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Exploring Representations for Optimizing
Connected Autonomous Vehicle Routes

in Multi-Modal Transport Networks
Using Evolutionary Algorithms

Kate Han , Lee A. Christie , Alexandru-Ciprian Zăvoianu , and John A.W. McCall , Member, IEEE

Abstract— The past five years have seen rapid development
of plans and test pilots aimed at introducing connected and
autonomous vehicles (CAVs) in public transport systems around
the world. While self-driving technology is still being perfected,
public transport authorities are increasingly interested in the
ability to model and optimize the benefits of adding CAVs
to existing multi-modal transport systems. Using a real-world
scenario from the Leeds Metropolitan Area as a case study,
we demonstrate an effective way of combining macro-level
mobility simulations based on open data with global optimisation
techniques to discover realistic optimal deployment strategies for
CAVs. The macro-level mobility simulations are used to assess
the quality of a potential multi-route CAV service by quantifying
geographic accessibility improvements using an extended version
of Dijkstra’s algorithm on an abstract multi-modal transport net-
work. The optimisations were carried out using several popular
population-based optimisation algorithms that were combined
with several routing strategies aimed at constructing the best
routes by ordering stops in a realistic sequence.

Index Terms— Multi-modal public transport, macroscopic sim-
ulations, reachability isochrones, evolutionary algorithms.

I. INTRODUCTION

IN LIGHT of the urgent need to balance environmental
and economic development goals, the establishment of

sustainable low-carbon mobility systems has been identified
as a key development goal by numerous local and regional
transport authorities across the globe [1], [2]. In most cases,
the envisioned backbone of such environmentally friendly
mobility policies is an effective multi-modal public transport
(PT) system that can promote a shift away from private car
use. However, the costs associated with introducing, expanding
and operating PT cannot be understated and are often the key
constraint when (re-)designing a PT system [3], [4], [5].
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Concurrently, in the field of road transportation, the past
decade has been marked by two technological developments
that have the potential to change mobility paradigms:
• the development and rapid adoption of commercially-

ready electric [6], [7] and hydrogen-fueled [8], [9], [10]
zero-emission-vehicles [11], [12];

• the emergence of connected and autonomous vehicles
(CAVs) [13], [14].

Unsurprisingly, the possibility to improve existing and/or
design new PT systems using zero-emission CAVs has
attracted the interest of transport authorities and early test
pilots indicating a relatively high level of public accep-
tance [15], [16]. This is because, apart from the positive
environmental impact, fleets of autonomous buses and shuttles
are expected to have lower deployment costs (when compared
with light rail alternatives) and lower operational costs (when
compared with classical buses). In turn, this enables a niche
deployment on routes with expected passenger volumes that
are too low to be economically viable otherwise, but can
nevertheless bring important social benefits to local commu-
nities [17].

The main motivation for the present research stems from a
call to provide public transport authorities with an effective
means of quickly identifying the most promising options for
deploying CAVs to improve existing PT systems. Specifically,
Section VI describes our initial real-life application scenario to
support the West Yorkshire Combined Authority (WYCA) with
the automatic discovery (scoping) of optimal routes suitable
for a CAV-centered pilot project that aims to improve urban
mobility in the Leeds Metropolitan Area.

For this type of exploratory analysis, the key optimality
criterion is the ability of a potential CAV-serviced route to
improve accessibility (generally reduce commuting times) in
the serviced area. In Section VI-A we describe how, based
on feedback from WYCA domain experts, we formalized this
objective for the considered case study.

II. BACKGROUND

Transportation system research plays a crucial role in
addressing the complex challenges of modern mobility sys-
tems as effective transportation is vital for economic growth,
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social connectivity, and environmental sustainability. Histori-
cally, research in this field has driven an overall improvement
in the quality of life contributing to developing efficient
transportation networks, increasing safety, reducing conges-
tion, minimizing environmental impact, enhancing public
transport systems and advancing new automotive propulsion
technologies.

In the last decade, multi-modal transport has drawn an
increasing amount of research interest. Litman [18] provides
a comprehensive exploration of the principles, methodologies,
and challenges involved in integrating diverse transportation
modes into an efficient and sustainable framework, address-
ing the needs of both passengers and freight. Benefiting
from recent advances in computing, multi-modal transport
models are more likely to be analysed using micro- and
macro-scopic simulations that can inform different key per-
formance indicators (KPIs). For instance, in [19], Kelle et al.
developed an evaluation model which integrates both simu-
lation approaches to assess the tradeoffs between operational
efficiency and environmental sustainability in the planning of
multi-modal freight transportation. With regard to PT systems,
Zheng et al. [20] investigates how to promote a modal shift
via a time-dependent area-based pricing scheme optimisation
in a congested urban multi-modal transportation network.
The authors demonstrate the smart pricing scheme and its
ability to reduce congestion using a macroscopic fundamental
diagram (MFD) as well as an agent-based simulation approach
that shows smooth behavioral stabilisation across two user
groups.

Emerging research on connected and autonomous vehicles
(CAVs) focuses on the immense inherent potential to improve
overall traffic efficiency via optimal autonomous decision
making. For example, Yao et al. [21] propose a two-level
model to optimize scheduling and trajectories for CAVs in
a conflict zone (e.g. ramp, intersection, work-zone) using
mixed integer linear programming (MILP) and nonlinear pro-
gramming (NLP) that can reduce delays by up to 54% and
fuel consumption by up to 34%. The cooperative autonomous
traffic organization method for CAVs in multi-modal road net-
works proposed by Wang et al. [22] integrates an autonomous
crossing strategy at intersections, improved trajectory optimi-
sation in road segments, and a composite strategy for route
planning in road networks to reduce overall delays and ensure
fairer travel times.

However, as the Wang et al. [22] highlight, there are general
obstacles that must be surpassed in order to achieve many
of the estimated CAV-based efficiencies related to optimal
autonomous driving (e.g. trajectories, scheduling, dynamic
re-routing). The two most important ones are related to effi-
ciency within hybrid traffic flows (on roads shared by both
human-driven and autonomous vehicles) and the need for
high-quality vehicle-to-vehicle and vehicle-to-infrastructure
communications. Furthermore, Yap et al. [23] indicate that,
based on a stated preference experiment, only certain types of
travelers prefer automated vehicles for the last-mile segment
of multi-modal train journeys.

The novelty of the present research is that it focuses on
investigating the potential of CAVs to augment accessibility

and efficiency within urban public transportation irrelevant of
CAV penetration levels.

The only major assumption is that CAVs are able to safely
operate in hybrid traffic. Furthermore, in order to mitigate
travel preference risks, we focus on improving commu-
nity accessibility goals by incorporating guidance from West
Yorkshire Combined Authority (WYCA) council experts into
our simulation framework and experiment design. Thus, our
work aims to address the gap between what CAV technology
can deliver in the near future and what PT systems need by
illustrating how optimally-designed CAV-serviced peripheral
routes can significantly improve mobility.

The approach we propose is grounded in efficiently coupling
two key components:

1) The first is described in Section III and leverages our
bespoke macro-level mobility simulation of multi-modal
public transport systems to provide an accurate estima-
tion of commuting times over a given geographical area
(i.e. reachability isochrones).

2) The second applies proven nature-inspired global opti-
misation techniques to efficiently explore the deci-
sion space and discover optimal CAV-serviced routing
options that can improve mobility in the targeted
geographical area(see Sections IV and V).

The current work builds on a initial approach by Han et al.
[24] aimed at discovering optimal CAV deployment options for
an area in the North of Leeds. While constrained to be circular
in nature and always include a pre-determined stop, the type
of optimised single-route services analysed in [24] could
ultimately deliver area-wide average mobility improvements of
up to 13.0% over the baseline. Encouraged by this result, the
present approach aims to integrate more CAV route and service
design flexibility in the hopes that the extended design space
also contains better solutions. Given the increased complexity
of the search space that must be efficiently explored, the
current work focuses on analysing the comparative perfor-
mance of different options for representing (encoding) the
extended design space when using metaheuristic solvers. Our
numerical results reported in Section VIII indicate that the
extra deployment flexibility can deliver improvements of up
to 16.1% over the baseline.

III. CAV-BASED MULTI-ROUTE PT SERVICES

This section describes how multi-route CAV services can
be evaluated using our macro-level simulation approach.

A. Abstract Multi-Modal Public Transport Network

Graph-based and data-driven techniques for simulating
the accessibility/reachability (at a macro level) provided by
multi-modal transport systems have been proposed by several
researchers over the years [25], [26], [27]. As our stated
aim is to use PT accessibility assessments to inform fitness
computation within evolutionary algorithms, there was a need
to develop a bespoke lightweight simulation that can capitalize
on the particularities of the application domain. Our imple-
mentation achieves efficiency gains by incorporating three key
concepts:
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Fig. 1. Example of multi-modal PT network. Black edges indicate roads
(OSM data) and walking pathways, blue edges mark PT connections (GTFS
data), and red edges denote artificial connections that ensure the connectivity
of the black and blue sub-graphs.

1) A Spatial-Temporal Graph: The data sets required by our
simulation approach come from Open Street Maps (OSM) in
the case of road data and from General Transit Feed Spec-
ification (GTFS) files for PT timetable data. As we proceed
with constructing an abstract PT network (see Fig.1), artificial
edges are added to the network to represent moving from the
OSM-based vertices to GTFS-based vertices or vice versa,
since the GPS coordinates do not line up exactly between
the two data sets. For each GTFS-based vertex, the nearest
OSM-based vertex was identified and the Haversine distance
was used to calculate the cost associated with the newly
introduced edge.

The implementation of the abstract PT network data struc-
ture stores the OSM road network as an undirected graph (with
edges storing road-length distances) alongside GTFS timetable
information (departure and arrival times and locations). In this
(largely static) spatial-temporal graph representation, a vertex
represents a time and a location. The cost of travelling on the
road was based on the length of the contour of the road and
a given travel speed. Travel cost on GTFS data is calculated
based on timetable information plus any required stop waiting
time.

All-in-all, spatial-temporal modeling allows for:
• modeling reachability as a graph-search problem.
• separation of the static (existing network) and transient

(candidate CAV routes) parts of the network. and
• a reversible graph structure for computation of both

inbound and outbound accessibility.
2) An Efficient Graph Traversal: Dijkstra’s algorithm [28]

is a well-known standard algorithm for computing the shortest
path between two points on a directed graph with non-negative
edge costs. We use an implementation of the algorithm without
a defined target vertex to produce a shortest-path tree (out-
bound accessibility isochrones), and export a list of all vertices
and their shortest-path distance from a given origin point. As
the spatial-temporal graph structure is reversible, without any
modification to the algorithm, inbound isochrones can also be
easily computed.

3) A Transient CAV Layer: Since the complete
spatial-temporal graph is not stored in memory and only
exposed to the traversal algorithm via a decorator pattern
[29], when the decorator is applied any additional layer
of timetabling information (i.e. timetables associated with

new services) can be easily added for evaluation. This
way, the large underlying static network (based on OSM
and GTFS data) can be safely shared as an immutable
resource during parallel evaluation with only the CAV
layers differing between different decorator views of the
network, with each decorator layer local to an individual
thread.

B. CAV Service Simulation Parameters

In our approach, in order to simulate the effect of adding a
new CAV service to an existing (static) PT network, one must
first fix a set of parameters that inform how the new service is
to be integrated with the spatial-temporal graph that underpins
the overall macro-scopic simulation.

A first decision concerns the maximum number of routes
contained within the CAV service plan. Whilst the approach
in [24] fixes this to one route per service, the stated aim of
this work is to investigate if deploying available CAVs along
multiple routes can drive increased mobility improvements.
The second decision relates to the selected stops for each
route. These selected stops are usually chosen from a larger
set of candidate (bus) stops in the study area that are suitable
for CAVs. Once the selected stops have been identified, it is
important to also decide the order in which they are to be
visited. As the combination of stop selection and ordering
directly determines a CAV deployment option, these two topics
are discussed at length in Section IV.

The type of routes we focus on in the current work are
non-circular in nature. This means that that each valid route
has two terminal stops T1 and T2 (with T1 ̸= T2). Each
route is serviced by two CAVs, initially positioned at T1 and
T2, with the vehicles travelling back and forth between the
terminals and stopping in all intermediate stops along the way.
For a route to be valid, the maximum journey time between
its terminal stops must be less than one hour apart. Our
expectation is that a set containing several such lightweight
direct routes offers more flexibility in deploying CAVs in a
demand responsive manner than the classical circular routes
(i.e. where T1 ̸= T2) previously investigated in [24].

CAV routes can be further constrained by setting three more
parameters: stop waiting time, service time range, and mini-
mum frequency. These values are usually set based on feedback
from transport planners. In our case, based on feedback from
WYCA and given the stated desire to compare with previous
literature results concerning the study area, we opted for a stop
waiting time of 10 seconds, a service that operates between
06:00 AM and 07:00 PM and a minimum frequency of one
bus every 10 minutes. Furthermore, the CAV speed is matched
to the road speed limit up to a maximum of 32km/h. As we
also maintain the [24] limit of using a maximum of 8 CAVs
in total, each CAV service plan will contain up to 4 different
routes. Frequency, speed, stop waiting time and the spatial
distribution of candidate stops act as constraints that limit the
number of viable route designs.

A CAV service plan is fully defined by its associated
minimal GTFS format that contains stop geolocation and
timetabling information. For example the data in Table I and II
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TABLE I
CAV STOP GEOLOCATION INFORMATION

TABLE II
CAV TIMETABLE IN GTFS FORMAT

is sufficient to a create a transient layer for a CAV service plan
that has 2 routes and a total of 7 stops.

IV. SOLUTION REPRESENTATION

To model service planning as an optimisation problem,
a suitable choice of representation, fitness function, and algo-
rithms is essential. This section covers representations used
for modelling CAV service plans containing multiple routes.

A representation is a way of mapping a service planning
solution to a point in a mathematical space that can be searched
by an optimisation algorithm. The algorithm explores the
search space to find optimal points which in turn correspond
to the best CAV allocations (i.e. planning solutions).

For the problem considered in this study, multiple routes
can be complicated to represent. Each representation has
advantages and disadvantages, but any good representation
should depict the problem thoroughly while allowing an
efficient search. In this work, we investigate three common
representations which are well-established in the optimisation
community: bit-string, real number vector (continuous) and
integer vector. We compare these representations in terms of
the diversity of services they can represent and the ease by
which they can be searched to discover high-quality solutions.

A. Binary Representation

In the binary representation of the service planning, a single
bit-string is used to represent the selected stops for multiple
routes. Each bit in the string x j ∈ {0, 1} denotes if a stop is
selected (i.e. x j = 1) or not (i.e. x j = 0). The dimension of the
bit string is equal to n × m, where n denotes the total number
of candidate stops and m indicates the number of routes that
we wish to represent.

Fig. 2 contains an example of a binary representation and
of how it can be easily translated into a corresponding route
plan. The maximum number of routes that can be encoded in
the example is 4 (marked from route no. 0 to route no. 3).
The set {A1, A2, A3, . . . , An} to contains all the n candidate

Fig. 2. Example of translation steps for a binary bit-string representation of
size n × 4 that can encode up to 4 sets of selected stops (one for each route
we aim to represent).

stops. Within the first n bits of the representation, we find
1s in positions corresponding to candidate stops A1, A3, and
An denoting that this stops will be part of route no. 0. In the
next set of n bits, the value of 1 associate with candidate stop
A2 indicates that A2 will be part of route no. 1.

Once the stops are selected, the order in which they are
to be visited for each route will be decided by an (external)
ordering procedure. The main aim of the ordering is to
generate routes that are both realistic and efficient. Fortu-
nately, these two goals are well aligned, as shorter routes
also require linkages between stops that are geographically
close to each other. Thus, whilst it is not necessarily the
case that an optimally short route around a given set of
stops is also optimal for the CAV planning problem, it is
reasonable to generally prefer shorter routes as they closely
resemble existing (human-generated) route designs. In light
of these considerations, we have chosen to treat the stop
ordering as a classic travelling salesman problem (TSP) and
we experimented with three classic TSP algorithms from
literature: a dynamic programming (DP) algorithm [30], the
Lin-Kernighan heuristic (LKH) [31] and a Greedy ordering
strategy [24]. As the solution to a TSP problem is the shortest
cycle that visits all the nodes (i.e. selected stops) and we are
deliberately searching for non-circular routes, we simply delete
the longest edge from each TSP solution to obtain the final
routing.

Finally, it important to note that within our wider approach,
the routing TSPs are sub-problems that must be solved very
fast in order to allow for an evaluation of any CAV service
plan. This is particularly problematic for the DP approach as
its execution time increases exponentially with the number of
stops in the TSP instance. Fig. 3 illustrates that if the number
of stops is greater than 20, the DP execution time becomes
impractical given the need to evaluate tens of thousands of
TSP instances during a single optimisation run. Based on these
findings, throughout our experiments, the DP ordering is only
applied on routes that have a maximum of 15 selected stops
– i.e. we only use DP(15) sorting.

B. Continuous Representation

The previously described binary representation has the
disadvantage of increasing the natural dimension of the prob-
lem (i.e. n the number of candidate stops), making it more
difficult for evolutionary solvers that rely on standard genetic
operators. As an alternative to this, we proposed a new indirect
continuous representation that is more compact.

The continuous representation requires a vector of size n as
a single real value r in the interval [0, 1] is used to denote
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Fig. 3. Comparison of TSP instance size vs execution run time (log plot)
across the three ordering algorithms.

Fig. 4. Example of decoding step for the continuous representation when
wishing to generate a maximum of m = 4 sets of stops.

a candidate stop across all routes. The translation of this
indirect representation to a set of routes is a two-stage process.
In the first stage each real value ri in the representation vector
is scaled up and then truncated to an integer value using
Equation 1. The notation m is the maximum number of routes
to be used.

d (ri ) =

{
2m
− 1 if ri = 1⌊

ri × 2m⌋
otherwise

(1)

In the second stage of the translation process, the integer
obtained in the first stage is converted to its m-bit binary
representation. The least significant bit (LSB) bit value of the
binary representation will denote if candidate stop i is selected
on route 0. Accordingly, the second least significant bit will
denote if candidate stop i is selected on route 1 and the most
significant bit (MSB) will denote selection on route m − 1.

Fig. 4 illustrates the two-stage decoding process of the pro-
posed continuous representation when considering a maximum
number of m = 4 routes and a total of n candidate stops:
A1, A2, A3, . . . , An . For stop A1, r1 = 0.1 is the original
representation value. 0.1 is first multiplied by 24 giving 1.6 and
then truncated to d(r1) = 1. After that, 1 is converted to
its 4-bit binary value 0001. Based on the LSB → MSB

Fig. 5. Example decoding of variable-length representation. It is important
to note that route no.2 is infeasible and would not be included in the CAV
service simulation.

interpretation of this binary value, stop A1 is only used by
route no. 0. Similarly, stops A3 and An are also selected for
inclusion on route no. 0 in the given example.

As with the binary representation, a TSP ordering algorithm
must be finally applied to determine the order in which stops
should be visited along each route.

C. Variable-Length Integer Representation

The binary representation is high dimensional, and the
continuous one has a complex decoding process. We therefore
also propose a low-dimensional variable-length (VL) repre-
sentation with simple decoding. In this case, CAV service
plan solutions are represented by a list of integer symbols.
These uniquely identify PT stops (i.e., they are candidate stop
IDs), with the symbol −1 delimiting different routes. The
decoding process does not need a separate ordering algorithm.
The order of the stops is dictated by placement within the
representation and is thus exposed directly to the optimisation
algorithms.

In the example in Fig. 5 the number of potential stops is
10 and the number of routes is 4. At indices 3, 9, and 12, the
delimiters separates the CAV service plan into 4 routes. This
representation allows for more route design diversity, since
the ordering is unconstrained and one stop can be selected
multiple times in a route, enabling the creation of routes that
can have both circular and non-circular parts. However, the
VL representation can also allow the creation of unfeasible
routes as for example route no. 2 contains only contains
two identical candidate stops (A7 and A7). The size of a
variable-length representation can increase drastically during
the optimisation process. Appropriate operators need to be
used to avoid the generation of ill-formed solutions. These
is detailed in section V-C.

V. OPTIMIZATION ALGORITHMS

This section discusses the optimisation algorithms we
applied for the three proposed representations. We sought to
couple each representation with suitable well-known solvers
in order to ascertain a fair view of relative representation per-
formance on our multi-route CAV service planning problem.

A. Binary

For the binary representation described in section IV-A,
we applied a standard genetic algorithm (GA) [32] and the
population-based incremental learning (PBIL) [33] approach.
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The standard genetic algorithm (GA) was selected as it is
a widely-used and robust optimiser capable of exploring the
rugged and irregular fitness landscapes typically encountered
when there is a complex translation from the representation to
the realised solution. The GA workflow is well-known and we
refer the reader to the pseudocode for Algorithm 1. An ini-
tial population of candidate solutions (in this case bitstrings
representing the availability of stops in a multi-route CAV
service) is generated by an INITIALISATION operator. The
GA then iteratively applies a sequence of genetic operators,
SELECTION, CROSSOVER, MUTATION, and REPLACE-
MENT, evolving the population at each iteration, until a
stopping criterion is reached and the final population is
returned. A range of choice is available to configure and
parameterise the genetic operators and we explored several
configuration choices, as described in Section VII, in order to
improve optimisation performance.

Algorithm 1 Genetic Algorithm
1: function GA(popsi ze, stopCriterion)
2: pop← INITIALISATION(popsi ze)
3: while ¬stopCriterion do
4: parents ← SELECTION(pop)
5: children← CROSSOVER(parents)
6: children← MUTATION(children)
7: pop← REPLACEMENT(pop, children)
8: end while
9: return pop

10: end function

PBIL is a simple estimation of distribution algorithm (EDA).
EDAs are evolutionary algorithms that learn probabilistic mod-
els of the relationship between candidate representation values
and fitness. Their behavior differs from a GA by generating
new solutions by sampling a probabilistic model, rather than
applying genetic operators to specific candidates. This makes
them an attractive choice alongside a GA for a real-world
investigation because they explore the space in a different way.

Across both GA and PBIL, the infeasible candidate solu-
tions were handled during evaluation and routes with fewer
than 2 stops were not evaluated.

B. Continuous

As mentioned in section IV-B, the continuous representation
of the multi-route CAV service planning problem is an indirect
representation and we might lose some intuitive understanding
of how the algorithm operators affect the generated routes.
In particular, what appears to be a small numerical change
may turn out to have quite radical effects. We rely therefore
on experiments with two very well-known algorithms to deter-
mine the efficacy of the proposed continuous representation.

Differential evolution (DE) is a stochastic, population-based
global optimisation heuristic widely applied on continuous
optimisation problems arising from diverse domains of science
and engineering in light of its good performance and relative
simplicity with regard to implementation and parameter tun-
ing. DE performs local exploration through the recombination

of usually 3 or more different real-value parameter vectors (i.e.
candidate solutions). DE has multiple variants in the literature
which differ in the mutation, recombination, and selection
strategies used. In [34], [35], and [36], multiple DE variants are
introduced and compared on different optimisation problems.
No variant performed best across all problems. As our multi-
route planning problem is derived from a complex real-world
application and the continuous representation proposed for this
problem is an indirect compact representation of a combina-
torial problem, we have chosen to apply the DE/rand/1/bin
variant in lights of its robust performance across multiple
highly challenging continuous problems [37].

Particle swarm optimisation (PSO), initially proposed by
Kennedy and Eberhart [38], has emerged as a very competitive
alternative to evolutionary algorithms for complex real-value
optimisation problems as evidenced by several recent reviews
and surveys of metaheuristic solvers [39], [40], [41]. In PSO,
a set of particles iteratively explores the search. Each particle
is defined by a position vector in the solution space and a
velocity vector. The position vector represents a candidate
solution while the velocity vector controls the search speed and
direction of its corresponding particle. Each particle explores
the search space and saves knowledge as a personal best
position vector. At the same time, all particles will share infor-
mation through the global best position vector that stores the
overall best-found solution in the swarm (across all iterations).
During the search process, the velocity of each particle is first
updated based on its current velocity, personal best position,
and swarm global best position. Afterwards, the position of
each particle is updated based on the updated velocity and
its current position. This two-step update process ensures
that each particle incorporates the swarm search result before
performing its own next search step. The personal best position
of each particle will be replaced if the updated position has
better fitness. At the end of each iteration, the global best
positions of the swarm will be updated whenever the personal
best position of any particle has better fitness.

C. Variable-Length Integer

A variable-length GA (VLGA) has been implemented
to solve the multi-route CAV service planning problem
using the variable-length integer representation described in
Section IV-C. VLGA variants have been proposed since the
90s and the approach has been used across multiple complex
problems ranging from classical routing [42], [43] to ensemble
selection for deep learning [44]. An important characteristic
of VLGA is that it requires specially-designed operators that
are largely application specific as they aim to always generate
meaningful new candidate solutions.

The VLGA contains an INITIALIZATION step, after which
the following steps are iterated until the stopping criteria are
met: SELECTION , CROSSOVER , one of three MUTATION
operators, and REPAIR . We continue with a brief description
of these steps / operators and provide in Fig. 6 a schematic
view of their mechanics.
• INITIALIZATION The initial population consists of can-

didate solutions of randomly initialized lengths up to a
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Fig. 6. VLGA operators.

maximum length. For each candidate, vector values are
randomly initialized from the set of candidate stop IDs
plus the route delimiter (i.e. “−1”).

• SELECTION: We apply tournament selection where a
candidate with lower constraint violation is preferred. The
constraint value is the excess number of routes above the
predefined maximum route number m. Ties are broken in
favour of solution candidates with a better fitness value.

• CROSSOVER: For each parent, two random cut points
are selected, these may be different for each parent and
of different lengths. The cut part of the representation is
swapped to produce offspring candidates. which may be
longer, shorter, or the same length as the parents.

• MUTATION: Mutation is performed with a preset prob-
ability and operates on a single candidate solution.
The following three mutation operators were trialed:

Single-Point Mutation replaces a single value with a
new random value. Swap mutation randomly selects two
values in the same candidate solution and swaps them.
Reverse Mutation randomly chooses a start point and
end point and reverses the order of values between these
two points.

• REPAIR: If a candidate solution after crossover and
mutation contains two identical adjacent values, they are
merged. If there is a route with only one stop, it is deleted.

Length change is a distinguishing feature of VLGA as
variable length representations can be prone to bloating
under evolutionary pressure [45]. To control this phenomenon,
we impose a penalty for having more than max Stops selected
stops across all viable routes in a candidate solution. The
magnitude of the penalty is proportional to the difference
between the actual number of selected stops and max Stops.

VI. CASE STUDY

The wider geographical region proposed for investigation
by the WYCA is situated in the North-West of the Leeds
Metropolitan Area and covers 10 districts (electoral wards as
defined by the UK Office of National Statistics). It is serviced
by 1,015 public transport (PT) stops for local and regional
buses and includes three multi-modal PT hubs centered on
key railway stations. The right-hand plot from Fig.7 shows
the position of these stops and their spread indicates that they
provide very-good walking accessibility to the PT system for
all populated areas across the 10 districts.

It is however important to notice that not all 1,015 PT
stops are classified as high-frequency by the WYCA. This is
illustrated in the left-hand plot from Fig. 7. This discrepancy
between regular and high-frequency PT stops is especially
visible in the north of the study area and is largely explained
by underlining population density levels that drive passenger
volumes. Nevertheless, the presence of infrastructure (physical
bus stops) is a strong argument for focusing the case study
on the northern district (Adel and Wharfedale). The goal
suggested by WYCA transport officers is to investigate the
ability of a potential multi-route CAV service to improve
reachability to Leeds Central Train Station by 10:00 AM on
a work day (i.e. improve average morning commute times).

A. Grid Map Evaluation of Area-Wide Reachability

Since the goal is to improve average commuting time via a
candidate CAV service x , to compute solution fitness f (x) we
rely on a grid G of sample points that cover the entire target
area. The spacing of this grid is 0.005 degrees on both latitude
and longitude. For any grid point g ∈ G, the shortest multi-
modal (baseline PT system + walking + multi-route CAV
service encoded in the candidate) travel time t (g) to Leeds
Central Station is obtained by computing an inbound isochrone
centred on the destination using our bespoke macro-level
simulation strategy outlined in Section III. It is noteworthy
to underscore that the computation of t (g) depends on the
spatial-temporal graph constructed from OSM and GTFS
data as the graph traversal algorithm that underpins the
macro-simulations can only discover locations that exist in
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Fig. 7. Positioning and walking accessibility to 759 high-frequency PT stops (left) and to all PT stops (right).

the graph. The implications of this are two-fold. Firstly, grid
points in areas associated with disconnected components in
the spatial-temporal graph cannot be evaluated (illustrated in
blue in Fig. 8). Secondly, in order to calculate the travel
between a given grid point A and a general destination point B,
we need to first identify vertices in the spatial-temporal graph
that are closest to A and to B. Assuming these graph vertices
are marked with A′ and B ′, Fig.9 illustrates the calculation
process. Finally, fitness is computed as the average commuting
time (in seconds) across the entire geographic study area using
Eq. 2.

f1(x) =
1
|G|

∑
g∈G

tg(x) (2)

We use a penalty scheme on fitness calculation to direct
the algorithms to search for solution with practical CAVs
route size. For a CAV route(s) plan solution, we use a
maxT otalStop constraint. If after translation, the sum number
of stops sumStops of all individual routes C Ri in a route plan
C R is bigger than max Stops, a penalty value is calculated and
added to the fitness value. f (e) is updated using according
to (3).

f ′(e) =

 f (e) if sumStops ≤ max Stops

f (e)×
sumStops
max Stops

otherwise

(3)

For our Adel and Wharfedale case study, the baseline fitness
value corresponding to the isochrone in Fig.8 is 3379 seconds
(56 minutes and 19 seconds).

VII. EXPERIMENTAL SETUP

In order to obtain a fair comparison of representation and
solver performance, we first need to tune parameters that are
known to influence the search behaviour of the optimisation
algorithms described in Section V.

Fig. 8. Accessibility via current PT to Leeds (Central) station by 10:00 AM
on a workday. This inbound isochrone was computed using the technique
described in section VI-A.

Fig. 9. Grid point travel time calculation. When using the Haversine distance,
we assume a walking speed of 5 km/h.

A. Representation Setup and General Parameter Tuning

As detailed at the end of Section III-A, the maximum num-
ber of routes m used across all representations and algorithms
is 4. It is noteworthy that m is only a soft constraint within



HAN et al.: EXPLORING REPRESENTATIONS FOR OPTIMIZING CAV ROUTES 9

the variable-length representation while strictly enforced (by
design) in the binary and continuous representations.

All the global solvers applied in this study are (nature-
inspired) population-based algorithms. As such, the size of the
population and the number of iterations are critical parameters.
For each numerical experiment, we have performed 500 iter-
ations using a population size of 200, resulting in a total
computational budget of 10,000 fitness evaluations for each
optimisaiton run. Using these settings, all tested algorithms
appear to have converged by the end of their runs.

In general, the purpose of population initialisation is to
create a highly-exploratory initial set of solutions that (i) max-
imises opportunities for the optimisation algorithm to sample
solutions of better than average fitness and (ii) enables the
search to benefit from high population diversity. In our
binary and continuous representations, (translated) solution
bits denote the presence of particular stops in CAV routes.
The more stops on the route, the longer the transit times
and total stop times, decreasing route quality. While this
effect is captured in the fitness evaluation process described
in Section VI-A, we remark that in general the number of
desirable stops is much lower than the number of candidate
stops. If opting for a roughly equal number of “0”s and
“1”s in randomly initialised populations, there is a risk that
the algorithms spend too much time searching routes with
too many stops to ever produce improvements. We therefore
explored the extent to which a specialised initialisation process
can focus the algorithms on routes involving realistic numbers
of stops while not biasing or impeding the search process.
Preliminary results indicated that for GA, PBIL, DE and PSO
better optimisation outcomes can be achieved when randomly
generated initial candidate solutions have a 90% to 10%
ratio of “0”s to “1”s. As such, this skewed initialisation was
used for all numerical experiments carried out with these
solvers.

B. Individual Solver Parameterisation

Given the long execution time of individual optimi-
sation runs, across all five solvers we could only run
limited best parameter grid searches to complement liter-
ature recommended settings. Nevertheless, for each tested
algorithm, we were able to identify parameterisations capable
of delivering competitive results on our complex multi-route
optimisation problem.

Thus, based on previous results reported in [24], for the
GA we opted for a mutation rate of 0.01 for the single-point
bit flip mutation operator and a crossover rate of 0.9 for the
single point crossover operator. We conducted limited tests
with both roulette and tournament selection, and the latter
genetic operator delivered better outcomes.

In the case of PBIL, based on the experiments in [24], we
set the mutation probability to 0.01 and conducted comparative
tests with three learn rate values: 0.001, 0.01, and 0.02. The
lowest learn rate produced the best results.

For DE, we fixed the crossover probability to 0.2 and real
constant scale factor to 0.5 based on recommendations in
[46], [47] and limited testing with higher crossover probability
values.

The PSO solver was parameterised based on insights
from [48] with an inertia weight value of 0.729 and an
equal particle and swarm acceleration coefficient values of
1.49445. We ran tests with three different velocity ranges,
[−0.2, 0.2], [−0.3, 0.3], and[−0.4, 0.4] and the latter setting
produced the best results.

The VLGA solver can be seen as more tightly coupled to
our multi-route CAV service planning problem on account
of the more specialised representation and genetic operators
it uses. Furthermore, this solver doesn’t benefit from the
90% to 10% skewed initialisation strategy described in the
last paragraph of Section VII-A. To alleviate this downside,
we experimented with limiting the route sizes of randomly
initialised candidate solutions to a maximum of 10, 20, and
30 selected stops. We also ran a more extensive best parameter
grid search that varied among the three mutation operators
described in Section V-C, three mutation rates (0.001, 0.05,
and 0.1) and two selection operators: roulette and tournament.
Finally, to prevent the emergence of bloated solutions we also
experimented with three different values for the max Stops
parameter: 40, 80, and 120. The best results were obtained by
the version that initialises a maximum of 10 stops per route,
uses single-point mutation with a mutation rate of 0.01, applies
tournament selection and limits max Stops to 80.

C. Comparison Baseline

While the accessibility plot in Fig.8 and its associated
baseline fitness value of 3379 seconds is what we aim to
improve on (i.e. minimise) by discovering optimal multi-route
CAV services, as we are dealing with a real-life problem, the
best possible solution for our problem is unknown. As such,
the quality of an optimisation result can only be assessed based
on its improvement with respect to the baseline. However, it is
reasonable to expect that any deployment of new transport
resources (i.e. CAVs across new routes) in the study area is
highly likely to bring some fitness improvement. Therefore,
in order to better estimate the actual impact of employing
nature-inspired global optimisation algorithms to solve the
problem, it would make sense to compare their performance
to that of randomly exploring the search space associated with
each representation.

In light of these considerations we have set three ran-
dom search routines: BRS (binary random search, for binary
representation), CRS (continuous) and VRS (variable-length).
We coupled the binary and continuous versions with the
three stop ordering procedures described in Section IV-A.
During each search, we randomly generated 10,000 candidate
solutions and subsequently returned as outcome the candidate
solution with the best fitness value.

VIII. RESULT ANALYSIS

We summarise in Table III the best fitness values achieved
by each combination of solver + stop ordering heuristic.
As stop ordering is not required for VLGA, for this solver
we present the best average commuting times achieved for
different settings of the max Stops parameter.
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TABLE III
BEST OPTIMISATION RESULTS AFTER 5 INDEPENDENT RUNS

FOR EACH SOLVER AND ORDERING HEURISTIC / max Stop
COMBINATION

The best results table indicates that all tested nature-inspired
solvers are able to explore the problem design space and
discover high-quality solutions that are better than both the
baseline (i.e. 3379) and the best solution discovered by random
search (i.e. CRS and greedy with 2993). The two best per-
forming solvers are GA and PSO (both with DP(15) ordering)
when considering average result quality over the 5 independent
runs: 2860.41 for GA and 2892.70 for PSO. These average
results are approx. 5.5% and 4.5% better than the best average
results for optimised single-route services reported in [24].
We’ve extended the number of independent runs to 30 each
for these two top multi-route solvers and applied a one-sided
Mann-Whitney-Wilcoxon Test [49] with a present significance
level of 0.05 to test the statistical significance of the observed
differences between average results. The test confirmed (with
a p-value > 0.9999) the better performance of the GA on our
multi-route CAV service problem.

With regard to stop ordering heuristics, the best results for
all nature-inspired solvers using the continuous and binary rep-
resentations were obtained by DP(15) dynamic programming
and Greedy.

In terms of solution representation for multi-route services,
Table III shows that all the three options proposed in this work
can be used to obtain high-quality solutions with a value lower
than 2940 – the best result achieved by optimised single-route
services in [24]. However, it is important to note the impor-
tance of finding the right solver for each representation. For
example the best two results across all experiments were
obtained using GA and the binary representation with DP(15)
ordering (2835) and Greedy ordering (2845). At the same time,
when focusing on the LHK and Greedy orderings, the best
results obtained by PBIL using the same binary representation
are only marginally better the the best results obtained by CRS
(i.e. random search on a continuous representation).

In Fig.10 and Fig.11 we illustrate the 4-route layouts
that correspond with the best and second best overall
optimisation results. It is important to notice that, for
both options, the inclusion of an 8 vehicle CAV service
along these routes has an important impact and improves
overall accessibility (when compared with the baseline in
Fig. 8). In order to achieve this, both high-quality solu-
tions seek to deploy CAVs to provide better connection to
the Northern and Mid-Western parts of the study area. The

Fig. 10. Best optimisation result: GA with DP(15) ordering.

Fig. 11. Second best optimisation result: GA with Greedy ordering.

main differences come in the type of routes used to achieve
this:

1) The best solution uses very direct routes to link small
but well-delimited clusters of stops to the existing high-
frequency services/stops in the South. The poorly served
North-East corner is serviced by two routes.

2) The second best solution has routes that tend to overlap
more (i.e. use the same stops), especially in the Western
part and addresses the North-East with a route that links
to the existing high-frequency service both in the South
and in the center of the study area.

Whilst the best solution proposes a route layout that is
more intuitive, it is important to notice that the difference in
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quality is virtually insignificant (i.e., 2835 vs 2845) and when
considering factors outwith our simulation parameters (e.g.
impact on traffic congestion, proximity to service/charging
depots), a human decision maker could opt for the second
best overall result. This underlines one of the main strengths of
our approach based on stochastic solvers: the ability to present
decision makers with several distinct high-quality multi-route
service solutions suitable for further analysis.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated an application for
evolutionary algorithms in support of introducing Connected
Autonomous Vehicles (CAV) to a public transport system.
Our approach uses three different representations to explore
the planning decision space coupled with a macro-level
simulation of the effect of planning decisions on accessi-
bility isochrones for the affected area. Our results show
that evolutionary algorithms can be deployed effectively in
this space with minimal customization. Standard approaches
including proven routing heuristics and a fitness penalty
for bloat were effective in ensuring that practicable routes
with realistic applicability are produced. We conclude that
data-driven simulation-optimisation approaches, using nature-
inspired algorithms in general (and evolutionary algorithms
in particular) are a promising approach to the adaptation
challenges facing public transport systems.

A key element of our approach with potential for
future research concerns the data assumptions on which the
macro-level simulations rest. Thus, further information on pas-
senger volumes and destinations can be added to better inform
outcomes. Furthermore, objectives involving the reachability
of more than one destination or facility can also be considered.
Finally, where suggested new CAV routes interact with other
traffic, as may increasingly be the case in the future, the effects
of new route addition on other traffic behavior need to be
assessed. This can be addressed through several micro-level
traffic simulation technologies already available, very naturally
combining macro-level search with detailed evaluation of the
good solutions it identifies.

The technology proposed here is only a tool, but one which
we hope in time can be integrated with planning processes,
automating the production of realistic options to face the
increasingly complex challenges of public transport planning.
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