique microseismic moment, corresponds to casing shear failure as 

shown on Figure 2. As it can be seen on Figure 2, the section of the casing 

associated with fault slip is buckled while the section that is not is “intact” as 

shown. 

 

  

 

 

 

 

 

Figure 2 actual casing shear deformation based on microseismic data 

(Yan et al. 2019). 

 

Figure 3 (a and b) presents the relationships between microseismic moment 

magnitude, fault radius and slip distance calculated based on analysis by (Yan et 

al., 2019). It can be seen on Figure 3(a and b) that the increase in the degree of 

microseismic moment magnitude, the radius and slip distance increases; with the 

increase of stress drop, the radius decreases, and the slip distance increases (Yan 

et al., 2019). Microseismic data from an actual shale gas well was used to verify 

the accuracy of this approach by Yan et al., (2019). 

Deformation 
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Figure 3:(a) Moment magnitude against slip distance (b) Moment 

magnitude against fault radius (Yan et al. 2019). 

 

3. Methodology 
The design explorer component of ANSYS Workbench could help to simplify 

complex designs efficiently and make more robust prediction, parameterisation 

and optimisation. Using “what if analysis” different designs were carried-out to 

study the P110 casing grade responses. The computed results are used as the 

basis for parameter correlation. 

In addition, the local sensitivity of an input parameter relative to the output can 

be establish using “parameter correlation tool”. Parameter correlation tool uses 

Latin Hypercube sampling to ensure even distribution with no repetition of the 

design points. It can be used to determine what parameter matter and what do 

not in a design. The correlation can be positive, negative or neutral. Based on this 

analysis one can horn to a specific objective and/or target in the design and get 

rid of the attributes that do not matter without compromising the safety of the 

structure (casing).  

The initial simulation takes into consideration the influence of a combined loading 

of thermal and slip displacement to determine the effect of temperature difference 

between surface and the downhole (reservoir). Moreover, 5mm slip displacement 

is assumed to occur during flowback period of 30 hours. 

Figure 4 presents a flowchart on the overview implemented in this study. As it can 

be seen, different modelling (FEM 1-3) which cover both static and dynamic 

conditions with multiple boundary conditions in each case was simulated. This is 

followed by design exploration, correlation and sensitivity analysis. This led to 

generation of 517 simulation scenarios as shown on Figure 4. Using ANSYS design 

explore tool, a direct optimisation is conducted, and sample result presented on 

page 17 (Figures 14 and 15). 

On the other hand, machine learning prediction and optimisation is carried out 

using KNN algorithm and ODDYSSEE package. 

 

https://www.mscsoftware.com/product/odyssee-cadlm
https://www.mscsoftware.com/product/odyssee-cadlm
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Figure 4 Flowchart on the overview of the study method showing top to 

down sequence of activities. 

3.1 Finite Element Modelling (FEM) 

The numerical modelling in this study is an advancement of the previous work by 

Mohammed et al. (2020). The objective is to predict critical displacement, von 

Mises stresses and the applicable safety factor in order to establish robust design 

for the casing as a function of hole dimeter, cement mechanical properties (Elastic 

modulus and Poisson’s ratio), surface and downhole temperatures, slip plane angle 

and casing geometry. 

Simulation results for lateral displacements are in good agreement as per the 

study of Yin et al. (2018) with less than 5% error accounting for geometric and 

material nonlinearity as shown on Figure 5. 
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Figure 5 Sample result comparison for validation showing transverse 

displacement against casing axial length. 

The 3D computed aided design (CAD) models comprises of the casing, cement 

and shale rock is shown on Figure 6. As it can be seen, the shale rock is 

distinctively separated by the slip plane. The shale rock has a square cross-section 

with a dimension of 599.95mm to avoid boundary effect on stress and 

displacement. 

 

Figure 6 3D CAD and Mesh Models showing casing, cement and shale rock 

The element type chosen for this analysis is ‘SOLID186’. This is a higher order 3D, 

element which exhibit quadratic displacement behaviour. This element supports 

plasticity, large deflection, and strains with mixed formulation capabilities for 

simulating deformations in layered and homogenous solid materials.  
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The material properties for the casing, cement and the shale rock for the initial 

simulation scenario are presented in Table 1.  

Table 1 casing, cement, and rock material properties 

Materials Elastic 
Modulus 
(MPa) 

Poisson’s 
Ratio (µ) 

Coefficient of 
Thermal 
Expansion (°/C) 

Casing Outer 
Diameter 
(mm) 

P110 
Casing 

Grade 

210000 0.3 6.9 X 10 -6 139.9 

Cement 7000 0.23 9.2 X 10 -6 168.275 

Shale Rock 20900 0.18 1 x 10 -5 - 

 

A bonded relationship is established between the casing, cement, and the rock 

formation to mimic -rock- cement-casing bonding and to simulate casing 

structural response under this situation. Buckling under thermal loading with zero 

displacement (static) is carried out to predict casing response owing to variation 

between surface and reservoir temperature. Additionally, the same scenario is 

simulated with a consideration of slip displacement (dynamic). Furthermore, 

hundreds of simulations are performed to cover wide range of possible scenarios 

to establish the prevailing factor to the buckling phenomena. 

A 5mm displacement was applied on the shale rock to account for the flowback 

(fault slip activation) after stimulation and to predicts its effect on the casing. 

Based on this loading, the mechanics of a composites system (casing, cement, 

and shale rock) and in particular the structural responses of the casing are 

investigated. 

The ANSYS design explorer has demonstrated a robust design as established in 

this study with improve design factors under combined loading for the casing. 

Table 2 presents the range of input parameters utilised in the screening 

optimisation. The novelty of this approach is the concurrent investigation of the 

main factors attributing to casing buckling phenomena as opposed to previous 

studies of investigating individual attribute (parameter). 

As stated above, the ANSYS design explorer can simplify and optimise structural 

designs which can be carried out using either screening optimisation, multi-

objective genetic algorithm (MOGA) and goal driven optimization method. 

However, for simplification and making use of good computational resources; the 

screening optimisation method is selected. This is a simple approach based on 

sampling and sorting. It supports multiple objectives and constraints as well as all 

types of input parameters.  

Table 2 range of input parameters for the optimisation 

Input Parameters Lower Bound Upper Bound 

Coefficient of Thermal Expansion (C^-1)  8.28E-06 1.012E-05 

Cement Modulus (MPa)  6500 10000 

Cement Poisson’s Ratio 0.207 0.4 

Reservoir Temperature (C) 60 250 

Ambient Temperature (C) 10 45 
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Fracturing Pressure (MPa)  30 90 

Slip Displacement (mm)  -5.5 -2.75 

Slip Plane (degree)  30 75 

Inner Diameter (in)  4.05 4.95 

Outer Diameter (in)  4.95 5.5 

Cement Diameter (in)  5.9625 7.2875 

Hole Diameter (in)  5.9625 7.2875 

 

As it can be seen in Table 2 twelve attributes (parameters) are investigated 

simultaneously to estimate the influence of each on casing buckling phenomena.  

Each attribute (parameter) covers wide range of conditions as shown in Table 2. 

For instance, casing diameter ranges from 4.05inches(102.89mm) to 4.95inches 

(125.73mm). Similarly, the outer diameter ranges from 4.95 (125.73mm) to 

5.5inches (139.70mm), fracturing pressure from 30 to 90MPa. The cement elastic 

modulus is kept below 10000MPa based on studies (Guo et al. 2018; Yin et al., 

2018; Xi et al., Yan et al., 2019) that established making use of cement with low 

elastic modulus reduces the potentials of casing buckling. 

3.2 Data Mining and Machine Learning 

Machine learning is the use of a machine/computer to learn in analogy to how the 

brain learns and predicts. It combines statistics and computer science techniques 

and depends on a new class of learning algorithms that improve with time, as well 

as the availability of large datasets to train the systems.  

In some cases, the methods are directly inspired by the way the brain works, as 

is the case with neural networks (Theodoridis, 2015). According to Mitchell (2006) 

machine learning is defined as a well modelled learning problem - where a 

computer programme learns from experience (E) with respect to some tasks (T) 

and some performance measure (P) if its performance on (T) as measured by (P) 

increase with experience (E). Figure 7 presents schematic diagram of how the 

machine learning task is accomplished. As it can be seen on Figure 6, machine 

learning involves two distinct phases, namely the training and the inference or 

testing phase on a very basic level.  

 

Figure 7 schematic diagram of machine learning task showing the distinct 

phases between training and testing phase (inference phase). 

The first step in manipulating any machine learning task is the depiction of each 

pattern in the computer (Duda et al. 2012; Talebi et al. 2015; Bartlett and Cussens 
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2017). This is achieved during the pre-processing stage; where one has to 

“encode” related information that resides in the raw data in an efficient and 

information-rich way. This is usually done in a process called data transformation. 

The raw data in a new space with each pattern represented by a vector, 𝑥 ∈ 𝑅𝑙. 

This is known as the feature vector, and its “l” elements are known as the features. 

In this way, each pattern becomes a single point in l-dimensional space, known 

as the feature space or the input space. This is referred to as feature generation 

stage. 

Based on the training data, one then designs a function, f, which predicts the 

output label given an input. Once the model has been designed, the system is 

ready for predictions. Given an unknown pattern, we form the corresponding 

feature vector, x, from the raw data, and we plug this value into the classifier; 

depending on the value of f (x) (usually on the respective sign, 𝑦^ = 𝑠𝑔𝑛 𝑓(𝑥)) the 

pattern is classified in one of the two classes as shown on Figure 8(a). 

Two problems at the heart of machine learning task are the classification and 

regression. The classifier has been designed in order to separate the training data 

into the two classes (Figure 8a), having on its positive side the points coming from 

one class and on its negative side those of the other. The ‘red’ point, whose class 

is unknown, is classified to the same class as the ‘star’ points, since it lies on the 

positive side of the classifier as shown.  The goal in classification is to assign an 

unknown pattern to one out of a number of classes that are considered to be 

known. For example, in casing deformation, using known scenarios of casing 

deformations we can classify a new scenario as either deform or undeform (intact).  

 

 

Figure 8: (a) classification (b) regression 

Similarly, regression shares to a large extent the feature of classification at 

preprocessing stage, however, the output variable, y, is not discrete but it takes 

values in an interval in the real axis or in a region in the complex numbers plane. 

The regression task is basically a curve fitting problem (Duda et al. 2012). This is 

usually done by transforming the raw data in a new space with each pattern 

represented by a vector, 𝑥 ∈ 𝑅𝑙. This is known as the feature vector, and its l 
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elements are known as the features. In this way, each pattern becomes a single 

point in an l-dimensional space, known as the feature space or the input 

space.This is referred to as the feature generation stage. For a given a set of 

training points, (𝑦𝑛, 𝑥𝑛) 𝑦𝑛 ∈ 𝑅, 𝑥𝑛 ∈ 𝑅𝑙, 𝑛 = 1,2, … , 𝑁,  and the task is to estimate a 

function, f , whose graph fits the data. Once we have found such a function, when 

an unknown point arrives, we can predict its output value. This is shown in Figure 

8b. 

 

3.2.1 Data Mining Using “R” 

Like any other machine learning tasks, the relevant libraries deployed in this study 

include caret, pRoc, mlbench and ggplots2 using results of finite element analysis 

study in Section 3.1.  The classification and Regression Training (“caret”) package 

contains functions to streamline the model training process for complex regression 

and classification problems. The pROC package contains tools for visualising, 

smoothing and comparing receiver operating characteristic (ROC curves). The 

basic unit of the pROC package is the ‘ROC’ function. It will build a ROC curve, 

smooth it, if requested (if smooth=TRUE), compute the area under the curve AUC 

(if auc=TRUE), the confidence interval (CI) if requested (if ci=TRUE) and plot the 

curve if requested (if plot=TRUE). The mlbench library converts X (which is 

basically a list) to a data frame. Lastly, the ggplot2 library initializes a ggplot 

object. It can be used to declare the input data frame for a graphic and to specify 

the set of plot aesthetics intended to be common throughout all subsequent layers 

unless specifically overridden. 

The “K” Nearest Neighbour Method (KNN) is utilised in this study in that k-nearest 

neighbour classification for test set from training set looks at each row of the test 

set, using distances such as Euclidean or Manhattan. The training set vectors are 

found, and the classification is decided by majority vote, with ties broken at 

random. If there are ties for the kth nearest vector, all candidates are included in 

the vote.  

 

On the other hand, the k nearest neighbour regression (knnreg) is utilised which 

returns the average values of the neighbours. The default value of k is 5, however 

this parameter has been modified to improve the regression analysis in order to 

arrive at the most accurate predictive model. 

One of the most significant advantages of kNN is that it is relatively easy to 

implement and interpret (Duda et al. 2012., Theodoridis 2015). Also, with its 

approach to approximate complex global functions locally, it can be a powerful 

predictive model. The weaknesses are that kNN is very sensitive to the curse of 

dimensionality. This refers to scenarios with a fixed size of training examples but 

an increasing number of dimensions and range of feature values in each dimension 

in a high-dimensional feature space (Donoho et al. 2000). It can be expensive to 

compute with a O (n) prediction step however, smart implementations and use of 

data structures such as “K” dimensional-trees and Ball-trees can make kNN 

substantially more efficient (Donoho et al. 2000; Duda et al., 2012). In general, 

compared to other machine learning algorithms, the kNN algorithm has relatively 

few hyperparameters, namely k and the distance metric; however, the choice of 

an appropriate distance metric is not always obvious. This is because the 
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performance of the KNN algorithm is dependent on the distance/similarity 

measure used (Prasatha et al., 2017). 

However, using pragmatic approach, numerical modelling and machine learning 

techniques were applied to evaluate quantitatively the magnitude of these factors 

under a combined loading scenario. Using “K” nearest neighbour (KNN) machine 

learning algorithm the simulation data is further studied to establish a predictive 

model for the von Mises stress. The 517 simulation (instances) is divided into 

training and testing in the ratio of 70:30, respectively. Preliminary data 

manipulation involved removing noise and missing values. This is followed by data 

partitioning in the ratio state above and normalisation. Training and testing are 

next and finally finetuning the hyper-parameter “k” to establish the best model 

for the prediction of von Mises stress. 

3.2.2 Data Mining and Machine learning for critical deformations  
The Lunar is an Artificial Intelligent (AI) software platform that utilised different 

solvers to perform real time parametric simulation interactively to make prediction 

and optimisation. Lunar uses past experiences (results) in order to predict new 

responses with ROM methods (Reduced Order Model method). In contrast, Quasar 

is a web-based machine learning software that is used for prediction and 

forecasting (Kayvantash 2019). Specifically, in the Lunar and Quasar the 

parametric prediction and optimisation this study utilised 258 instances which 

represent 50% of the simulation data for the training set. On the other hand, the 

testing set comprises of 129 instances which represent 25% of the simulation 

data. Furthermore, the relevant data associated with casing (Design of experiment 

- DOE) and the corresponding responses are predicted, and optimisation 

performed to determine parameter sets for a desired target. This analysis in Lunar 

is carried out using the simplified workflow shown in Figure 9. 

 

Figure 9 An Overview of Lunar Workflow (Source: CADLM 2019) showing 

system data bank, input variable (X, Y), and new variable XN. 

Additional data modelling in Quasar (machine learning package) is performed 

using principal component analysis (PCA) to determine the distribution of the 

sample’s designs. The variance of attributing parameters is computed and plotted 

to estimate how these attributes are diminishing. Furthermore, matrix 

concatenation operation is carried out on the DOE datasets and the corresponding 

responses for the generation of heatmap of von Mises stress on the casing. 
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4. Results and Discussion 

 

4.1 FE simulation results  

The results for the combined loading of slip displacement and thermal loading 

when the fracture slip plane is 60° reveal casing transverse displacement and von 

Mises stress to be 13.029 mm and 932.46 MPa respectively after 30 hours of 

combined loading. This is as shown on Figure 10.  Under this loading condition the 

casing is plastically failed since the yield strength of this casing is 758MPa.  

 

   

 

 

 

 

 

Figure 10 Transverse displacement and von Mises stress after 30 hours 

of combined loading. 

In contrast, the predicted critical transverse displacement and von Mises stress is 

attained after 9 hours of combined loading. Figure 11 represents contour plots of 

critical displacement and von Mises stress on the casing under combine loading. 

Based on these results the casing failure looms after 9 hours of combined loading 

as shown. Therefore, using design explorer, we work out the optimum design 

based on the pertinent parameters earlier explained.  

 

 

 

 

 

 

 

             

Figure 11 Transverse displacement and von Mises stress after at critical 

time of cobined loading.   

 

As shown on correlation matrix (Figure 12), slip displacement is negatively 

correlated to deformation and von Mises. While safety factor minimum is positively 

correlated with slip displacement as shown. Additionally, slip plane has a neutral 
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relationship with von Mises stress and safety factor as shown. The red colour codes 

on the diagonal denotes strong correlation of the same parameter. For example, 

coefficient of thermal expansion is 1 to 1 correlation (horizontal and vertical), and 

as such the colour code is red as shown the top left of the correlation matrix. The 

12 input parameters are casing coefficient of thermal expansion, cement Young’s 

Modulus and Poisson’s ratio. The reservoir temperature (thermal condition 

magnitude), surface temperature, fracturing pressure (pressure magnitude), slip 

displacement, slip plane, inner and outer diameter of the casing. Other parameters 

are cement and well diameter (Hole Diameter). On the other hand, the output 

parameters are casing von Mises stress, transverse displacement and safety 

factor. 

Furthermore, the local sensitivity of the pertinent parameters is evaluated and 

plotted on Figure 13. It indicates that hole diameter affects casing deformation 

positively. Increase in inner diameter, fracturing pressure drives von Mises stress 

to increase. However, increase in outer diameter reduces the von Mises stress and 

total deformation, respectively.  

The casing geometry is a factor that affects the stress in the casing as can be seen 

on the local sensitivity chart (Figure 13). Increase in inner diameter reduce the 

pipe thickness which in turn increase the von Mises stress. Also, fracturing 

pressure increase the downhole stress which results in increase in von Mises 

stress. However, increase in outer diameter make the pipe thicker and reduces 

the von Mises stress accordingly. 32MPa fracturing is moderate which ensure 

moderate slip displacement on the casing and consequently the stress in the 

casing remains well below the yield strength 299MPa and 0.76mm transverse 

displacement. 
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Figure 12 Correlation matrix showing the correlation between the 12 input and 3 output parameters
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Figure 13 Local sensitivities of input parameters on casing total deformation, von Mises stress and safety factor.
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Figure 14 Total deformation and von Mises stress for the optimised design 

The optimise results presents three candidates design that meet all the objectives 

and constraints. Figure 14 presents a sample contour plots of total deformation 

and von Mises stress for one of the optimised designs. 

The design variables that yielded the optimised von Mises and displacement of 

299MPa and 0.76mm on Figure 13 are: 4.08inches (103.632mm) and 5.00 inches 

(127mm) inner and outer diameter, respectively. Cement elastic modulus and well 

diameter is 6635MPa and 6.0-inch hole. The fracturing pressure and surface 

temperature is 32MPa and 25.52°C. On the other hand, fixed parameters or 

constraints corresponding to this scenario of combined loading of 5.29mm slip 

displacement during flow back with a thermal load of 143.3°C from the reservoir. 

This result agrees with what has been established in literature on limiting the 

cement elastic modulus to below 10000MPa and reducing the fracturing pressure 

as pointed by Guo et al. (2018) and Yan et al. (2019) in their respective studies. 

Besides, a new study by Huang et al. (2020) on rubberise cement established 

that; the rubberise cement absorb micro expansion and shrinkage, which reduces 

the brittleness of the concrete and improves its deformation performance. 

As it can be seen the total deformation recorded after the optimisation is only 

0.7655mm after the 30 hours of combined loading. Also, the computed von Mises 

stress corresponding to this deformation is 299MPa as shown on Figure 14. This 

value is below the casing yield strength of 758MPa. As such, based on this result 

it can be said casing’s structural integrity is guaranteed. This gives a safety factor 

of 3.3 against the previous predicted stress of 932.46 MPa with a safety factor of 

0.8129.  

 
 
 

 
 

 
 
 

 
 

Figure 15 Optimised critical displacement and von Mises after 9 hours of 
combined loading. 
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However, if the circumstance change, then a much thicker casing geometry will 

be needed to cope with the change. Under this example design, 5.29mm slip 
displacement at an angle of 30 degree to the horizontal axis, 32MPa fracturing 

pressure and 143.3°C thermal stress will not deform the casing whose internal 
and outer diameter is 4.08 and 5.00 inches, respectively. 

 
On the other hand, the extracted result after 9 hours of combine loading for 
displacement and von Mises corresponding to earlier critical simulations results, 

are shown on Figure 15. This shows a remarkable reduction in the values of the 
total deformation and von Mises after optimisation. This represents 89% reduction 

in total deformation compared to initial simulation results.  
 

4.2 Stress prediction using KNN model for casing design accuracy   

The significance of this section is to demonstrate the use of KNN machine learning 

algorithm for the classification and prediction of casing health status, as well as 

quicker stress prediction than ANSYS. The data utilised comprises of both 

“buckled” and “intact” scenarios obtained from FEA. The analysis on the simulation 

data generated classify the casing status into “buckled” and “intact” as shown. 

Figure 16 presents the scatter plots of the raw simulation data for von Mises 

plotted against casing inner diameter for the range of 4.5 - 6.625inches diameters 

(114.3-168.275mm) as shown. 

  

Figure 16 scatter plots showing predicted von Mises stress for different 

casings geometries (Inner diameter).  

Train-control which control the computational variation of the train function is 

applied for the regression, while the argument of “repeated cross-validation” is 

selected for the resampling method in this study. The root means square error 

(RMSE), Rsquared and Mean absolute error (MEA) are used to select the optimal  

model that gives the result as shown on Table 3. After several trials adjusting the 

hyperparameter, a model with K= 3 gives the best possible prediction based on 
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“Rsquared” as shown on Table 3. This gives a metric accuracy of 42.72% as shown 

on Table 3 for k=3. Also, Table 3 presents “k” values and the corresponding values 

of RMSE, Rsquared and Mean absolute error (MAE) of the final model. 

 

Table 3 RMSE, Rsquared and MAE for various values of k. 

 

Figure 16 presents scatter plots for the prediction of von Mises stress based on 

the 12 attributes listed in Table 2. It can be seen Figure 17(a) show the scatter 

plots of actual von Mises stresses against the predicted before fine tuning the 

hyperparameter. However, after fine tuning of hyperparameter, a significant 

improvement in prediction accuracy is achieved. This yielded the most improve 

prediction model shown on Figure 17(b). 

Table 4 Variable importance to prediction accuracy on casing buckling 

phenomena based on KNN algorithm for von Mises stress. 

 

 

Furthermore, the variable importance varies from 0 to 100 is shown on Table 4 

based on regression analysis on the data using the KNN algorithm. 

The parameters that substantially affects the von Mises stress are slip 

displacement, casing geometry (inner and outer diameters), hole diameter and 

cement mechanical properties. This is also true on the correlation matrix on Figure 

12 and Lunar (Figure 19). However, coefficient of thermal expansion and ambient 

temperature do not significantly affect casing structural integrity provided the 

casing is properly cemented in place. Other factors with their respective influence 

on the casing von Mises stress are as presented on Table 4. 

  k               RMSE Rsquared   MAE 

  1   147.8524 0.4030724   242.8430   

  2   153.1275 0.4250579   223.7322   

  3   154.0407 0.4272247   220.5380   

  4   159.0814 0.4104764   222.5914   

  5   164.3681 0.4059004   222.5398   

  6   165.8822 0.4068940   222.5053   

  7   166.1047 0.4132182   221.5441   

Slip Displacement 100.000000 

Outer Diameter 79.673703 

Slip Plane 70.206126 

Inner Diameter 43.533671 

Reservoir Temperature 24.969509 

Cement Diameter 22.179621 

Cement Modulus 20.701206 

Fracturing Pressure 20.174114 

Cement Ratio 11.486119 

Hole Diameter 10.102478 

Ambient Temperature 8.422043 

Coefficient of Thermal Expansion 0.000000 
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(a) 

 

Figure 17 scatter plot for von Mises stress prediction:(a) before fine-

tuning hyper parameter (b) after fine-tuning hyper parameter.  

4.3 Effect of slip plane and casing inner diameter on casing stress 
Lunar evaluated the effect of changing slip plane and inner diameter on casing 

von Mises stress over time is examined on the testing dataset (DOE).  The (grey 

shadow) is generated assuming the slip plane and inner diameter were to change 

100 times for selection and design purposes.  

The analysis in Lunar predicted the corresponding responses for the new design 

of experiment (DOE). The influence of each parameter is investigated and corridor 

(b) 
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of each evaluated. Figure 18(a and b) present the corridor for slip plane and inner 

diameter respectively on von Mises stress over the period of investigation. 

 

(a) 

 

(b) 

Figure 18: (a) Effect of changing slip plane 100 times (b) effect changing 

casing Inner diameter 100 times showing the window in grey over time 

in each case 

As expected, and as it can be seen, different parameters (see Table 4) have 

different influence on casing von Mises stress particularly for time dependent data 

as shown on the Figures 18. This is particularly crucial as it allows the engineer to 

examine range of scenarios for an inform decision within a very short time. As it 

can be seen on Figure 18(a) the corridor is wider than on Figure 18(b) for slip 

plane and inner diameter, respectively. 

4.4 Effect of design parameters on casing stress performance   
The Lunar predicted the influence and the variance/standard deviations of the 

design parameters on casing structural performance using fraction of the 

simulation data earlier explain in section 3.2.2. The sensitivities of all parameters 

are presented on the bar chart plotted on Figure 19. As it can be seen the slip 
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displacement (SD) has the highest impact on the casing stress. This is obvious 

and completely agree with variable importance based on KNN metric prediction 

accuracy shown on Table 4. Other parameters that strongly affect the target 

variable (von Mises) is slip plane (SP) and inner diameter (ID). Meanwhile, outer 

diameter (OD), Fracturing pressure (FP), and Poisson’s ratio (PR) have very little 

/ no influence on the von Mises stress. However, cement elastic modulus (CEM) 

and reservoir temperature (RT) affect the casing stress moderately as shown on 

Figure 19. 

 

Figure 19 The inputs parameters influence on casing von Mises stress.  

The PCA presents the standard deviation between the parameters. As it can be 

seen on plot the standard deviation ranges from -4 to +4 on both axes. Although, 

the data is highly variable (imbalance), the PCA show good distribution as shown 

on Figure 20. On Figure 20, Inner and outer diameter (ID & OD), surface and 

reservoir temperatures (ST & RT) are strongly correlated. 

 

Figure 20 Principal component analysis of the casing performance based 

on sensitive parameters  
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Figure 21 presents the variance contribution of each of the 9 parameters under 

investigation. The gradual diminishing of the bars indicates a good principal 

component analysis. 

 

Figure 21 The variance of the contributing sensitive parameters. 

4.5 Selection and optimisation for the casing design  
The optimisation functionality of Lunar iteratively goes through the design 

variables to select the right values (bounds) of those parameters that enable the 

determination of a predetermined casing stress threshold specified by the user. 

Consequently, Lunar revealed the parameter sets that enable determination of 

right combination of values that can achieve predetermine target (optimum) 

without reaching the casings’ strength limit. For this purpose, 650MPa was 

selected as the maximum value for the P110 casing which has a minimum yield 

strength of 758 MPa. After the analysis, the optimised parameters are presented 

on Figure 22. 

 

Figure 22 Lunar software output for the optimised casing design shown 

in blue line. 

Under this specific example optimisation with Lunar, limiting the von Mises stress 

for P110 to 650MPa is shown on Figure 22. This is achieved with a casing geometry 

of 113.593 and 164.7mm for inner and outer diameter, respectively. Also, the 
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maximum fracturing pressure of 49.29MPa was computed to meet this objective. 

Furthermore, cement with 19258.5MPa and 0.39 Poisson’s ratio with fluids 

temperature of 25.24°C are the corresponding design variables for this situation.  

However, in keeping this stress level (650MPa) in the casing, the maximum 

permissible slip displacement is only 2mm on the casing. Also, other fixed 

variables such as slip plane, and reservoir temperature are 41 degrees and 

133.1°C, respectively. This agrees with the previous study of Yin et al. (2018) and 

Xi et al. (2018) that established low slip angle reduce buckling tendencies. 

The heatmap presents the von Mises distribution for the 18th column which 

corresponds to the 10th hour casing responses under the combined loading. It is 

showing the distribution of the von Mises stress for this particular column to varies 

between 200- 1200MPa as shown on the scale.  

  

Figure 23 The heatmap for the 10th hour von Mises stress for the 

optimised casing 

It indicates low and high regions for this particular column as shown by the left 

and right extremes of the heatmap on Figure 23. It is important to point that the 

optimal region resides where there is high density cluster (circled region) in the 

middle.  From the analysis accomplished in this study, both Lunar and Quasar 

results have proved to be an effective tool that can optimise the casing selection, 

design and completion of shale gas horizontal wells. 

In summary, investigation of casing structural responses under various slip 

displacements and a wide range of scenarios between reservoir and surface 

temperatures, fracturing pressures, casing geometries and downhole conditions 

and optimisation performed. However, this investigation is limited to induced 

stresses resulting from slip displacements - during flowback and fracturing 

pressures in hydraulic fracturing operations and thermal loads for a 30-hour 

period. In addition, this investigation covers many conditions but limited to the 

range of parameters and magnitude indicated on Table 2. In particular, cement 
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elastic modulus magnitude is restricted from 6500 to 10000MPa as established by 

literature. 

A quick comparison between the two approaches on the sensitivities of the casing 

structural responses - specifically the von Mises stress is summarised in Table 5. 

As it can be seen, there is good agreement between Lunar and KNN” on most of 

the parameters investigated. Slip displacement, Inner diameter and slip plane 

appears to have highest influence on the casing stress based on their magnitude. 

On the other hand, cement coefficient of thermal expansion, fracturing pressure 

and Poisson’s ratio have low impact on the casing stress magnitude. Although, the 

two approaches do not use the same amount of data, yet good trend has been 

established in terms of the sensitivities with the exception of outer diameter which 

appears to be unique. This is partly due to the constant nature of the outer 

diameter within a particular casing geometry group.  

Table 5 presents this comparison between Lunar and “KNN” sensitivities on casing 

stress. 

Parameter Lunar  KNN 

Slip Displacement 2300 100 

Outer Diameter 0 79.6737 

Slip Plane 1580 70.20613 

Inner Diameter 1600 43.53367 

Reservoir Temperature 800 24.96951 

Cement Modulus 600 20.70121 

Fracturing Pressure 100 20.17411 

Poisson’s Ratio -100 11.48612 

Coefficient of Thermal Expansion 0 0 

 

5 Conclusion 

This paper proposes a novel way to investigate and optimise the casing structural 

integrity using two approaches of finite element analysis (FEA) and machine 

learning. The approach in this study is unique, as it is able to capture the pertinent 

parameters influencing the casing buckling and the evaluation of the magnitude 

of each. In this work, the effect combined loading using multiple parameters to 

establish the relationship and effect of each on stress, displacement and ultimately 

casing safety factor is revealed. Similar approaches of combining machine learning 

and FEA are established in the study of Kim, M., Yi, S. and Hong, S., (2021) which, 

acquire a training data for machine learning from 100 simulations to determine an 

optimal design. Also, Sabanci, K., (2020) applied Machine learning and FEA to 

carry-out parametric simulation and modelling of brushless Direct Current motor 

(BLDC). 

Simulation results for the combined loading of slip displacement and thermal 

loading when the fracture slip plane is 60° reveal casing transverse displacement 

and von Mises stress to be 13.029 mm and 932.46 MPa respectively after 30 

hours. Similarly, the critical stress and displacement computed after 9 hours of 

combined loading is found to be 759.07MPa and 3.0529mm, respectively.  

The optimised result on the other hand, the total deformation and the von Mises 

recorded after the optimisation is only 0.7655mm and 229MPa after the 30 hours 
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of combined loading, respectively. Also, the extracted critical results after 

optimisation represent over 89% reduction in total deformation and 87% 

reduction in von Mises compared to initial simulation results.  

Data mining using Lunar and Quasar provided major insights into the casing health 

status and enabled the real time parametric investigation of the casing stress. The 

KNN algorithm prediction gives a metric accuracy of 42.72% based on Rsquared 

for k=3. The algorithm presents variable significance to casing buckling 

phenomena with slip displacement and casing geometry (inner and outer 

diameters) accounting for the larger proportions. Using Lunar and the KNN 

prediction model, one can quickly determine the von Mises stress under a given 

scenario similar to those shown in Table 3 in order to make an inform decision. 

Therefore, adopting to this procedure in casing design for shale gas wells will 

drastically reduce the potentials of casing buckling as established in this study. 
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