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Lu Lei, Zhenyu Fang, Jinchang Ren, Paolo Gamba, Jiangbin Zheng and Huimin Zhao

Abstract—In the remote sensing field, detecting small objects is
a pivotal task, yet achieving high performance in deep learning-
based detectors heavily relies on extensive data annotation.
The challenge intensifies as small objects in remote sensing
imagery are typically densely distributed and numerous, leading
to a substantial increase in the cost of creating large-scale
annotated datasets. This elevated cost poses significant limitations
on the application and advancement of small object detection.
To address this issue, a Point-Based Annotation method (PBA) is
proposed, which generates bounding boxes through graph-based
segmentation. In this framework, user annotations categorize
nodes into three distinct classes - positive, negative, and to-cut
- facilitating a more intuitive and efficient annotation process.
Utilizing the max-flow algorithm, our method seamlessly gener-
ates Oriented Bounding Boxes (OBBOX) from these classified
nodes. The efficacy of PBA is underscored by our empirical
findings. Notably, annotation efficiency is enhanced by at least
40%, a significant leap forward. Moreover, the Intersection over
Union (IoU) metric of our OBBOX outperforms existing methods
like “Segment Anything Model” by 10%. Finally, when applied
in training, models annotated with PBA exhibit a 3% increase
in the mean Average Precision (mAP) compared to those using
traditional annotation methods. These results not only affirm
the technical superiority of PBA but also its practical impact in
advancing small object detection in remote sensing.

Index Terms—Remote Sensing, Small Object Detection, Data
Annotation, Deep Learning, Cost-Efficiency in Data Processing.

I. INTRODUCTION

W ITH the rapid advancement in remote sensing and sen-
sor development, high-resolution optical imaging has

become a cornerstone of object detection in Earth observation.
Among various methodologies, deep learning techniques have
revolutionized object detection by delivering unprecedented
accuracy [1], [2]. These methods, and specifically relying on
bounding box (BBOX) annotations, enable precise catego-
rization and localization of objects in an end-to-end manner,
provided that ample annotated training samples are available.
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In the realm of remote sensing, the conventional horizontal
BBOX (HBBOX), defined by center coordinates, width, and
height (x, y, w, h), often proves inadequate due to the unique
bird’s-eye perspective of imagery. This viewpoint necessitates
consideration of object orientation, leading to the adoption of
oriented BBOX (OBBOX), denoted as (x, y, w, h, θ). OBBOX
is particularly crucial for delineating small objects, which
are prevalent in high-resolution remote sensing images and
often fall below the 32 × 32 pixel dimension threshold.
The conventional HBBOX approach may result in significant
overlaps among these small objects, leading to erroneous
detections. However, the intricate nature of OBBOX annota-
tions—requiring more precision in terms of angle and posi-
tioning—poses substantial challenges in terms of annotation
effort, time, and cost [3], [4], [5]. As a result, the annotation
fee of OBBOX may be far higher than that of HBBOX [6].

Recent advancements have seen the emergence of founda-
tion models like the Segment Anything Model (SAM) [7],
which introduce interactive point-based annotation methods.
Annotators can now mark objects with a single point, and the
OBBOX is generated from the segmentation results of SAM,
using the input point as a “prompt” [8], [9], [10]. Despite these
innovations, SAM’s effectiveness in segmenting small objects
in remote sensing is limited due to the considerable domain
gap between its training dataset and the actual remote sens-
ing scenes. Moreover, the substantial computational resources
required by SAM’s large model architecture exacerbate the
processing burden for large-scale remote sensing images.
Consequently, when applying SAM to remote sensing imagery,
both annotation accuracy and efficiency are compromised.

To mitigate the challenges associated with small object
annotation in remote sensing, a novel point-based bounding
box annotation pipeline is proposed, termed PBA. Similar to
SAM, PBA relies on minimal point annotations to indicate
object locations. As seen in Fig. 1, there are no strict rules on
the positions of points, which provides greater flexibility and
can significantly reduce manual work. The bounding box of an
object is then determined by the predicted segmentation mask.
PBA’s innovation lies in its unsupervised nature, eliminating
the need for additional annotated data for model fine-tuning.
This feature is particularly advantageous in remote sensing.

The major contributions of this paper can be summarized
as follows:

i. An annotation pipeline is proposed that relies on the
annotation of two points, termed the point-based anno-
tation method (PBA), where the points do not need to
be positioned at the object boundary. The bounding box
of the annotated object is determined via an optimized
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(a) (b) (c)

Fig. 1: Examples on the existing annotation methods. (a) The commonly used four-point annotation method; (b) Segment
anything model and (c) the proposed PBA. The blue points are the positive annotation, the red points indicates the negative
annotation, and the yellow box is the generated bounding box. As seen, the proposed PBA only requires two-point annotation,
without other negative annotation on background region.

graph-based segmentation method. This approach is
more flexible and can significantly reduce manual work.

ii. A local-graph-building method is proposed to improve
segmentation efficiency. Unlike existing graph-based
methods, only nodes near the annotated points are con-
sidered to build the graph. Nodes are clustered into three
categories, i.e., “positive”, “negative” and “to-segment”,
respectively. The goal of the graph cut is to classify
the to-segment nodes as either positive or negative.
This classification further improves the segmentation ef-
ficiency, especially considering the large-scale of remote
sensing images;

iii. Experimental results on the Tiny-Dota [11] and DIOR-R
[12] datasets demonstrate that PBA reduces annotation
time by at least 40% and achieves a 10% higher IoU
for OBBOX generation compared to SAM. Furthermore,
models trained with PBA-annotated samples outperform
those trained with SAM-annotated samples by 3% in
mean average precision (mAP);

The remainder of this paper is structured as follows: Section
II reviews related works, Section III details the proposed
method, experimental results are presented in Section IV, and
the conclusion is drawn in Section V.

II. RELATED WORK

This section will illustrate previous works in four aspects:
manual annotation, automatic annotation, interactive image
segmentation, and automatic point-based annotation, all of
which are relevant to the proposed PBA approach.

A. Manual Annotations

There are several methods to annotate objects in pattern
recognition, i.e., including box annotation [13], point anno-
tation [14], [15], pixel annotation [16], [17], [18], [19], line
annotation [20], [21], etc. Box annotation is the main approach
used in the remote sensing object detection task and can
be further divided into horizontal box [22], [23], [24] and

oriented box [25], [26], [27], [28], [29], [30]. Horizontal box
is the most commonly used: the annotation of the horizontal
box (HBBOX) typically stores the coordinates of the upper
left and lower right corners in a rectangular bounding box,
noted as (xtop−left, ytop−left, xbottom−right, ybottom−right).
Another annotation format uses the center point coordinates
along with the width and height, noted as (xc, yc, w, h).

The shape and orientation of objects vary significantly in
remote sensing images, such as densely distributed trucks in
a car park, multiple ships in a harbor, and airplanes on an
airfield. Therefore, it is difficult to box these objects using
HBBOX, which can result in boxes containing a large amount
of irrelevant background information. In some cases, objects
with small intervals may even overlap, capturing parts of
neighboring objects. Thus, the use of oriented box (OBBOX)
annotations is more appropriate for remote sensing images.

Oriented box (OBBOX) annotation typically involves using
a quadrilateral box with a specified angle of rotation. With
the aid of annotation tools, annotators first draw a roughly
aligned horizontal bounding box, then rotate it around the
center point to align with the object, and finally make fine
adjustments. Another annotation method involves clicking on
one corner of the object, then sequentially clicking on the other
three corners in a clockwise or counterclockwise direction,
and finally clicking again on the first point. OBBOX directly
saves the coordinates of the four vertices of the quadrilateral,
noted as {(xi, yi), i = 1, 2, 3, 4}. OBBOX annotation solves
the problem of inaccurate annotation due to the tilted attitude
of the object in remote sensing images. However, it also takes
more labor work to find the accurate rotation angle or the
corner points of an object.

Among the existing annotation tools, the most widely uti-
lized one is “LabelMe” [31], developed by MIT. This tool
can create different types of annotations for images or videos,
such as boxes, polygons, circles, lines, and points. Users can
save the annotation results in COCO [32], VOC [33], or other
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formats. Another open-source annotation tool is “CVAT” 1,
developed by Intel Corporation, designed for professional data
annotation teams. Manual annotation is highly accurate but
comes at the expense of high labor costs and significant time.
Moreover, annotation accuracy can vary significantly between
individuals, leading to considerable variations in the annotation
results.

B. Automatic Annotations

When using automatic annotation, annotators simply input
unannotated images, and the annotation tool adds the im-
age annotations automatically. PaddleLabel2 and LabelBee3

annotation tools provide automated annotation plugins. They
are both based on deep learning algorithms, with models
typically trained on general scene datasets, such as COCO
and ImageNet [34]. This means they cannot be directly tuned
for use in other areas, such as remote sensing [35], medical
[36] and industrial [37] scenes.

C. Interactive Image Segmentation

Interactive image segmentation requires users set positive
and negative samples through an interactive interface. Then,
an algorithm automatically computes the segmentation result.
The most classic method is Graph Cut [38], [39], [40], based
on a graph-theoretic implementation. To be more specific,
Graph Cut uses an interactive approach, allowing the user to
set the seeds of positive and negative samples on an image.
Then, it uses the maximum-flow algorithm [41] to obtain the
segmentation result. As an example, Lazy-snapping [42] is an
optimized Graph Cut based method. At first, it preprocesses
the image using the Watershed algorithm [43], and then adds
the preprocessed results to the Graph Cut algorithm. After
the Graph Cut algorithm computation, an interactive interface
for manual corrections is provided, allowing users to edit the
segmented edges to make the segmented results more refined.

D. Point-based Annotations

In recent years, more attention has been drawn on point
annotation, in replace of direct box annotation. This approach
can substantially reduce annotation costs. Chen et al. [44]
proposed to combine weakly-supervised and semi-supervised
approaches for object detection. First, a Point DETR [45]
teacher network is trained to generate annotated boxes by
point annotation. Then, a deep learning network is utilized
to generate the corresponding pseudo-annotated boxes from
the point annotated images. Finally, a student network for
supervised object detection is trained with the dataset that
includes all these annotated boxes. The method reduces the
cost of annotation by bringing in point annotation.

Zhang et al. [46] designed a CNN-based point-to-box
network Group R-CNN for weakly semi-supervised object
detection task, based on point annotation. Group R-CNN
surpasses Point DETR by nearly 4%, when using 5% of

1https://github.com/opencv/cvat
2https://github.com/PaddleCV-SIG/PaddleLabel
3https://github.com/open-mmlab/labelbee

fully annotated and 95% of point annotated data. Group R-
CNN introduces instance-level proposal grouping, instance-
level proposals, instance-aware representation learning and
other novel designs that allow the network to better perform
than transformer-based methods, especially when there is a
limited number of annotated box images.

Lee et al. [11] proposed a different approach. The proposed
C3Det is an interactive annotation method for tiny object
detection, where the user simply clicks on a target object on
an image, and the system automatically fetch boxes of similar
objects in the image. Even some objects of a different type than
the user clicked object may be recognized. By substantially
reducing the number of user’s clicks, this method reduces the
difficulty of annotating tiny objects.

In summary, manual annotation methods are more accurate,
but come with high cost. Automatic annotation methods save
labor works, but are based on trained deep learning models.
Moreover, the domain adaption ability of object detection
models is limited, making it difficult to reuse models from
different domains. In this paper, an annotation method for
small objects based on the Graph Cut algorithm is proposed
to generate annotation boxes from low-cost point annotations
using an unsupervised approach. This method not only reduces
the high manual annotation costs, but also the corresponding
computational costs required for deep learning training.

III. THE PROPOSED METHOD

In this section, the proposed point-based bounding box an-
notation method is illustrated. It consists of prompt collection,
super-pixelization, graph construction, graph partitioning, and
finally box generation.

A. The Overall Pipeline of PBA

As seen in Fig.2, the PBA algorithm is designed to effec-
tively generate bounding box annotations for small objects in
remote sensing images. Compared with the overly costly man-
ual annotation, PBA only needs low-cost point annotations.
The segmentation procedure is unsupervised, meaning it can
complete the annotation efficiently without any training step.

To improve the interference efficiency in densely distributed
sets of small objects, the PBA algorithm first cuts a patch on
the original image based on the point annotations provided by
the user. Each annotation cuts a corresponding patch and the
OBBOX annotation is generated. Finally, the boxes of all the
sub-images will be merged back to the original image.

Note that, differently from the original four-point annotation
method, here annotators only use two clicks along the object
orientation, to label an object. This is a more user-friendly
solution, which requires a lower annotation precision, as
illustrated in Section III-B.

Foreground objects and background regions are segmented
using a Graph Cut based method. However, since the scale of
remote sensing images is usually larger than 1000 pixels, the
computational costs quickly become unacceptable for building
graph at the pixel level. Thus, the number of nodes is reduced
via pixel clustering, a step that merges adjacent pixels with
similar visual aspects. Graphs are then built using those nodes.
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Fig. 2: The workflow of the proposed PBA (Point-Based Annotation) method, featuring two innovative modules (highlighted
in blue) designed for optimization. Initially, the method streamlines the annotation process through two-point selection, which
does not adhere to strict placement rules. Subsequently, to enhance computational efficiency, a novel local graph construction
technique is employed to accurately represent the topology of individual objects. Bounding boxes are determined using a
graph-segmentation approach.

Fig. 3: An example of generating the segmentation mask using the proposed PBA method. Pixels are firstly clustered into
superpixels using the SLIC method, and the extracted superpixels are then refined to remove the outlier or discrete patches.
Taking those superpixels as nodes and their connections as edges, a local graph can be built, where positive nodes are firstly
determined according to the user annotation (denoted by blue in the second row), followed by to-cut nodes (green) and negative
nodes (red). The to-cut nodes and negative nodes are defined the same as in Sec III-D. After that, invalid nodes (black), where
no positive or to-cut nodes connected, are excluded to alleviate the computational burden, with the Max-flow method being
applied to predict the segmentation mask.

Compared with the original Graph Cut method, the number
of nodes is reduced by a few percentage points, significantly
improving annotation efficiency, as detailed in Section III-C.

Although the previous step significantly reduces computa-
tional costs, segmenting nodes in a large scene could still be a
heavy burden. Thus, a local-graph-based segmentation model
(LGSeg) is proposed to further reduce the computational costs

in irrelevant regions of an image. Collectively, positive sample
points, negative sample points, and points to be segmented are
referred to as valid points. The edges connected to different
types of valid points are assigned different weights, and the
Graph Cut method segments the graph using the classical
max-flow algorithm, dividing the graph into two parts with
only positive and negative sample points, and mapping the
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superpixel regions corresponding to the positive and negative
sample points to the original graph, i.e., obtaining a bipartite
graph, with the black region representing the background, and
each white block representing a small object, as detailed in
Section III-D.

Finally, each segmented block is framed with a rectangle
to get the coordinates of the rectangular bounding box, as
illustrated in section III-E.

B. Two-point Annotation

The proposed PBA method first requires users to provide a
two-point annotation for each object in an image. These two
points are connected as a line, mainly used to select the seeds
in the graph. The positions of these two points are not strictly
ruled, a certain of offset in the position is acceptable.

The original four-point box annotation method, utilizes
more constrains on the annotated points. Single point anno-
tation methods cost less labor. However, they also offer less
information, making is difficult to be directly utilized. The
proposed method combines the advantages of box annotation
and point annotation. It can not only obtain the location
information of objects under the premise of low cost, but also
have a preliminary knowledge of the size of objects, estimated
through the size of the generated bounding box.

C. Pixel Clustering

Building graph using the original pixels of the image as
nodes could require a huge computational cost for segmen-
tation, leading to extremely low computational efficiency.
To reduce the number of nodes, an intuitive solution is to
merge pixels into “superpixels”, areas with similar visual
aspect. To this aim, an off-the-shelf method is adopted: SLIC
(Simple Linear Iterative Clustering) [47] for clustering pixels
as preprocessing step. Compared with the traditional k-means
algorithm, SLIC restricts the search space to a limited range,
greatly reducing the computational complexity and improving
the inference efficiency.

Due to the cluster process utilized in SLIC, some super-pixel
regions are discontinuous, causing an erroneous determination
of the center coordinates in the following steps. To tackle this,
small regions that may cause bias are removed. Thus, each
superpixel is re-clustered as below :

IDi = argminID

(√(
IRGB
i − IRGB

j

)2)
, if Ni < R2 (1)

where IDi is the superpixel index, Ni is the number of
pixels contained in the superpixel, R the region size. then,
the pixel average intensity (IiRGB) through the RGB channels
is applied to measure the similarity between superpixels. The
nearest eight-directions (top, left, right, bottom, top-left, top-
right, bottom-left, and bottom-right) are considered. Note that
due to the different sizes of multiple super-pixels, so that the
number of neighboring superpixels may be less than 8.

D. Local-graph-based Segmentation Model

As visualized in Fig. 3, a graph-based method is utilized
to distinguish objects from background. The graph structure,

called G, includes nodes and edges, i.e. G = {V,E}. G
usually consists of a node set V = {Vvalid, VT } and an
edge set E = {E(Vvalid,VT ), E(V(validi)

,V(validj)
)}. The graph

structure used by the Graph Cut based method differs from
the original graph structure: there are two additional terminal
vertices, S (source) and T (sink), and every node in the graph
structure must be connected to a terminal vertex. The edge set
E is divided into two main categories, t-links and n-links.

t-links: t-links are the connections between each node and
the terminal vertex in the graph.

n-links: n-links are the connecting lines between adjacent
nodes in the graph.

Before segment superpixels, the nodes and edges must be
determined to build the graph structure.

1) Get Center of Mass and Pixel Values: In this paper,
the geometric center of each superpixel region is adopted to
represent the position of each superpixel, and the mean RGB
value of the pixels in this region is utilized to calculate the
edge value between two adjacent nodes.

For each superpixel region, the center coordinate is acquired
using its image moments. Image moments are parameters
estimated by a mathematical method used in image processing
to describe the shapes and features of images, which can in
turn describe the geometric properties of the shapes in an
image at different scales and orientations. The moment is
based on the concept of spatial distribution. Let m00 denote
the zero-order mixed moments of the origin of an image,
and m10 and m01 denote the first-order mixed moments of
the origin of an image about the x-axis and y-axis. The
center of mass (cx, cy, i) can be calculated according to the
following equation, where cx and cy denote the x-axis and
y-axis coordinates of the center of mass, respectively, and the
marks to which superpixel this point belongs.

cx =
m10

m00
, cy =

m01

m00
(2)

2) Building t-links: The creation of t-links is relatively
simple, directly connecting the points in the graph structure
to the terminal vertices, while the weights of the edges need
to be obtained based on the two-point annotation entered by
users. Specifically, nodes are split into three types of seeds,
each of which assigns a different weight to the edges, namely
the positive sample seed, the seed to be cut, and the negative
sample seed.

Positive sample seeds are superpixels covered by the two-
point annotation and assigned to the positive sample set. The
weights of the edges connected to the terminal vertex Vs are
set to 0 for positive sample seeds. Specifically, the weights
of the edges connected to the terminal vertex Vt are set to
“MAXIMUM”, a very large number in piratical, e.g., 105.
The positive sample seed is denoted as Vpositive, as indicated
by the blue dots in Fig. 4.

To-cut Seed. Superpixels as “To-Cut Seeds” have not been
assigned a seed category yet. These nodes need to be computed
by Graph Cut before they are automatically assigned to
positive or negative samples as shown by the green point in
Fig.4.

Negative sample seeds are instead of the adjacent superpix-
els of each to-cut seed which is visited. If a superpixel has
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Fig. 4: Example of seed visualization. Positive seeds, to-cut seeds and negative seeds are colored in blue, green, and red,
respectively. Specifically, invalid samples are illustrated in black.

not yet been assigned, it will be set as a negative sample seed,
which can be noted as Vnegative, as shown by the red point
in Fig. 4.

In this paper, the positive sample seeds, the seeds to-
be-segmented, and the negative sample seeds are uni-
formly referred to as valid nodes, denoted as Vvalid =
{Vpositive, Vnegative, Vto−cut}, respectively. Other unassigned
superpixels are assigned as invalid nodes and are shown
as black points in Fig. 4. The proposed local-graph-based
segmentation will not involve those nodes in the graph, which
can significantly reduce the computational cost. Finally, t-
links are obtained based on the connection of valid points
and terminal vertices by the following three kinds of edges,
the connection of positive sample points and terminal vertices
E(Vpositive,VT ), the connection of to-be-segmented points and
terminal vertices E(Vto−cut,VT ), and the connection of negative
sample points and terminal vertices E(Vnegative,VT ).

3) Building n-links: Typically, in an image graph structure,
each pixel acts as a node and is connected to its nodes in four
neighbors: up, down, left, and right. This forms a grid-like
graph structure. Moreover, in this paper the simplified graph
structure consists of irregularly shaped superpixels, as shown
in Fig. 5, resulting in the inability to directly calculate the
center-of-mass coordinates of neighboring superpixels. There-
fore, an edge-based neighbor searching method is proposed to
find the neighboring superpixels of each superpixel.

Specifically, after pixel clustering, a matrix of superpixel
boundaries is generated, recorded by different superpixel in-
dexes. Since the pixels in the top, down, left or right directions
of the boundary values must belong to different superpixels,

Fig. 5: Example of irregular superpixel distribution, where a
superpixel (denoted by red) with its surroundings (denoted by
green) are selected. This is caused by both size variation and
angle rotation.

the connectivity between superpixels can be confirmed simply.
A hash table is then built to record a pairs of connection, i.e.,
n-links, between these different superpixels. This table will be
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used in building the local graph.
According to the graph structure, the nodes are divided

into three types: positive samples, negative samples, and to
be cut. Thus, two types of edges are formed between them:
E(Vpositive,Vto−cut) which connects positive sample nodes to to
be cut nodes, and E(Vto−cut,Vnegative) which connects to-be-cut
nodes to negative sample nodes.

In addition, edges connecting valid nodes to unassigned
points and edges between unassigned points to each other are
not considered into the graph. The above two types of edges
are collectively referred to as valid edges:

Evalid =
{
E(vpositive ,Vto-cut ), E(vto-cut ,Vnegative )

}
(3)

The weight values of two neighboring nodes Vvalidi and
Vvalidj are calculated by their pixel values. The weight values,
wvalid, of E(Vvalidi

,Vvalidj
) are given in the following equation:

wvalid =
1

1 + 2

√(
ĪRGB
i − ĪRGB

j

)2 (4)

where ĪRGB is the mean superpixel intensity through RGB
channels. By the above steps, the algorithm has obtained the
set of nodes and the set of edges E so that the graph G can
be successfully constructed.

E. Local-graph-based Segmentation and Annotation Box Gen-
eration

Therefore, as the last step of the processing procedure, the
proposed method performs a segmentation operation on the
graph G using the max-flow method. This divides the subgraph
into two parts consisting of positive and negative sample
nodes. Next, the segmented superpixels are mapped back into
the subgraph to obtain a bipartite graph. As seen in Fig. 2,
black represents the background and white represents a small
object. The white region is framed with an adjoining rectangle,
the coordinates of which are the generated box annotations.
Each subgraph generates a unique box annotation based on the
user-defined annotations and maps the annotation information
back to the original graph; that is, all the box annotations of
the whole graph are obtained. In addition, the category labels
of annotations are provided by users when providing the two-
point annotations.

IV. EXPERIMENTAL RESULTS

In this chapter, the experimental platform, dataset, and
evaluation metrics are first be described in detail. Then, the
proposed point-based bounding box annotation method (PBA)
is analyzed in depth through extensive experiments to assess
its validity and reliability.

A. Datasets

Tiny-Dota: the Tiny-Dota dataset was proposed by Lee et
al. [11] and is a subset on the Dota dataset, which is a large-
scale target detection dataset for aerial images. The image sizes
range from 800 × 800 to 20,000 × 20,000 pixels, and the size
of each object varies greatly, from a few pixels to thousands

of pixels. In the Dota 2.0 dataset, there are 11,268 images and
1,793,658 instances with a total of 18 object types. Although
the Dota dataset contains many small objects, the categories
such as baseball field, track and field, football field, basketball
court, etc. still belong to the large-sized objects. The Tiny-
Dota dataset is targeted instead to find out small objects with
a total of 8 categories: PL (Plane), BR (Bridge), SV (Small
Vehicle), LV (Large Vehicle), SH (Ship), ST (Storage Tank),
SP (Swimming Pool), and HC (Helicopter). As introduced in
Lee et al., the involved processing steps are as follows:

1). The original Dota dataset has no public test set anno-
tation, so it is necessary to merge the training set and
validation set, and re-divide it into the training set, the
validation set and the test set with percentages of 70%,
10% and 20%, respectively;

2). As the image size in the Dota dataset is always very
large, following the works in [48], [11], a method
of cropping the images into 1024 × 1024 patches is
adopted;

3). Finally, the instances are filtered and only the eight
categories mentioned above are maintained.

DIOR-R [49]: DIOR is a large-scale, publicly available
dataset of optical remote sensing images, which contains
23,463 images and 192,472 instances covering 20 object cate-
gories. Since the method in this paper focuses on small objects,
as with the Tiny-Dota dataset screening eight categories are
utilized : APL (airplane), SH (ship), STO (storage tank), BR
(bridge), VE (vehicle), WM (windmill), BC (basketball court),
and TC (tennis court).

B. Evaluation Metrics

Three evaluation metrics are used to validate the perfor-
mance of the proposed method: annotation time (time), IoU
and mAP.

Time: The annotation time is an evaluation metric that
measures the speed of algorithm execution. It is the total
time required to complete the tasks of annotating an image.
Time cost is crucial for annotation efficiency, because reducing
annotation time means that more data can be annotated faster.

IoU (Intersection and Union Ratio): IoU is used to measure
the degree of overlap between the predicted bounding box and
the ground-truth bounding box, and is calculated by dividing
the area of intersection between these two bounding boxes by
the area of their union. IoU values range from 0 to 1, where
higher values indicate larger overlaps between the predicted
and actual bounding boxes. The annotation quality is evaluated
by calculating the average IoU values between annotations
produced by different annotation methods and the ground truth
annotations.

mAP (Mean Accuracy): mAP is a comprehensive measure
of the performances of the object detection algorithms, com-
puted by means of precision and recall. Here, it is important
to note that an IoU threshold (generally taken as 0.5) is
considered, and the object detection is considered as correct
only when the IoU value between the predicted bounding box
and the actual bounding box is greater than this threshold
[48], [50]. For each prediction the curve is plotted on the
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detection rate-correctness plane. The area under the PR curve
is calculated, and this can be done by discretizing the check-
percentage (e.g. 0.0 to 1.0 with an interval of 0.1), then calcu-
lating the corresponding maximum check-percentage values,
and eventually summing them up to get the AP. Averaging the
AP values of all the categories gives the mAP value.

C. Results on Time Consumption

The PBA method contains four main parts: pixel cluster-
ing, graph creation, graph segmentation, and bounding box
generation. Since annotating all images requires quite a big
labor work, a simplified method is adopted to simulate the
manual annotation process. Specifically, two-point annotations
are generated from the original annotation boxes with random
oscillation added.

Both Tiny-Dota and DIOR-R dataset provide annotations
in the form of (x1, y1, x2, y2, x3, y3, x4, y4). In this paper, the
center line coordinates are obtained by calculating the median
of the first two points of the annotation frame (c1, c1y ) and
the median of the last two points (c2x , c2y ):

c1x =
x1 + x2

2
, c1y =

y1 + y2
2

c2x =
x3 + x4

2
, c2y =

y3 + y4
2

(5)

After obtaining the coordinates of the center line, a translation
is added to this as random noise, the translation range is
sampled randomly from one of the box edge, with four
directions of up, down, left and right. The simulated two-point
annotation is obtained by the above operation. The coordinates
are then rotated to convert (x, y) to the rotated coordinates
(xr, yr):

xr = x× cos θ − y × sin θ

yr = x× sin θ + y × cos θ
(6)

After generating pseudo two-point annotations for all the
data in Tiny-Dota and DIOR-R respectively, they are fed into
PBA to get the annotation frames. The statistics of the average
time for each PBA step are shown in Table I.

TABLE I: Time consumption (s) for each PBA step (%).

Modules in PBA Tiny-Dota DIOR-R

Super clustering 1.5 (12.4%) 1.9 (11.7%)

Building a Graph 9.2 (76.1%) 12.5 (77.2%)

Graph cut 0.4 (3.3%) 0.8 (4.9%)

Box generation 0.1 (0.8%) 0.1 (0.6%)

Others 0.9 (7.4%) 0.9 (5.6%)

Total Time 12.1 16.2

As seen from the table above, the main time spent by the
PBA is on the graph building part, which is also the most
complex part of the algorithm. The time spent on the ”other”
items refers to the running time of the code for image loading,
annotation loading and other coding execution intervals.

D. Analysis of PBA annotation quality
The IoU between GT (Ground Truth) and PBA-generated

annotations is compared to evaluate the quality of annotations
generated by PBA. The time cost of annotating with the
whole dataset is not affordable. Thus, 50 images in the dataset
are selected. The same method as mentioned in the previous
section is used to generate pseudo two-point annotations, as
inputs to PBA for segmentation.

The proposed method is then compared with classical inter-
active segmentation methods, such as Graph Cut and the Lazy-
snapping method improved based on Graph Cut. Additionally,
the latest interactive segmentation method SAM (Segment
Anything Model) is also included. the following modification
is conducted to adopt those methods to segment small objects
in the remote sensing field.

1). Line annotation is utilized to annotate objects, which is
analogue to the two-point annotation as proposed in this
paper. Apart from positive annotations, the Graph Cut
and the Lazy-snapping also require negative annotations.
Thus, negative regions are kept until all the positive
instances are recognized.

2). In SAM, point prompts are utilized as inputs, because
SAM does not support line prompts. As a result, each
object is annotated as a single point, and the object
region is automatically segmented via SAM. As intro-
duced in the RSPrompter [35], additional bounding box
annotation information on remote sensing is required.
However, SAM is used here as an annotator rather than
a segmentation model. As a result, no fine-tuning is
applied.

Table. II shows the comparison of IoU on Tiny-Dota and
DIOR-R datasets, respectively.

TABLE II: Comparisons of IoU for different methods on two
benchmark datasets, respectively.

Method Tiny-Dota DIOR-R

Graph Cut 42.1 43.6

Lazy-snapping 55.8 58.6

SAM 60.4 62.8

PBA (ours) 69.7 72.2

From the table, the IoU of the proposed method reaches
69.8% and 72.2% on the two datasets, respectively. In the
object detection task, an IoU greater than 50% is recognized
as a positive sample, which indicates that the annotations
produced by the PBA method are applicable as labels to train
a detector. The proposed PBA exceeds the classical Graph Cut
method, Lazy-snapping, and SAM by about 28%, 14%, and
9%, respectively.

Since the Graph Cut method builds the graph structure for
segmentation using the original pixels, due to the limited size,
the graph construction may not be able to accurately capture
the edge information of small objects. As a result, for densely
placed small objects, Graph Cut may merge more objects into
one bounding box, as shown in the second column of Fig.
6. Since the proposed PBA method is based on the graph
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Fig. 6: Visualization on (a) the original images, (b) Graph Cut, (c) Lazy-snapping, (d) SAM and (e) the proposed PBA,
respectively. The original positions of patches are annotated by orange, blue, pink and light blue, respectively. The false
annotated boxes are highlighted in yellow, while the true positive annotations are marked in red. Occlusion and blurry are two
main challenges on annotating small objects. Graph Cut and Lazy-snapping may fail on annotating dense small objects, which
may merge multiple objects into one OBBOX. SAM annotates more accurately but is interfered by the object blurry and the
background features. Meanwhile, SAM may fail occasionally caused by the user annotation, which is highlighted by dashed
yellow boxes. As a comparison, the proposed is robust on occlusion and blurring, generating more accurate boxes.

structure constructed by superpixels, it highlights the internal
structure and the edge information of small objects, achieving
more accurate segmentation outputs. The overall structure
of the Lazy-snapping method is analogue to that of PBA.
However, the setting of positive and negative sample seeds is
quite different. When applied to the actual annotation situation,
Lazy-snapping needs to carry out interactive annotation several
times. Compared to our method, it not only needs to set
appropriate positive sample seeds, but also needs to set many
negative sample seeds. As the backgrounds information of
small object in the remote sensing scene is more complex,
the quality of negative sample seeds has a great impact on
the segmentation effect. Thus, this process requires massive
delicate manual operations, which increases the burden of
annotators, improving the probability of annotation mistakes,
as well as the time cost of annotation.

The SAM method has achieved state-of-the-art results in
the field of commonly used imagery. However, when applied
to annotating remote sensing small objects, due to the limited
size and vision details of small objects, it results into poor
segmentation results, as shown in the fourth column of Fig. 6.

E. Effect on Training Object Detectors

To further validate the practicality of the annotations gen-
erated by the proposed method, the annotations generated by
Graph Cut, SAM, and PBA methods and the original manually
annotated GT are utilized to train oriented object detection
methods. During testing, the original GT is applied. In this
paper, a Rotate RetinaNet [51] is used as the oriented object
detection network. To ensure the fairness of the experiment,
the network uses the same parameter settings. The rotation
angle is in “OC” format and the backbone network is ResNet-
50. The network is trained by 12 epochs with a batch size
of 2. The initial learning rate is 0.0025. SGD is utilized as
optimizer with a momentum of 0.9, and a weight decay of
0.0001. Table III and Table IV show the mAP results on
Tiny-Dota and DIOR-R for the models trained by the four
annotation methods.

The experimental results show that the network trained with
the PBA-annotated samples is more reliable than other meth-
ods, with an average mAP around 2.8% higher on different
datasets. For small objects annotating, SAM surpasses PBA in
detecting storage tanks (Tiny-Dota) and oil tanks (DIOR-R) by
about 2%, which may be caused by the seed setting. Indeed,

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3442732

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 10

TABLE III: The mAP (%) comparison of the RetinaNet model
trained Using different annotations on the Tiny-Dota Dataset.
“GT” is the “ground truth annotation” supplied by the dataset
publisher.

Class Graph Cut Lazy-snapping SAM PBA (ours) GT

PL 35.4 53.4 55.2 59.3 81.1

SH 41.2 51.7 56.7 57.2 65.4

ST 45.7 48.9 57.3 55.8 63.5

BR 31.8 33.6 35.2 37.4 43.1

LV 52.3 54.1 58.3 64.3 71.2

SV 35.3 37.3 41.6 44.2 68.3

HC 15.2 18.8 21.7 25.1 31.4

SP 45.1 48.7 52.6 60.7 66.8

mAP 37.8 43.3 47.3 50.5 61.3

TABLE IV: The mAP (%) comparison of the RetinaNet model
trained Using different annotations on the DIOR-R Dataset.
“GT” is the “ground truth annotation” supplied by the dataset
publisher.

Class Graph Cut Lazy-snapping SAM PBA (ours) GT

APL 28.5 34.0 43.2 49.7 71.4

SH 54.1 64.8 72.3 76.4 81.1

STO 43.6 53.6 63.9 61.0 71.3

BR 14.2 18.7 21.9 23.9 33.1

VE 29.8 37.8 42.6 47.1 65.7

WM 37.2 48.7 55.1 60.2 71.2

BC 53.1 66.4 78.3 77.3 83.5

TC 54.7 69.2 78.1 78.2 83.1

mAP 39.4 49.2 56.9 59.2 70.1

in our seed setting paradigm, only superpixels around positive
seeds are considered for the graph formation. However, for
square-shape objects, some positive seeds may be missing
as the annotation line cannot highlight positive seeds along
other orientations. As a result, the annotated OBBOX may be
smaller than the ground-truth. This issue requires some future
work to optimize the segmentation pipeline for this type of
objects.

The state-of-the-art results achieved by PBA are mainly
caused by objects that have more distinctive features in the
image, such as clear edges, high contrast, etc., which enable
the proposed PBA to segment these objects more effectively.
However, there is still a gap when compared with the manual
annotations, with a legging around 11% on mAP. This is
because some objects and backgrounds are not easily distin-
guishable, or the shapes of some small objects are unique.
Another future work would be to annotate small objects with
interference, such as illumination, blurry, occlusion, etc.

Fig. 7: The relationship between IoU and the bounding boxes
generated with different region sizes.

F. Hyper parametric analysis

In this subsection, some important hyperparameters that
affect PBA results are analyzed, namely the region size and
the line length ratio. As Tiny-Dota and DIOR-R have a
similar imaging view and scenario, the experiments of hyper
parametric analysis are performed on the Tiny-Dota dataset
only.

Region size, i.e. the average size of the superpixels gener-
ated by the SLIC algorithm. When the region size gets smaller,
the visual details are better preserved. However, extremely
small superpixels are hard to be aggregated, which leads to
under-segmentation. Finally, as the region size gets larger,
superpixels may contain too much background information,
causing over-segmentation, as shown in Fig. 7. In this paper,
an optimal value of 5 pixels for region size is considered.

Line length ratio, i.e. the distance between two points
and the object size. This parameter has effect on determining
positive seeds. As seen in Fig. 8, a lower values may cause
less superpixels as positive seeds. As a result, a smaller BBOX
is generated. However, when the line length ratio exceeds
0.8, the quality of the annotation becomes slightly inferior.
This is because more background may be involved from the
boundary super-pixels. As a result, the recommended value of
this parameter is 0.8.

G. Comparison of Annotation Times in Practice

The proposed PBA aims at reducing the time cost of image
annotation. To validate its effectiveness, time cost in practice
is measured.

Similarly to previous works [42], [7], a subset of 20
images is extracted from the Tiny-Dota dataset as sample
images, containing all the categories. The number of objects
is approximately equal to the average number of objects in the
whole Tiny-Dota dataset. To ensure the professionalism of the
experiment, five volunteers with annotation-related experience
were invited to participate in the experiment.

In the manual annotation part, each of the five participants
used the LabelMe tool to annotate the 20 images with rotated
boxes. During the annotation process, the annotation time of
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Fig. 8: The relationship between IoU and the line length ratio.

each person was recorded for comparative analysis. Each of
the five participants firstly used the LabelMe tool to manually
annotate via two points. Next, the annotated data was fed
into the algorithm to generate the corresponding oriented
annotations. During this process, the time required for the
algorithm to run was also recorded. The total time cost of the
PBA method was obtained by adding the manual annotation
time and the time taken by generating the OBBOX annotations
automatically. The experiment was repeated twice to reduce
accidentally induced errors, and Table V shows the statistics
of the two experiments.

TABLE V: Annotation time (s) of 5 annotators on the Tiny-
Dota dataset (first and second time). The symbol “↑” indicates
the ratio of time saving compared with the existing four-point
annotation work.

Category First (mean ± std) Second (mean ± std)

4-point Anno. 2761.40 ± 90.79 2713.80 ± 67.68

SAM
1835.00 ± 50.31 1652.40 ± 41.20

(↑ 33%) (↑ 39%)

2-point Anno. 1132.20 ± 40.37 1129.80 ± 113.24

PBA processing 318.80 ± 0.40 318.60 ± 0.49

Overall
1451.00 ± 40.52 1448.40 ± 113.37

(↑ 47%) (↑ 46%)

For the DIOR-R dataset the same experimental design was
adopted, except that the subset was made of 50 images, which
contain all the categories, and the number of objects in each
image is approximately equal to the average number of objects
in each image of the whole DIOR-R dataset. Table VI shows
the data statistics of the two experiments on the DIOR-R
dataset.

The tables show that, the proposed PBA could significantly
reduces the manual work by at least 50% because the data
processing step does not require manual interaction. By com-
paring the two annotation experiments on each dataset, the
second manual annotation phase generally takes less time than

TABLE VI: Annotation time (s) of 5 annotators on the DIOR-
R dataset (First and Second Time). The symbol “↑” indicates
the ratio of time saving compared with the existing four-point
annotation work.

Category First (mean ± std) Second (mean ± std)

4-point Anno. 3082.00 ± 89.12 3049.20 ± 123.23

SAM
2751.10 ± 30.31 2325.60 ± 25.50

(↑ 11%) (↑ 24%)

2-point Anno. 1483.80 ± 113.77 1389.80 ± 97.33

PBA processing 601.00 ± 0.00 598.40 ± 0.55

Overall
2084.80 ± 113.77 2012.20 ± 111.41

(↑ 32%) (↑ 34%)

the first on, due to the annotators becoming more and more
familiar with the annotation tools.

Furthermore, the time consumption of the manual OBBOX
annotation and the PBA annotation are estimated and the
results are shown in Table VII. The two-point annotation
time and the box annotation time are the average annotation
time estimated by the results of the previous experiments.
The average time for an annotator to complete the annotation
of an object is about 2 seconds, while the average time for
completing a rotated box annotation is about 6 seconds. As can
be seen, the method proposed in this paper can significantly
reduce the time cost of annotation.

TABLE VII: Annotating time cost (h) simulation on the Tiny-
Dota and DIOR-R datasets.

Dataset 2-point Anno. PBA Total 4-point Anno.

Tiny-Dota 357 139 506 1071

DIOR-R 107 78 194 321

Though the difference in time cost between the PBA method
and the traditional manual annotation method is obvious, PBA
exhibits a lower time cost. This will be of great practical
significance for large-scale image annotation tasks, especially
in the fields of computer vision and deep learning.

V. CONCLUSION

Aiming at the problem of high cost on annotating small
objects in the remote sensing field, this paper proposes a
low-cost annotation method, named PBA. PBA is an efficient
method for annotating small objects in remote sensing images,
and only needs two-point annotations to generate oriented
bounding boxes without pre-training or fine tuning. The al-
gorithm firstly clusters pixels on the original image using the
SLIC algorithm. Then, positive sample nodes are identified,
as well as the to-be-segmented nodes and the negative sample
nodes. Among that, the position and the superpixel intensities
are collected to build a graph. Next, the graph is segmented by
the max-flow method, to divide the graph into two parts, with
positive and negative samples. These two parts are mapped
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back to the original graph to form a binary mask. Finally,
each object region is converted into an oriented rectangular
box.

A series of experiments prove the effectiveness of PBA,
since the annotation method and the average IoU in this
paper exceeds the state-of-the-art SAM method by about 9%.
Experimental results validate that the proposed PBA algorithm
is an effective semi-automatic annotation method for small
objects in remote sensing images.

However, there are still some limitations. At first, the effect
on annotating objects with shapes similar to a square is
poor, due to the above mentioned issue with positive seeds
identification. It is important to subdivide the positive sample
seeds, the seeds to be segmented, and the negative sample
seeds, and a well-designed division policy can effectively
improve the quality of the OBBOX annotation. Another future
work will be the optimization of the annotation method with a
seed template for each category, or to introduce deep learning
feature extraction methods to assist seed division.
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