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Abstract

The knowledge stored in a case-base is central to the problem-solving
of a Case-Based Reasoning (CBR) system. Therefore, case-base main-
tenance is a key component of maintaining a CBR system. However,
other knowledge sources, such as indexing and similarity knowledge for im-
proved case retrieval, also play an important role in CBR problem-solving.
For many CBR applications the refinement of this retrieval knowledge
is a necessary component of CBR maintenance. This paper focuses on
the optimisation of the parameters and feature selections/weights for the
indexing and nearest-neighbour algorithms used by CBR retrieval. Op-
timisation is applied after case-base maintenance and refines the CBR
retrieval to reflect changes that have occurred to cases in the case-base.
The optimisation process is generic and automatic, using knowledge con-
tained in the cases. In this paper we demonstrate its effectiveness on a
real tablet formulation application in two maintenance scenarios. One
scenario, a growing case-base, is provided by two snap-shots of a formula-
tion database. A change in the company’s formulation policy results in a
second, more fundamental, requirement for CBR maintenance. We show
that, after case-base maintenance, the CBR system did indeed benefit
from also refining the retrieval knowledge. We believe that existing CBR
shells would benefit from including an option to automatically optimise
the retrieval process.

Keywords: Case-Based Reasoning, Maintenance, Retrieval Optimi-
sation, Indexing Knowledge, Similarity Knowledge

1 Introduction

Case-Based Reasoning (CBR) is a popular reasoning methodology for decision
support systems because its reasoning is based largely on case knowledge that
may already be available in a database. When a new problem is presented to a
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CBR system, it first retrieves cases with similar problem descriptions from the
case-base. The solutions in these retrieved cases are used to propose a solution
for the new problem. It may be necessary to adapt the proposed solution to take
account of differences between the new problem and the retrieved problems. In
addition to returning the proposed solution as the answer to the new problem,
it is common to review the new problem and its solution, and perhaps to retain
this problem-solution pair as a new case in the case-base. The CBR process is
illustrated in Figure 1.

retrieve
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with solved
problems
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previously solved

problems

Adapt retrieved
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if needed

Confirm
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the solution

Store new
solved problem
for future use
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Figure 1: The Case-Based Reasoning Cycle

The case-base is central to CBR, and so one form of CBR maintenance is
an effective regime for case-base maintenance (Smyth 1998). Case-base main-
tenance typically involves the addition, removal or revision of cases, but can
also include changes to case indexing (Leake & Wilson 1998). However the
case knowledge is not the only knowledge that is used in CBR systems and
that has to be maintained. CBR systems typically apply additional knowledge
distributed over a number of “knowledge containers” (Richter 1998, Wilke, Voll-
rath, Althoff & Bergmann 1997): the vocabulary knowledge (used to describe
the cases and problem domain), the retrieval knowledge (including indexing and
similarity knowledge), and the adaptation knowledge, see Figure 2. Given a new
problem (Q), indexing knowledge is used to select a subset of relevant cases from
the case-base, on which similarity matching focuses. Similarity knowledge influ-
ences the calculation of the similarity measure that determines which cases (P)
are deemed to be most similar. Adaptation knowledge is applied to alter the
proposed solutions (S) in reaction to differences between the new problem and
the retrieved cases. If the case-base changes then the retrieval and adaptation
knowledge may need to be refined. This is especially the case when the original
retrieval and adaptation knowledge was obtained based on the case data, for
example, when automated techniques were employed when building the CBR
system.

During the lifetime of a CBR system, new cases can be added to a case-base
for different reasons. Typically, the retain stage of the CBR cycle gradually
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Figure 2: Four types of knowledge used in the CBR process (Wilke et al. 1997).

adds cases as new problems are solved. Apart form that, the knowledge engineer
may select additional new cases to provide better case coverage. If the problem-
solving policy changes over time, then the case-base must also change to reflect
the new solutions. The old cases may have to be removed or revised in order to
avoid conflicts with new cases. Sometimes the case description may have to be
altered (extra features) to better differentiate between cases.

In this paper we concentrate on two maintenance scenarios: an expand-
ing case-base as new cases are added, or an altered case-base where different
cases and/or solutions reflect a change in the problem-solving policy. We have
met the two scenarios (separately) in our tablet formulation application (Craw,
Wiratunga & Rowe 1998) that we are developing with AstraZeneca, a major
international pharmaceutical company. New drugs were developed, and so the
case-base grew from a collection of formulations for 12 drugs (48 tablets) to
one containing formulations for 36 drugs (144 tablets). Secondly, AstraZeneca
changed its policy for tablet formulation. For the 12 drug case-base, this re-
sulted in 37 of the 48 formulations changing (i.e., at least one of the formulation
components changed). When we consider the two scenarios, we see that the
extra cases, available when the case-base has grown, contain extra knowledge
about the problem solving and provide an opportunity to improve retrieval. In
the second scenario, revising the retrieval is necessary for good problem solving.

It is well known that constructing CBR systems for some types of problem
requires significant knowledge acquisition effort (Cunningham & Bonzano 1999).
Maintenance of CBR systems may be just as demanding. Therefore, both knowl-
edge acquisition and maintenance would benefit from availability of tools which
help reduce effort needed to perform these tasks. Such tools would be especially
useful if integrated with CBR shells. We believe that refining the retrieval
process is an important component of CBR maintenance and so we explore
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automatic refinements to the case-base index and similarity measure that may
be prompted by changes to the case-base. The retrieval optimisation we have
developed applies a Genetic Algorithm (GA) to select relevant features and
choose feature weights to suit the cases in the case-base (Jarmulak, Craw &
Rowe 2000a). Although this was initially developed as a knowledge acquisition
tool, it can equally well be used to reduce knowledge maintenance effort.

This paper concentrates on maintaining retrieval knowledge to correspond
to changes that result from case-base maintenance. First we discuss how CBR
retrieval uses indexing and similarity knowledge and how it can be refined (Sec-
tion 2). Our GA optimisation and the way it adapts the retrieval to case-base
changes is described in Section 3. Section 4 introduces our tablet formulation
domain and the two maintenance scenarios it presented. Section 5 contains
retrieval optimisation results for the original case-base and for the two main-
tenance scenarios in tablet formulation. Finally, we look at related work in
Section 6, before drawing some conclusions about optimising retrieval as a com-
ponent of CBR maintenance in Section 7.

2 CBR Retrieval

We adopt a standard retrieval model where a decision-tree index selects po-
tentially relevant cases and a nearest-neighbour algorithm applies a similarity
measure to select most similar cases, see the left part of Figure 3. This retrieval
is commonly used in commercial CBR tools; e.g., ReCall (ISoft), Kate (Ac-
knoSoft), and The Easy Reasoner (The Haley Enterprise). As Figure 3 implies,
this retrieval can be optimised by:

• acquiring knowledge about which features should be used to induce the
decision-tree index, and which weights reflect the importance of features
for the similarity measure;

• finding the best parameters for the induction algorithm that builds the de-
cision tree index, and for the nearest-neighbour algorithm that determines
closest matches.

ReCall is the CBR tool we use. In ReCall, C4.5 (Quinlan 1993) induces the
decision-tree index and k-NN retrieves the k closest neighbours. Therefore, we
are specifically interested in optimising the following:

• Binary Index Weights WI – select index features;

• Similarity Weights WS – the similarity measure is a weighted Euclidean
distance;

• Index Parameters PI – influencing minimum leaf size and tree pruning,
here -m and -c for C4.5; and

• Similarity Parameters PS – here k in k-NN.
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Figure 3: CBR Retrieval: Knowledge and Optimisation

While optimising the retrieval we provide feedback from the complete CBR
retrieval process. Thus, optimising the index is done when it is part of the
retrieval, so that the index chooses good cases for subsequent similarity match-
ing. Similarly, the weights needed by the similarity measure are optimised so
that they give best results when similarity measure is applied to only the cases
selected by the index, and not to all cases. We have previously shown that
simultaneous optimisation is different from separate optimisations (Jarmulak
et al. 2000a). Selection and weightings from separately optimised index and
similarity measure give inferior retrievals to those optimised simultaneously.
Also, our past research concentrated on optimisation of retrieval as part of
CBR knowledge acquisition. Here, we explore optimising and re-optimising
CBR retrieval after the case-base expands or its cases are altered.

3 Optimising CBR Retrieval

We have chosen a Genetic Algorithm (GA) as the method to optimise CBR
retrieval. GAs are well suited to the high dimensionality of the search space
and the combination of their crossover and mutation operators with selection
is good at preserving successful weights and parameters whilst introducing and
experimenting with new different ones. Furthermore, the fitness can reflect our
goal of optimising the complete CBR process. Finally, for CBR maintenance,
the initial population of weights and parameters can be biased towards the
existing retrieval parameters and weights.

3.1 GA Search

The GA that we use represents parameters (PI , PS) and feature weights (WI , WS)
as real-valued genes in the GA chromosome, Figure 4. In each iteration of the
GA, the population undergoes a process of mutation, followed by reproduction,
and finally selection. Real-valued genes are mutated by adding a Gaussian-
distributed offset, a standard crossover operator swaps blocks of genes between
parents, and rank selection with elitism retains the best-fit chromosomes at the
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Figure 4: GA for Optimising Retrieval (see Figure 5 for fitness calculation)

end of each cycle. In our experiments, we used a population size of 100 chro-
mosomes and ran the GA through a number of mutation/crossover cycles. In
each mutation phase 50 “mutants” were added to the population and in each
crossover phase 50 “children” were added. The selection phase at the end of
each cycle reduced the population back to 100. The GA ran until no further im-
provement was observed over a number of cycles. We consider the time needed
for retrieval optimisation as not critical because optimisation will be done off-
line and is only applied rarely. Therefore, we made no attempt to optimise
the GA itself (we use our own implementation in C++), and shorter process-
ing times are possible. The average time required for an optimisation run is
approximately 30 minutes on a 400MHz UltraSparc station.

We next define a fitness function that estimates the retrieval quality from
the case-base using a decision-tree index induced using feature weights WI and
parameters PI and applying a k-NN algorithm with the feature weights WS and
parameter PS . By supplying fitness feedback from the complete CBR retrieval
process we achieve simultaneous optimisation of both indexing and similarity
matching.

3.2 GA Fitness Function

To evaluate the quality of retrieval using the parameters and feature weights
in the chromosome, we must solve new problems not already in the case-base.
Therefore, we partition the original case-base into a (smaller) case-base and test
data for the retrieval experiments. An n-fold cross-validation (the “x-val loop”
in Figure 5) partitions the original case-base into n equally-sized disjoint sub-
sets. Repeated cross-validation experiments take one of the folds as the x-val
test set and create x-val case-bases containing the cases from the remaining n−1
folds. A new decision-tree index is induced for each x-val case-base using the
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Figure 5: Calculating GA Fitness

feature weights WI and parameters PI from the chromosome. The similarity
matching applies the weights WS and the parameter PS . This x-val CBR system
is evaluated on the corresponding x-val test set, and the solutions predicted by
the x-val CBR system are compared with the actual solutions from the origi-
nal case-base. Finally, the fitness of the chromosome is the average predictive
accuracy from the full set of cross-validation experiments.

3.3 The Gain of Re-optimising

The above-described approach was initially developed to optimise a standard
index-and-nearest-neighbour CBR retrieval during knowledge acquisition. How-
ever, it is equally applicable to CBR maintenance, where we refine the CBR
retrieval to reflect changes in the case-base. Thus, when calculating fitness, the
updated case-base is used as the case-data for the x-val loop. Furthermore,
if appropriate, we can apply the approach as a re-optimisation where instead
of randomly seeding the initial GA population, a portion of the population is
created by adding a Gaussian-distributed offset to the weights and parameters
already used in the current CBR system. Thus, the re-optimisation benefits
from the previous optimisation, but as an optimisation it also reacts to any
changes in the case-base.

If the contents of the case-base change as a result of the maintenance then
the retrieval may need to change in reaction. If the case-base has grown signif-
icantly then the index may have to be constructed anew, using new induction
parameters, and also a different k for k-NN similarity matching may be needed.
More fundamentally, a larger case-base offers an opportunity to improve fea-
ture selection and feature weighting. A change in feature selection and feature
weighting may be necessary if novel problems are solved differently e.g., as a
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result of a change in the problem-solving policy itself. The feature weights
will need to reflect the new feature relevances and importances for the changed
problem-solving.

4 Problem Domain

We demonstrate use of our optimisation approach, which is generic, on a par-
ticular application domain, tablet formulation (Rowe 1993). Given a drug and
the desired dosage, a tablet formulation consists of a number of compounds (so-
called excipients) that are mixed with the drug to make a viable tablet as shown
in Figure 6. These provide the tablet with the desired mechanical properties,
long-term stability, proper drug release when swallowed, effective manufacture,
etc. A tablet formulation identifies the filler, binder, disintegrant, lubricant and
surfactant to be added to the drug, together with the quantities of each. There
are 8 possible choices for filler, 5 for binder, 2 for lubricant, 5 for disintegrant,
and the surfactant can either be present or not.

drug

filler

binder

lubricant

disintegrant

surfactant

Tablet components DRUG:
	 Active ingredient (typically 25%).
FILLER:
	 To increase bulk in order to produce a tablet of 
	 practical weight for compression (typically 65%).
BINDER:
	 To impart cohesive properties to the powders by 
	 the formulation of granules.
LUBRICANT:
	 To reduce interparticulate friction, prevent adhesion
	 of powder to the surfaces of punches and dies and 
	 to facilitate tablet ejection from the die.
DISINTEGRANT:
	 To facilitate rapid breakup and disintegration after 
	 administration.
SURFACTANT:
	 To aid wetting and dissolution of the drug.

Figure 6: Ingredients of a Tablet

An important aspect of tablet formulation is that several solutions may be
acceptable; e.g., several excipients may be suitable fillers for a tablet of a given
drug and dose. Therefore, when evaluating a tablet formulation system, an ex-
act accuracy, based on exactly matching the actual filler, is too restrictive as a
measure of predictive accuracy. Instead, we constructed an approximate simi-
larity matrix for the fillers based on the weighted Euclidean distance between
the filler properties. Our formulation expert provided the weights and also de-
clared that pairs of fillers with similarity greater than 0.9 should be considered
as interchangeable, and those with similarity less than 0.5 were incompatible.
The 0.9 similarity threshold defines the required degree of match for a weaker
correct accuracy. A similar approach was used for the other excipients in the
formulation. These weights and thresholds were the only feedback on solution
quality required from the expert.

AstraZeneca has provided us with historical data on tablet formulation. We
have formulations for two sets of drugs each formulated according to the same
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tablet formulation policy, where one set of drugs pre-dates the other. Form-
12 contains formulations for four doses of an early set of 12 drugs. Form-36
consists of the Form-12 formulations together with formulations for four doses
of a later set of 24 drugs. These datasets fit our first maintenance scenario of an
expanding case-base. CBR systems built from Form-12 formulations represent
earlier formulation experience than those created with Form-36 data.

At a later time, AstraZeneca also changed its formulation policy. Under the
new policy, excipients were grouped into four classes; class I excipients were
preferred in formulations to those in class II, etc. This change in policy affected
many of the 48 formulations in the Form-12 dataset: 7 fillers, 33 binders, 12
disintegrants and 8 surfactants changed. The result of introducing excipient
preferences to the formulation policy is visible in the increase in the default
accuracy for all four excipient types. These new formulations give us a third
dataset: NewForm-12 contains formulations for the same drugs and doses as
Form-12 but now the formulations correspond to the revised formulation policy.
The Form-12 and NewForm-12 datasets fit our second maintenance scenario
where the case-base changes as a result of a revised problem-solving policy.
CBR systems built from the Form-12 formulations capture the original policy
and those from NewForm-12 reflect the new policy.

We also have a dataset for the complete set of 39 drugs formulated according
to the original policy. The drug doses, and hence the formulations, in this
dataset are not necessarily the same as those in the other datasets. Form-
39 consists of formulations for four realistic doses of all 39 drugs and allows
additional optimisation experimentation on a larger dataset.

5 Experiments and Results

Our experiments are designed to show whether optimising retrieval achieves
improved formulations. In particular, we are interested in the need to refine the
CBR retrieval when the case-base changes during maintenance. We also wish
to explore whether there is a gain in re-optimising from the existing parameters
and weights over simply optimising from a random start point.

For CBR, the tablet formulation problem is represented by a feature vector
containing the dose, 5 physical properties of the drug, and 20 chemical properties
of the drug with the excipients. Its solution identifies the filler, binder, disinte-
grant, lubricant and surfactant, together with the quantities of each, Figure 7.
The maintenance experiments reported in this paper focus on a subproblem of
tablet formulation, choosing which excipients to use. (Because all the tablets
in our dataset contained the same lubricant we omit results for lubricant pre-
diction.) It is possible to determine the whole formulation (all 5 excipients)
simultaneously in a single retrieval, but our formulation expert suggested it was
better to choose the excipients individually, in the order filler, binder, lubri-
cant, disintegrant and surfactant, making use of previously chosen excipients
and their amounts. This gives better results as well as simplifies the subsequent
adaptation task.
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Figure 7: Contents of a Case

The smallness of the 12-drug datasets posed serious over-fitting problems
compared to earlier experiments with the 39 drug dataset (Jarmulak, Craw &
Rowe 2000b). In an attempt to counter this, we incorporated jitter (Koistinen
& Holmstrom 1992) in the CBR retrieval by adding constrained Gaussian noise
to the individual features while calculating distances in the similarity measure.
This had the desired effect of reducing over-fitting and has been used in all the
experiments involving 12-drug datasets. In the earlier experiments we found
that a small number of possible weights reduces the danger of over-fitting, and
so here we use only binary weights. Interestingly, when our formulation expert
was asked to specify feature importance, he used only two possible weights.
Nevertheless, we plan to use more, possible weights for those parts of formulation
prediction that are not affected much by over-fitting.

For our evaluation experiments, we apply a repeated 6-fold cross-validation.
The formulations are partitioned according to drug into 6 disjoint folds. Each
single cross-validation experiment uses the formulations from a different fold as
the evaluation set and the formulations in the remaining 5 folds are used for the
case-base in a CBR system whose retrieval stage we optimise. To obtain statisti-
cally meaningful results, these cross-validation experiments are repeated 8 times
by creating new 6-fold partitions. The average predictive (correct) accuracy for
these 48 sets of retrievals is reported. The results show 95% confidence intervals
for the averages. We estimate significance of the improvement, relative to non-
optimised retrieval, using repeated-measures-design ANOVA (Howell 1997); the
bar-charts report the p-value.

Comparing the non-optimised retrievals in Figure 8 illustrates the compe-
tence of the various case-bases. Filler and binder prediction under the new
formulation policy is more accurate, because the preferred-excipient scheme re-
sults in a smaller variety of used excipients. For disintegrant on the other hand,
the new-policy formulations have one more excipient, which seems to make the
prediction more difficult. Actual numbers of possible excipients used for old
& new policies are respectively: 6 & 5 for filler, 5 & 4 for binder and 3 & 4
for disintegrant. It is worth noting that for the disintegrant the change in the
formulation policy is due to an emergence of a new excipient on the market
which, not only was not used in Form-12 formulations, but has now become the
preferred excipient in NewForm-12. It is interesting to note that for NewForm-
12 the accuracy of non-optimised retrieval is not very much better than default
accuracy, this might be due to the use of preferred excipients. Binder, disinte-
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Figure 8: Non-optimised retrieval accuracy for the three case-bases. Default
accuracy is marked by thick lines across the bars.

grant and surfactant predictions are all made easier when a larger data set is
available; e.g., Form-36 dataset.

5.1 Initially Optimising a CBR System

In this first experiment we compare the predictive accuracy of the non-optimised
and optimised CBR systems constructed from the Form-12 dataset. Figure 9
illustrates the difficulty with this small dataset. Only binder results are im-
proved significantly by optimisation. Filler prediction shows no improvement
since filler prediction is the hardest task. This is due to the largest possible
excipient choice (6) and the prevalence of a particular filler excipient (about
54% of all tablets), which leaves very few tablets with the remaining excipients.
Optimisation also brings no improvement for disintegrant, however, for both
filler and disintegrant, the optimisation seems to capture some of the domain
knowledge, see Section 5.3. Although surfactant prediction itself is a relatively
easy task, the optimisation of surfactant prediction is difficult with the small
datasets because only a few of these formulations actually have a surfactant (a
third for Form-12). We have analysed this problem more closely and it turns
out that, in spite of bad average results, optimisation is successful in extracting
correct knowledge for surfactant prediction except for these x-val folds where
no positive examples are present; there the optimisation fails completely.

For comparison, Figure 10 shows the corresponding results for the Form-39
dataset containing all the drugs (no p-values were calculated because the eval-
uation sets were not matched and only the overlap of the confidence intervals
for the averages is used to determine significance). For completeness, this di-
agram also includes the predictions of excipient amounts. (Surfactant amount
has 100% accuracy with non-optimised retrieval and so these results are omit-
ted.) Form-39 is a larger dataset and so we did not use jitter. The results
from Figure 10, can be divided into 3 groups: (1) results without optimisation
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Figure 9: Optimising a CBR Tablet Formulation System – Form-12 Data Set

are already so good that optimisation brings no significant improvement, e.g.,
surfactant and binder amount; (2) optimisation brings a statistically significant
improvement, e.g., disintegrant and all the excipient amounts; (3) optimisation
brings hardly any improvement due largely to over-fitting, e.g., for filler and
binder. Here adding jitter might help. We should note that even when opti-
misation brings no improvement in accuracy, like for surfactant, it was found
useful in identifying relevant features and thus discovering useful knowledge.
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Figure 10: Optimising a CBR Tablet Formulation System – Form-39 Data Set

5.2 Re-Optimising Experiments

In the remaining experiments we treat the Form-12 formulations as original
cases, and the Form-36 or NewForm-12 formulations as the revised cases after
case-base maintenance. We are interested in the need to refine the retrieval
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process in reaction to the case-base maintenance, and whether re-optimisation
provides a gain. We compare the predictive accuracy of the non-optimised
retrieval (Non-Opt) with three optimisations:

• Old-Opt uses the feature weights and parameters from the corresponding
optimised Form-12 CBR system;

• Re-Opt is optimised from an initial GA population partially seeded with
the feature weights and parameters from the corresponding optimised
Form-12 CBR system; and

• New-Opt is optimised using a random initial GA population.

Thus, Non-Opt indicates the need to optimise, and Old-Opt shows the need to
re-optimise the previously optimised retrieval. Re-Opt and New-Opt indicate
the gains of optimisation generally and whether re-optimisation is preferred.

5.2.1 Re-Optimising an Expanding Case-Base

We view the additional Form-36 formulations as solutions for new problems
that are added to the case-base. We continue to use a 6-fold cross-validation,
but re-specify it to include the new cases present in Form-36. The folding of
the Form-12 dataset and the formulations for the 24 new drugs are performed
separately, and the folds paired to give 6 folds of Form-36. Therefore each Form-
36 CBR system is evaluated on 6 (2 early and 4 recent) drugs and its case-base
contains formulations for 30 (10 early and 20 recent) drugs.

The bars in Figure 11 demonstrate the effectiveness of optimisation in this
maintenance scenario. Firstly, the previous optimisation (Old-Opt) performs
about the same as Non-Opt retrieval, except for surfactant where the accuracy
is significantly lower. However, for surfactant we would choose the default re-
trieval anyway in view of bad Form-12 results. The results for the optimised
retrievals indicate the gain of (re-)optimising when the case-base grows. The
gain is significant for binder and disintegrant. The non-optimised retrieval for
surfactant is already so good that further improvement is difficult. As always,
improving the filler prediction is difficult, and more generally we feel that filler
prediction requires an adaptation step. Unsurprisingly, the predictions of New-
Opt and Re-Opt are similar showing that the GA has achieved stability. Sur-
prisingly, we have found however that Re-Opt requires slightly more cycles (on
average 51 as compared to 46) than New-Opt to reach its optimum. The ex-
tra cycles might be needed to move away from the local optimum provided by
Form-12 optimisation in order to find a better one – we have found that there
are many possible feature weight choices leading to the same retrieval results.

5.2.2 Re-optimising for Different Problem-Solving

The NewForm-12 formulations are changed by the revised formulation policy
and so form a new case-base. Since the formulation problems are unchanged
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Figure 11: Comparing Optimisations for an Expanding Case-Base – Form-36
Data Set

(only the formulations are revised) we are able to replicate the 6-fold partition-
ings used in Section 5.1. The results are summarised in Figure 12. We see that
for disintegrant the optimised weights from Form-12 give also good results for
NewForm-12. However, using Form-12 weights in NewForm-12 leads to signifi-
cantly worse results for the binder. It seems that the new formulation policy for
the binder is quite different from the old one; in Non-Opt the accuracy is much
higher than for Form-12, however, it also is more difficult to improve compared
to default retrieval. The reason for this is that while in the old formulation pol-
icy the 5 possible binder excipients were reasonably equally represented, with a
slight preference for one of them, the new policy, which uses 4 possible binders,
gives a very strong preference to two (different) binder excipients, resulting in
few examples of the use of the remaining two. Similarly as for Form-12, we have
the problem with surfactant as only 1/6th of the formulations actually have a
surfactant. The average number of GA cycles required for both New-Opt and
Re-Opt is about 50.

5.3 Correspondence to Domain Knowledge

We wish to compare the optimised feature selections and weights with those
suggested by our formulation expert. We have already noted that our feature
selections and weightings are chosen to optimise the complete retrieval process:
the index features select optimal cases for subsequent matching and the feature
weighting optimises the similarity matching with respect to pre-selected cases.
In contrast our expert identified relevant features for the problem-solving in
general. Therefore, there will not be a close correspondence between the ex-
pert’s choice and the optimisation. Another problem is the transitional type
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Figure 12: Comparing Optimisations for Different Problem-Solving – NewForm-
12 Data Set

of dependence of solutions on relevant features, i.e., if binder depends on filler,
but filler depends on physical drug properties, then the optimal weights found
for binder prediction may reflect any of these dependencies making the analysis
of results difficult. Nevertheless, features known to be relatively important are
more likely to be assigned higher weights, and relevant features should be more
frequently selected for the index.

Table 1 shows how the optimisation results match the domain knowledge.
In each column the results are presented as Form-36 (Form-12) NewForm-12.
On average, the percentage selected by optimisation for the decision-tree is
higher for features declared to be relevant by the expert, compared to the other
features. The average similarity weighting for relevant features is also higher
than for irrelevant features. Ideally we want no irrelevant features selected
and the weights for irrelevant features to be zero. However, with dependencies
among features we do not necessarily need all relevant features to be selected.
Furthermore, relevant features need not attract a weight of 1, instead non-zero
weights can indicate their relative importance.

Table 1: Match of optimisation results and domain knowledge.

percentage selected features average feature weight
task relevant irrelevant relevant irrelevant

filler 40%(23%)19% 32%(23%)18% 0.34(0.27)0.10 0.31(0.16)0.06
binder 40%(14%)36% 24%(18%)31% 0.43(0.35)0.42 0.30(0.27)0.39
disintegrant 18%(38%)38% 5%(14%)13% 0.05(0.40)0.15 0.07(0.39)0.12
surfactant 44%(38%)13% 1%(1%)6% 0.08(0.21)0.26 0.04(0.03)0.05
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6 Related Work

Most of the literature on CBR maintenance is devoted to the problem of case-
base maintenance, with only a few publications addressing the overall CBR sys-
tem maintenance (Heister & Wilke 1998). Many researchers have investigated
various case addition, removal and revision strategies with the indicated goals of
limiting the case-base size (Surma & Tyburcy 1998), reducing redundancy and
inconsistency (Racine & Yang 1997), increasing efficiency while maintaining
competence as evaluated using an explicit model (Smyth & McKenna 1999),
and conforming to case-authoring guidelines while maintaining precision and
efficiency (Aha & Breslow 1997). A framework describing these case-base main-
tenance methods is proposed in (Leake & Wilson 1998).

Another aspect of case-base maintenance is maintaining the case indexing,
whether the indexing takes the form of an index external to the cases them-
selves or is a part of case representation. Because indexing serves to retrieve
relevant cases efficiently, we consider maintenance of the index as part of re-
trieval knowledge maintenance. Fox & Leake (1995) describe a system capa-
ble of on-line learning, where the indexing knowledge of which features should
be used to retrieve/distinguish cases is learned introspectively from retrieval
failures. Once the useful features are identified, the case-base is re-indexed.
The already mentioned case refinement strategy from Aha & Breslow effectively
results in changing the case indexing which in turn influences the retrieval.
In addition to indexing knowledge, retrieval knowledge also includes similarity
knowledge. In CBR systems the learning/maintenance of similarity knowledge
has concentrated mainly on learning the weights used in the similarity measure
(Munoz-Avila & Huellen 1996, Wilke & Bergmann 1996).

In our approach we learn the retrieval knowledge by combining learning
which features should be used to construct the decision-tree index, with learn-
ing what weights should be used in the similarity measure. We built on the
extensive research that has been done within the Machine Learning community
on optimising decision-tree classifiers or k-NN classifiers by feature selection or
weighting. It is known that, although inductive algorithms themselves perform
feature selection, classification problems with many irrelevant features may re-
sult in sub-optimal decision trees (Almuallim & Dietterich 1992), and it is better
to remove irrelevant features before the decision tree is induced (John, Kohavi
& Pfleger 1994). Removing irrelevant features also improves nearest-neighbour
classifiers (Aha & Bankert 1994, Skalak 1994). For problems where the relative
importance of features plays a role, nearest-neighbour classifiers can also benefit
from feature weights in the similarity measure (Wettchereck & Aha 1995, Ko-
havi, Langley & Yun 1997).

Optimisation algorithms form two classes: filter methods operate without
feedback from the subsequent performance of the machine learning algorithm;
wrapper methods utilise this feedback. Both approaches have been discussed
in the context of feature selection and weighting (John et al. 1994, Blum &
Langley 1997, Aha 1998). Despite their larger computational costs, wrappers are
often preferred (Aha & Bankert 1994), and GAs are frequently used as wrappers
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for feature selections or weightings for k-NN algorithms (Kelly & Davis 1991,
Wilson & Martinez 1996). Recently GA wrappers have been applied to optimise
feature weights in genuine CBR retrieval systems (Oatley, Tait & MacIntyre
1998, Gomes & Bento 2000). In both systems the fitness is the degree of match
between the ranking of the retrieved cases and that defined by the domain
expert. Oatley found the expert-defined ranking to be expert intensive and it
was subsequently abandoned (Oatley 2000). Gomes & Bento avoid this expert
effort by instead asking him to re-sort retrievals if necessary. Furthermore,
only a few weights are optimised and so a small number of retrievals may have
sufficed.

Our realisation that retrieval optimisation applies equally well to the devel-
opment and maintenance of CBR systems stems from our work on the refinement
of rule-based systems. In addition to the standard use of automated refinement
to identify and fix faults in new rule-based systems, we discovered that our rule
refinement tool (Craw, Boswell & Rowe 1997) successfully coped with the sig-
nificant rule-base re-engineering necessitated by AstraZeneca’s change of policy
for tablet formulation, described in Section 4.

7 Conclusions

The optimisation of feature selection, feature weights and retrieval parame-
ters has been presented as a way of refining CBR retrieval when the case-base
is changed as a result of case-base maintenance. Two maintenance scenarios
were considered: the case-base expanded after new cases were added; and the
solutions in the case-base were altered to reflect a changed problem-solving pol-
icy. These scenarios occurred in practice with AstraZeneca’s tablet formulation
application. Experiments with tablet formulation data showed that in both
scenarios updating the case-base only partially addressed the maintenance. Re-
finements to the retrieval knowledge were also beneficial. Thus we have found
that changes to the case-base could also affect indexing and similarity knowl-
edge, with the effect that refinement to this knowledge improved the retrievals
from the updated case-base. It is important to note that in our case the initial
retrieval knowledge was derived from the case-base data. The whole approach
of automatic refinement of retrieval would apply less, or would have to be ap-
proached differently, for CBR systems with retrieval knowledge coded by an
expert.

The GA optimisation we have already used to acquire the retrieval knowledge
during development of a CBR system, is also effective to refine this knowledge.
Knowledge acquisition was in fact refinement of the default retrieval knowl-
edge; i.e., all features are relevant for indexing and equally important for the
similarity measure, and all retrieval parameters have default values. Exper-
iments on retrieval after case-base maintenance compared optimisation of the
default retrieval knowledge with re-optimisation of the retrieval knowledge prior
to maintenance. In both situations the retrieval results were comparable and
also required similar number of GA cycles. We expect that the the number of

17



cycles required for re-optimisation would be lower once the case-base is larger
and the knowledge contained in it stabilises.

The small amount of tablet formulation case-data is a problem to us, al-
though it is a realistic, even generous, size in this domain. Adding jitter to
the retrieval only partially addressed the over-fitting problems. Also, the error-
bars in our results are quite large despite applying repeated cross-validation. A
larger dataset would allow a better train/test evaluation. We would also have
larger case-bases with the effect that the fitness might be simplified by applying
a more straightforward case-data/test-data splitting than the cross-validation
currently applied in the x-val loop.

We have proposed that refinement of the retrieval knowledge is applied when
the case-base contents change as a result of broad case-base maintenance. How-
ever, it should be noted that the optimisation can be applied at any time and
requires no human input, since fitness is calculated using only the cases already
in the case-base. This offers the possibility of adaptive retrieval: optimisation
is applied between explicit case-base maintenance efforts, either regularly when
the case-base grows by a specified amount, or triggered when the retrieval accu-
racy deviates from that achieved previously. We think that suitable measures of
the performance should be local, for example measuring changes in the retrieval
accuracy in the neighbourhood of newly added cases, as they are more effective
in spotting deterioration of the performance. However, the issue of an appro-
priate trigger is not crucial, as optimisation is such that if retrieval refinement
is not required then the optimisation will have little effect and has simply been
applied unnecessarily.

We are convinced that existing CBR shells would benefit from including
an option to automatically generate an optimised retrieval process, based on
just the cases already present in the case-base. Not only would this reduce the
development time and cost for new CBR systems, but it could also be useful for
re-optimising retrieval during the lifetime of a CBR system, and in particular
after case-base maintenance.
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