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Abstract. This paper proposes a novel approach based on conditional
Generative Adversarial Networks (cGAN) for breast mass segmentation
in mammography. We hypothesized that the cGAN structure is well-
suited to accurately outline the mass area, especially when the training
data is limited. The generative network learns intrinsic features of tu-
mors while the adversarial network enforces segmentations to be similar
to the ground truth. Experiments performed on dozens of malignant tu-
mors extracted from the public DDSM dataset and from our in-house
private dataset confirm our hypothesis with very high Dice coefficient
and Jaccard index (> 94% and > 89%, respectively) outperforming the
scores obtained by other state-of-the-art approaches. Furthermore, in or-
der to detect portray significant morphological features of the segmented
tumor, a specific Convolutional Neural Network (CNN) have also been
designed for classifying the segmented tumor areas into four types (irreg-
ular, lobular, oval and round), which provides an overall accuracy about
72% with the DDSM dataset.

Keywords: cGAN, CNN, mammography, mass segmentation, mass shape
classification

1 Introduction

Mammography screening is the most reliable method for early detection of breast
carcinomas [I]. Among diverse types of breast abnormalities, such as micro-
calcifications or architectural distortion, breast masses are the most important
findings since they may be pointing out the presence of malignant tumors [2].
However, to locate masses and discern mass borders are difficult tasks because
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of their high variability, low contrast and high similarity with the surrounding
healthy tissue, as well as their low signal-to-noise ratio [3].

Therefore, Computer-Aided Diagnosis (CAD) systems are highly recommended
for helping radiologists in detecting masses, outlining their borders (mass seg-
mentation) and suggesting their morphological features, such as shape type (ir-
regular, lobular, oval and round) and margin type (circumscribed, obscured, ill-
defined, spiculated). Recent studies point out some loose correlations between
mass features and molecular subtypes, i.e., Luminal-A, Luminal-B, HER-2 (Hu-
man Epidermal growth factor receptor 2) and Basal-like (triple negative), which
are key for prescribing the best oncological treatment [456].

Although it is impossible for an expert radiologist to discern the molecular
subtypes from the mammography. Recently, a Convolutional Neural Network
(CNN) was used to classify molecular subtypes using texture based descriptors
of image crops of mass area [7], which yielded an overall accuracy of 67%.

In this paper, we present a novel approach for 1) breast mass segmentation
based on conditional Generative Adversarial Networks (cGAN) [§], 2) to predict
the mass shape type (irregular, lobular, oval and round) from the binary mask
of the mass area. Beside these two contributions, this paper provides a study of
the correlation between the mass shape and molecular subtypes.

2 Related Work

Numerous methods have been proposed to solve the problem of breast mass seg-
mentation from a classical point of view, including techniques based on thresh-
olding, iterative pixel classification, region growing, region clustering, edge de-
tection, template matching and stochastic relaxation [19].

For the segmentation problem, some proposals rely on classic statistical mod-
els, such as structured Support Vector Machines, using Deep Belief Network or
CNN features as their potential functions [I0]. On the other hand, it is also pos-
sible to perform image segmentation based on the Fully Convolutional Network
(FCN) approach [I1]. However, the classical FCN pipeline does not accurately
preserve the objects boundaries. To overcome this drawback, an FCN network
has been concatenated with a CRF layer taking into account the pixel position
to enforce the compactness of the output segmentation [12].

In [I3], a conditional Generative Adversarial Network (cGAN) has been used
to segment the human liver in 3D CT images. However, this architecture is based
on 3D filters, thus it is not suitable for mammography segmentation.

3 Proposed Model

3.1 System overview

Fig. [I] represents the training phase of the proposed cGAN network for mass
segmentation (left) as well as the full predicting workflow (right), defined by two
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Fig. 1. Proposed framework for breast mass segmentation and shape classification

stages. The first stage uses the generator part of the trained cGAN to automat-
ically obtain a binary mask that selects the pixels (in white) that are supposed
to correspond to the area of the breast mass, while ignores the pixels (in black)
corresponding to healthy tissue. The input image is a squared crop of the mam-
mogram containing the mass ROI. The input is reshaped to 256 x 256 pixels size
and the value of each pixel is scaled into a [0,1] range. For noise removal, we have
regularized the image with Gaussian filter of 0.5 standard deviation. The second
stage of the workflow uses a regular CNN trained to classify the obtained binary
mask into one out of four classes of mass shape, which are irregular, lobular,
oval and round.

3.2 Mass segmentation model (with cGAN)

We hypothesized that the cGAN structure proposed in [8] would be perfect for
segmentation, mainly for two reasons:

1. The Generator network of the cGAN is an FCN network composed of two
networks: encoders and decoders. Encoders can learn the intrinsic features
of the masses and normal breast parenchyma (gray-level, texture, gradients,
edges, shape, etc.), in turn decoders can learn how to mark up the binary
mask according to the input features of the two output classes (mass/normal).

2. The Discriminative network of the cGAN compares the generated binary
mask with the corresponding ground truth to make them as similar as pos-
sible. Therefore, including the adversarial score in the loss computation of
the generator strengthens its capabilities to provide a valid segmentation.

This combination of generator/discriminator networks allows robust learn-
ing with very few training samples. Since both generative and discriminative
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networks are conditioned by observing the input image, thus the resulting seg-
mentation is a function over the input pixels. Otherwise, regular GAN (uncon-
ditional) will infer the segmentation just from random noise, which obviously
will not bind the mass appearance gathered by the x-ray with the output binary
mask.

Let x represents a mass ROI image, y the corresponding ground truth seg-
mentation, z a random variable, G(z, z) is the predicted mask, ||y — G(z, 2)||;
is the L1 normalized distance between ground truth and predicted masks, A
is an empirical weighting factor and D(z,G(z,z)) is the output score of the
discriminator, the generator loss is defined as:

ZGen(G> D) = Ew,y,z( - log(D(x, G(l‘, Z)))) + /\Ex,y,z( ”y - G(xv Z)Hl )’ (1)

As pointed out in [§], if we only use the L1 term, the obtained binary masks
will be blurred since the distance metric averages all pixel differences. Therefore,
including the adversarial term allows the generator to learn how to transform
input images at fine-grained details (high frequencies), which results in sharp
and realistic binary masks.

On the other hand, the L1 term is also necessary to boost the learning process,
which otherwise may be too slow because the adversarial loss term may not
properly formulate the gradient towards the expected mask shape. The loss
computation of the discriminator network is defined as:

€pis(G, D) = By y ( —log(D(,y))) + Exy.: ( —log(l = D(z,G(z,2)))),  (2)

Hence, the optimizer will fit the discriminator network in order to maximize
the real mask predication (by minimizing —log(D(z,y)) and to minimize the
generated masks predication (by minimizing —log(1 — D(z, G(z, 2))).

3.3 Shape classification model (with CNN)

For this stage, we have chosen a CNN approach instead of other classical ap-
proaches of extracting shape features (e.g. HOG, shape context) mainly because
of the recent success of Deep Neural Networks in object recognition and segmen-
tation tasks [14]. Nevertheless, the input images for this stage (binary masks)
do not render complex distribution of pixel values, just morphological structure,
hence we hypothesized that a rather simple CNN (i.e., two convolutional layers
plus two fully connected layers) will be sufficient to learn a generalization of the
four mass shapes.

4 Experiments

To evaluate the performance of the proposed models, two datasets have been
used: Digital Database for Screening Mammography (DDSM) [I5] and our pri-
vate in-house dataset of mammograms obtained from Hospital Universitari Sant



Joan de Reus-Spain. For numerical assessment of the performance of the pro-
posed mass segmentation, we have computed Accuracy, Dice Coefficient, Jaccard
index (i.e., Intersection over Union (IoU)), Sensitivity and Specificity [16].

4.1 Datasets

DDSM dataset: It is a publicly available database including about 2500 benign
and malignant breast tumor masses, with ground truths of different shape classes.
From malignant cases, we have selected 567 mammography images (330, 108, 90
and 39 images of irregular, lobular, oval and round shapes, respectively). We
have used this dataset for training both segmentation and shape classification
models.

Reus hospital dataset: It contains 194 malignant masses distributed into
four molecular subtypes of breast cancer: 64 Luminal-A, 59 Luminal-B, 34 Her-2
and 37 Basal-like. This dataset is used to test the segmentation model and to
make an analysis between shape mass and molecular subtype distributions.

4.2 Experimental results

For the first stage, we have trained two versions of the proposed cGAN architec-
ture, Auto-Encoder (i.e., without skip connections) and U-Net (i.e., with skip
connections), and compared them with three models: FCN [11], U-Net [I7] and
CRFCNN [I0] retrained for our data. For all experiments, the DDSM dataset
is divided into training, validation and testing by 70%, 15% and 15%, respec-
tively. In turn, whole in-house private dataset samples are used for testing (see
Table . After segmentation, we have applied a post-processing morphologi-
cal filtering (i.e., erosion and dilation) to remove the artifacts and small white
regions from the binary masks generated by all compared methods.

The ¢cGAN-Unet provides the best results of all computed metrics on the
DDSM test samples, with very remarkable Accuracy, Dice and Jaccard scores

Table 1. Accuracy, Dice coefficient, Jaccard index, Sensitivity and Specificity from
the two architectures of cGAN (Auto-Encoder and Unet), FCN, U-Net and CRFCNN
evaluated on DDSM and our private dataset. Best results are marked in bold.

Dataset Methods Accuracy| Dice |Jaccard|Senstivity|Specificity
FCN 0.9114 |0.8480| 0.7361 | 0.8193 0.9511
U-Net 0.9308 |0.8635| 0.7896 | 0.8365 0.9552
DDSM CRFCNN 0.8245 | 0.8457|0.7925 | 0.8421 0.8975
cGAN-AutoEnc| 0.9469 |0.9061 | 0.8283 | 0.8975 0.9666
cGAN-Unet | 0.9716 [0.9443|0.8944| 0.9274 | 0.9871
FCN 0.9484 |0.8698 | 0.7799 | 0.8002 | 0.9905
U-Net 0.8647 |0.7442 0.6622 | 0.6921 0.8641
Private| CRFCNN 0.7542 | 0.6135|0.5247 | 0.7126 0.7458
cGAN-AutoEnc| 0.9481 |0.8894(0.8008| 0.9726 | 0.9414
cGAN-Unet | 0.9555 | 0.8648 | 0.7618 | 0.8576 0.9750
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(around 97%, 94% and 89%, respectively). On the in-house private dataset, how-
ever, the cGAN-AutoEnc yields better results than the cGAN-Unet in terms of
Dice, Jaccard and Sensitivity (+2%, +4% and +12%, respectively), which in-
dicates that the cGAN-AutoEnc has learned a more generalized representation
of tumor features since it performs better on the dataset not used for train-
ing. Although the accuracy of cGAN-AutoEnc (94.81%) is not higher than FCN
(94.84%) and ¢cGAN-Unet (95.55%), the former has obtained an impressive rate
of true positives (97.26%), which leads to the highest values of Dice and Jaccard
(88.94% and 80.08%, respectively). The FCN model obtains the highest rate of
true negatives (99.05%) but its Sensitivity is poorer (80.02%) than both ¢cGAN
versions, which indicates that it misses more real tumor area than the cGAN
proposals. On the other hand, U-Net and CRFCNN provided even poorer re-
sults in both Sensitivity and Specificity for the private dataset, although the
U-Net and FCN methods performed relatively well on the DDSM dataset. Some
qualitative examples using our in-house private dataset are shown in Fig.

Mass ROI Ground-Truth FCN U-Net CRFCNN c¢GAN-AutoEnc  ¢cGAN-Unet

Fig. 2. Examples of hospital dataset mammographic mass ROI images (col 1), ground
truth masks (col 2), and generated masks with FCN (col 3), CRFCNN (col 4), cGAN-
AutoEnc (col 5), cGAN-Unet (col 6) and U-Net (col 7).

For training the second stage of shape classification, 80% of the selected
images from the DDSM dataset are used in training our classifier with their
corresponding ground truth of mass shape labels, using a stratified 10 fold cross
validation with 50 epochs per fold. The remaining 20% of images are used for
testing, obtaining an overall accuracy around 72%.

Tumor shape could play an important role to predict the breast cancer molec-
ular subtypes [I8]. Thus, we have computed the correlation between breast can-
cer molecular subtypes classes of our in-house private dataset with the four shape
classes. As shown in Table [2] Luminal-A and -B groups are mostly assigned to
irregular and lobular shape classes. In addition, some images related to Luminal-



A are assigned to oval shape. In turn, oval and round masses give indications to
the Her-2 and Basal-like groups, as well as some images related to Basal-like are
moderately assigned to the lobular class.

Table 2. Distribution of breast cancer molecular subtypes samples from the hospital
dataset with respect to its predicted mask shape.

Shape classes/

Irregular|Lobular|Oval|Round | Total
molecular subtypes

Luminal A 24 19 19 2 64
Luminal B 23 27 8 1 59

Her-2 7 3 10 14 34
Basal-like 2 13 4 18 37

5 Conclusions

In this paper, we propose two versions of cGAN networks for breast mass seg-
mentation: cGAN-AutoEnc and ¢cGAN-Unet. The generative network of both
versions follows similar structures compared to FCN and U-Net networks, re-
spectively. However, experimental results confirm that the inclusion of an adver-
sarial network significantly improves the performance of the segmentation, about
+6% and +9% in terms of Dice coefficient and Jaccard index, respectively on
the public DDSM dataset. In turn, on our in-house private dataset, it yields an
improvement of +2% and +2% with the two metrics. The CRFCNN provided
worse test results in general. In addition, we have also proved that a rather sim-
ple CNN architecture is enough for distinguishing shape-related classes of the
mass shapes from their binary masks. Future work aims to improve the overall
accuracy (72%) by using a large dataset and using a robust loss function, such
as negative log likelihood and dice loss function for improving the convergence
and accuracy of the proposed system.
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