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Abstract. Constraint Satisfaction has been widely used to modelcstatin-
binatorial problems. However, many Al problems are dynaamnd take place
in a distributed environment, i.e. the problems are disted over a number of
agents and change over time. Dynamic Distributed Const&sitisfaction Prob-
lems (DDisCSP) [1] are an emerging field for the resolutioobfgms that are
dynamic and distributed in nature. In this paper, we prodogeABT, a new
Asynchronous algorithm for DDisCSPs which combines sofutind reasoning
reuse i.e. it handles problem changes by modifying the iagisolution while
re-using knowledge gained from solving the original(unayed) problem. The
benefits obtained from this approach are two-fold: (i) nelutdans are obtained
at a lesser cost and; (i) resulting solutions are stablecicse to previous solu-
tions. DynABT has been empirically evaluated on problemgao§ing difficulty
and several degrees of changes has been found to be cowepfetitihe problem
classes tested.
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1 Introduction

A Constraint Satisfaction Problem (CSP) can be defined apla f = (X, D, C)
containing a set of variable¥ = {xz;....z, }, for each variable;, a finite setD; € D
of possible values (its domain), and a set of constraiht®stricting the values that
the variables can take simultaneously. A solution to a CSihiassignment to all the
variables such that all the constraints are satisfied.

Dynamic Constraint Satisfaction problems (DCSPs) wemthtced in [2] to handle
problems that change over time. Loosely defined, a DCSP igueesee of CSPs, where
each one differs from the previous one due to a change in titdean definition. These
changes could be due to addition/deletion of variablesjesbr constraints.Since all
these changes can be represented as a series of constrdifications [3], in the re-
mainder of this paper we will only consider constraint aidditand retraction. Several
algorithms have been proposed for solving DCSPs e.g DynBat&tracking for Dy-
namic Constraint Satisfaction Problems [4] and Solutiongeen Dynamic Constraint
Satisfaction Problems [5].



A Distributed Constraint Satisfaction Problem (DisCSPa iSSP in which variables,
domains and constraints are distributed among autonomgerst& [6]. Formally, a
DisCSP can be described as a four tuple Z = (X, D, C, A) where

— X, D and C remain as described in CSPs and
— Als a set of agents with the mapping assigning variables ¢émtzsg

Agents are only aware of their local constraints and the-agent constraints they are
involved in and do not have a global view of the problem duerizagy, security issues
and communication costs [7]. Solving a DisCSP consist ofifigmén assignment of
values to variables by the collective and coordinated aaifdhese autonomous agents
which communicate through message passing. A solution ts@3%P is a compound
assignment of values to all variables such that all congsare satisfied.

Various algorithms have been proposed for solving DisCSiPégynchronous Back-
tracking algorithm (ABT) [8], Asynchronous weak-Commitmiesearch Algorithm
(AWCS) [9] and Distributed Breakout algorithm (DBA) [10h DisCSPs, the follow-
ing assumptions are usually made: (i) There is one variabdleagent (i) Agents are
aware of their neighbours and constraints they share wémtiHiii) Message delays
are finite though random and messages arrive in the orderatteegent between two
related agents [8] and we shall also be making these assumsii this paper.

Many hard practical problems can be seen as DisCSPs. Mo&iSPisapproaches
however assume that problems are static. This has a liontébir dynamic problems
that evolve over time e.g timetabling shifts in a large htadpivhere availability of
staff changes over time. In order to handle this type of s, traditional DisCSP
algorithms naively solve from scratch every time the probhanges which may be
very expensive or inadequate, i.e. there may be a requireimethe solution to the
new (changed) problem to remain close as possible to thaatigplution.

Distributed and Dynamic Constraint Satisfaction Problé®BisCSPs) can be de-
scribed as a five tuple (X,D,C,&),where

— X, D, Cand A remain as described in DisCSPs and
— 0 is the change function which introduces changes at diffdier intervals

This definition is different from that of DisSCSPs only in therioduction of the change
functiond, which is a representation of changes in the problem over fih DDisCSPs
can be used to model problems which are distributed in natudechange over time.

Problem changes which have been widely modelled as a ségesstraint additions
and removals can be episodic(where changes occur aftepeaizlem has been solved)
or occur while a problem is being solved. In this paper, wdl slssume that changes
shall be episodic.



Amongst the DDisCSP algorithms is the Dynamic Distributeédkout Algorithm
(DynDBA) [1] which is the dynamic version of DBA - a distrited local search algo-
rithm inspired by the breakout algorithm of [11]. In DBA, ae assign values to their
variables and communicate these values to neighbouringgbg means of messages.
Messages passed between agents are in the fo@KafndImprove messages. When
agents discover inconsistencies they compute the besibgaprovement to their
violations and exchange it with neighbouring agents. Oméyagent with the best pos-
sible improvement among neighbours is allowed to impleriteWhen an inconsistent
state cannot be improved, i.e. a quasi local minimum is reddhe weights on violated
constraints are increased [10], thus prioritising theséattion of these constraints.

In DynDBA, agents solve problems just like in the DBA algbnit but have the ability
to react to changes continuously in each cycle with the ajbodiing lists for holding
new neighbours and messages.

In this paper we introduce our Dynamic Asynchronous Backireg Algorithm (Dyn-
ABT) which is based on the Asynchronous Backtracking Altom (ABT) [6] to han-
dle DDisCSPs.

The remainder of this paper is structured as follows: seQ@iaescribes ABT,; next,
section 3 introduces DynABT; this algorithm is evaluategdéation 4 and; finally con-
clusions are presented in section 5.

2 Asynchronous Backtracking Algorithm (ABT)

Asynchronous Backtracking (ABT) is an asynchronous athorifor DisSCSPs in
which agents act autonomously based on their view of thel@nolABT places a static
ordering amongst agents and each agent maintains a lisgleéhpriority agents and
their values in a data structure known asagentview. Constraints are directed between
two agents: thealue-sending agent(usually higher priority agent) and ttanstraint-
evaluating agent(lower priority agent). The value-sending agentsartakir assign-
ments and send them to their lower priority (constraintietng) neighbours who try
to make consistent value assignments. If a constraint:atialy agent is unable to make
a consistent assignment, it initiates backtracking by s&nd nogood message to a
higher priority agent, thus indicating that it should chaiitg current value assignment.
Agents keep anogood list of backtrack messages and use this to guide the search. A
solution is found if there is quiescence in the network whitsolvability is determined
when an empty nogood is discovered. The correctness andlemmess of ABT has
been provenin [8].

ABT sends a lot of obsolete messages and uses a lot of spastfiorg hogoods.
Therefore, various improvements to ABT have been propo$2d15] which either
reduce the number of obsolete messages or the space refjuigtdring nogoods. In
addition there is a version of ABT which uses just one nogoerddomain value [15]
which is of interest to us. This version uses the nogood tiagrscheme of Dynamic



Backtracking [16] when recording and resolving nogoodsiaintains the static agent
ordering of ABT. Thus, a nogood for an agentwith valuea is represented in the form
x; = bNxj = ¢ = x # a, Wherex; andx; are neighbouring agents with values b and
c. In the remainder of this paper, we will use ABT to refer te thersion which keeps
just one nogood per eliminated value.

3 DynABT

DynABT is an asynchronous, systematic algorithm for dyraBisCSPs. Based on
ABT, it repairs the existing solution when the problem chesxdDynABT combines
solution reuse, reasoning reuse and justifications wheustdi¢ation for the removal
of a value states the actual constraint causing the remotlatiexplanation set recorded
for the removed value.

Like in ABT, DynABT agents maintain a list of higher prioriagents and their values
in their agentview and a list of values inconsistent with thegentview in the nogood
store. Higher priority agents send their value assignmentswer priority agents in
the form ofinfo messages. When aninfo message is received, the agent updates its
agentview and checks for consistency. When its value is inconsisteatagent com-
poses a nogood but, unlike ABT nogoods, these are couplédagiet of justifications
(actual constraints causing the violations). A nogood imPBT is now of the form
z; =bnNaz; = c{C4,..C,} = z1 # a, wherez;, currently has value a. Thus, the
justification included in the nogoods acts as a pointer tactvhibgoods should become
obsolete when constraints are retracted. We shall call 8€ with this new form of
nogood recordingl BT .

In DynABT (see Algorithms 1 to 5), each agent initialisesvtgiables, starts the
search and solves the problem like in ABT. However agentsitmiotne system to see
if there are any changes and if so, react appropriately.l@mlchanges are handled
in a two phase manner namely tReopagation phase (see Algorithm 2) and th&olv-
ing phase (ABT™). In the propagation phase, agents are informed of constddi-
tion/retraction and they promptly react to the situatiorupgating their constraint lists,
neighbour lists, agentview and nogoods where necessaey. &lf changes have been
propagated, the new problem is at a consistent startindg,pgbécanProceed flag is set
to true and the agents can move on to $ob/ing phase and solve the new problem in
a way similar to the ABT algorithm.

Three new message typesiiConstraint, removeConstraint and adjustNogood) are
used in order to handle agent behaviour during the propagptiase. When an agent
receives amddConstraint message, the agent updates its constraint and neighbsur lis
where necessary (see Algorithm 3). WheremoveConstraint message is received the
agent modifies its neighbour list by excluding neighbouas tinly share the excluded
constraint from its neighbour list and removing them frosreigentview. The constraint
is then removed and the nogood store is updated by removigngous whose justifica-
tion contains the retracted constraint (see algorithm 4).



When a constraint is removed, adjustNogood message is broadcasted to agents that
are not directly involved in this constraint. The agentseigag this message update
their nogoods store by removing the nogoods containingetraated constraint as part
of its justification and returning the values to their donsgisee Algorithm 5). This step
ensures that values that have been invalidated by retraotestraints are returned and
made available since the source of inconsistency is no fgmgsent in the network.
Performing these processes during the propagation stagesmthat the new problem
starts at a consistent point before the search begins.

Algorithm 1 DynABT
changes «— 0; changeBox «— empty; canProceed < true
ABT™ (ABT with nogoods containing justifications)
repeat
changes <— monitorChanges
if (changesjhen
canProceed «— false
PropagateChange(changeBox)
current value— value from the last solution
ABT™()
end if
until termination condition met

Algorithm 2 PropagateChanges

PropagateChange(changebox)

while changeBox # empty N canProceed < false do
con «— getChange; changeBox < changeBox — con
Switch (con.msgType)
con.removeConstraint : removeConstraint(con);
con.addConstraint : includeConstraint(con);
con.adjustNogood : incoherentConstraint(con);

end while

Algorithm 3 IncludeConstraint
IncludeConstraint(con)
newCons < con.getConstraint()
add new neighbours in newCons to neighbour list
constraintList < constraintList U newCons




Algorithm 4 ExcludeConstraint
ExcludeConstraint(con)
incoherentConstraint(con)
constraint < con.getConstraint()
Remove unigue neighbours in constraint from neighbour list
Delete unique neighbours from agentView
Remove constraint from constraintlist

Algorithm 5 AdjustNogoods
IncoherentConstraint(con)
constraint < con.getConstraint()
for each nogood in nogoodstode
if contains(nogood, constraint) then
return eliminated value in nogood to domain
remove nogood from nogoodStore
end if
end for

3.1 Sample Execution

Figure la represents a DisCSP involving four agents(c, d) each with its own
variable and domain values enclosed in brackets and havi¥gt &qual constraints
(C1,C2,C3) between them. Let us assume that the initial DisCSP wagdatith the
solution @= 1, b =0, c= 0, d = 0) and the following nogoods were generated:

— Agenta: () {Ci} = a #0)
— Agentc:(a=1){C2} = c#1)
— Agentd: (a=1){Cs} =d#1)

In Figure 1b, we assume that the solved problem has now chargkthe constraint
between a and d{;) has been retracted and a new constraint between ¢ afighldgs
been added. At this stage, DynABT goes into fitepageChanges mode in which
agents ¢ and d are informed of a new constraint between thenalan agent a and
d are made aware of the loss of the constraint between theaudition to this set of
messages, agents b and c are also sent adjustNogood megdagesng them of the
loss of constrainCs and the need for them to adjust their nogoods if it is part eirth
justification sets. When these messages have been fullagabed ( agent d will adjust
its nogood and regain the value 0 back in its domain), the adgtore of the agents
will now be in the form below:

— Agenta: () {Ci} = a#0)
— Agentc:(a=1){C2} = c#1)

The agents can now switch back to the solving mode becauggdbem is at a con-

sistent starting point and the algorithm can now begin sghagain. A new solution to

the problem willbeé = 1,b =0, c= 0, d = 1) with d having to change its value to 1 in
order for the new problem to be consistent.
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In our implementation, we have used a system agent for diegegtiescence just as
been done in [15], in addition to this, we have also used itdmmunicate changes
in the problem to the agents and also setdhmeProceed flag of agents to true when
it determines that all propagation has been done. Complefithe propagation stage
is determined in the following way: every time an agent reegiany of the three mes-
sagesdddConstraint, removeConstraint andadjustNogood) and performs the appropri-
ate computation, the agent sends a dummy message back ysthmsagent indicating
that it has received and treated a propagation messagey3teesagent can determine
the total number of such messages to receive when all agamsraceived messages
and acted on them in theropagateChanges and can therefore set tlvanProceed flag
of all agents to true. This total number of messages can loelleédd in the follow-
ing way: Let x represents the number of constraints of a iceasty r added to the
new problem and let N be the total number of agents in the n&tead y be the total
number of constraint removed from the problem. The totalsagss to receive can be
computed asot = (> (z; *1;)) + N = y. In our implementation, we have reported
these messages as part of the cost incured by DynABT.

3.2 Theoretical Properties

DynABT is sound, since whenever a solution is claimed, therguiescence in the
network. If there is quiescence in the network, it means #liadgents have satisfied
their constraints. If not all constraints have been satstieen there will be at least an
agent unsatisfied with its current state and at least onateidconstraint in the network.
In this case, the agent involved would have sent at least aagedo the culprit agent
closest to it. This message is not obsolete and the culpeittagvolved on receiving
the message, will act on it and send out messages thus bgeakiguiescence claim. It
therefore follows that whenever there is quiescence in #teark, agents are satisfied
with their current state and whatever solution inferrecbisrsl.



In the DynABT, agents update their nogood list when theyivedafo messages and
evaluate constraints, during domain wipe out and also winamges are introduced.
Nogoods are always generated in two ways: (1) when a consisaviolated because
of aninfo message (this knowledge is explicitly enclosed in the constraimpg2)
When a domain wipe-out occurs and all nogoods are resoltedoine. In essence,
all the nogoods that can be generated are logical extensithre @onstraint network,
therefore the empty nogood cannot be inferred if the netigosktisfiable.

Also because every nogood discovered by an agent will aNmagéve higher priority
agents, which are eventually linked to the agent throughdidkink Message, it follows
that agents will not keep obsolete nogoods forever, siregwlill be informed of value
changes by higher priority agents and thus update their atbgtore, ensuring that
the algorithm will terminate. We now need to show that wheanges occur, these
properties are still preserved.

When constraints are added to the problem, previous nogowdkdating domain
values remain consistent and since the nogood stores ramairanged during con-
straint addition, these nogoods are preserved. Therefoea wonstraints are added to
the problem, the soundness property of the algorithm iscpvesl.

When a constraint is retracted, nogoods are updated todextthe retracted constraint
and the associated values are returned to the agent’s dolhtiese values are still
useless, this inconsistency will be rediscovered duriregcdesince they will violate
constraints with some other agents and, therefore, sokiice not missed.
TheadjustNogoods method ensures that all agents (whether participating @tracted
constraint or not) update their nogoods store and all nogjeodtaining retracted con-
straints as part of their justification are removed and tlsecated values returned to
their domain.

Because retraction triggers the updating of the nogooe $toa cautious manner in
which nogoods are quickly forgotten but can be rediscoviéreztessary during search,
DynABT is complete and does terminate

4 Experimental Evaluation

In order to evaluate DynABT, ABT, DynABT and DynDBA have beemplemented
in a simulated environment. The implementations of DynABIT ABT use the Max
Degree heuristic.

Two sets of experiments were conducted using both randoemgmgited problems and
graph colouring problems: (i) Comparing DynABT with ABTi)(Comparing DynABT
and DynDBA. In all our comparisons with DynDBA, we have maglifithe DynDBA
algorithm to make it react to changes episodically and atgwdved it by increasing the
weight of a newly added constraint within a neighbourhoathtomaximum constraint
weight within that neighbourhood. This encourages DynD&Adtisfy the newly added
constraints quicker.



In all our experiments, we have introduced a rate of change a percentage of the
total constraints/edges in the probleing {2, 6, 32}). These changéeswere made to
be uniform between restriction and retraction. For exapniplechanges are introduced,
2 are constraint additions and 2 are constraint retragttbns ensuring that the overall
constraint density remains unchanged.

In our experiments with randomly generated problems, wd usn parameters (n, d,
p1, p2) Where n = number of variables = 30, d = domain size =05 density = 0.2,
po = tightness with values 0.1 - 0.9 step of 0.1. The range ohiégls 0.1 - 0.4 contains
solvable problems, 0.5 contains a mixture of both solvabteunsolvable(52% - 48%)
and tightness 0.6 - 0.9 problems are unsolvable. For thelwaide region, stability
cannot be measured, as there is no solution to the problech. irablem was solved
and the solution obtained was kept for future reuse. Consthanges were introduced
and the new problem was solved. In all, 100 trials were madedoh tightness value
and a total of 1800 problems (900 original problems + 900 gkdmproblems) were
solved for each rate of change.

For our evaluation with graph colouring problem, we geretafraph colouring prob-
lems with nodes = 100, d = 3 and degree k (4.1 - 4.9 step 0.1k€eThblems ranges
from solvable through phase transition to unsolvable gnoisl. In all, 100 trials were
made per degree and a total of 1800 problems (900 origindlgmss + 900 changed
problems) were solved for each rate of change.

We measured the number of messages sent, Concurrent QuinGtracks (CCC) as
defined in [17] and the solution stability. For solution stabilitye measure the total
distance between successive solutions when both existai(tinber of variables which
get different values in both solutions). All the resultsodpd are the mean and median
of the observed parameters and we have only presentedsresolbserved parameters
when resolving. We also measured CPU time (not reported hackit correlated to the
trends observed with messages and concurrent constraicksh

4.1 Comparison with ABT

For random problems, results obtained in table 1 show a textum the cost in-
cured when a new problem is solved using previous solutienDiynABT significantly
outperforms ABT on small and intermediate changes whileaye problems, ABT pe-
forms better than DynABT: this is due to the fact that the neabfem is substantially
different from the previous one because of the quantity @hges involved and also
because DynABT incurs more cost as changes increase dhamyapagation phase.

For Graph Colouring problems, the results obtained in t&otge mixed between
DynABT and ABT. With small and intermediate changes DynABdrfprms better
than ABT on messages and CCC in the solvable region betweedddland the Phase

L all constraints/edges have equal probability of beingcsetkfor retraction
2 Cost of transmitting a message is zero in our implementation



Table 1.DynABT vs ABT.

Random Problems
t | Avg Messages| Avg CCC [ Avg Stability [ Median Msgs| Median CCC [Median Stabilit
DynABT ABT |DynABT ABT |DynABT ABT|DynABT ABT |DynABT ABT |DynABT ABT
Density 0.2, changes 2(%)
0.1] 152 106 40 34 0.09 0.99| 151 104 38 32 0 0
0.2 152 133 43 58 0.27 3.59| 151 131 42 54 0 3
0.3 161 221 53 163 | 096 7.53| 156 198 49 117 0 6
0.4/ 283 1262 | 140 1019| 241 1099 189 650 61 437 0 10
0.5/ 45868 83071| 25129 45882 5.96 11.90 8566 6332 3998 35944 1 7
0.6] 6879 27778| 2442 10069 - - 1194 23200 360 8439 - -
0.7) 1482 12204 373 3413 - - 65 10134 14 2916 - -
0.8 495 5301 | 103 1193 - - 65 4769 13 992 - -
0.9 92 1964 15 413 - - 65 1776| 12 386 - -
Constraint Changes 6(%)
0.1 280 106 44 33 0.32 235/ 279 105 42 31 0 2
0.2| 281 132 53 59 0.76 6.17| 279 130 52 56 1 5
0.3 293 208 80 153 1.65 11.33 285 192 65 109 1 11
0.4] 547 1084 270 946 528 15.69 327 732 81 453 2 16
0.5 83746 86068| 44929 47981 12.39 16.58 56532 6033Q 30847 35965 14 19
0.6| 17797 27951 6075 10164 - - 12986 24057 4462 8552 - -
0.7) 3952 12487 971 3619 - - 1771 10337 356 3179 - -
0.8 1320 5052 251 1116 - - 193 4389 34 997 - -
0.9 351 1944 58 427 - - 193 1570 33 375 - -
Constraint Changes 32(%)
0.1] 986 105 77 34 1.5 5.73| 984 104 74 33 1 6
0.2 991 134 120 62 3.92 1295 988 131 119 57 4 13
0.3 1023 201 198 119 | 7.15 1872 1005 193 | 170 105 7 19
0.4/ 1670 987 718 1020 13.87 21.89 1214 644 | 331 403 14 22
0.5| 138979 120871 84532 80589 23.13 24.03 91770 87106 58606 55679 24 25
0.6/ 39080 38525| 15397 17323 - - 31594 32527 11341 14132 - -
0.7 10788 13216| 2903 4286 - - 8312 10413 2124 3598 - -
0.8/ 3733 5255| 741 1329 - - 3298 4508| 582 1103 - -
0.9 1929 1781 | 329 406 - - 1436 1479| 207 372 - -

transition region of 4.5, while in the unsolvable regionnfrd.6 - 4.9, ABT performs
better. This behaviour is due to the fact that more cost isredt during the propagation
stage of DynABT, when agents are modifying their nogood®teethe new search
starts. With large changes, ABT performs better than DynABdwever, with both
problems, DynABT outperforms ABT on solution stability falt degrees of changes,
which suggests that reusing solution, improves stability.

4.2 Comparison with DynDBA

In order to compare DynABT with DynDBA the latter algorithnagvallowed a cut-off

of at least 50% more cycles than DynABT when solving a proldesause DynDBA is
a two-phased algorithm(it takes an agent two cycles to maleduee change compared
to DynABT in which values can be changed in one cycle).
For our comparison with DynDBA, we have only presented tesolr solvable prob-
lems for both algorithms because DynDBA being an incomg&erithm, cannot de-
termine a problem is unsovable. For our Comparison with C§ADnN random prob-
lems, results from table 3 shows that DynABT outperforms DBA in terms of mes-
sages sent and concurrent constraint checks.



Table 2.DynABT vs ABT.

Graph Colouring problems
ded AvgMessages| Avg CCC [ Avg Stability | Median Msgs | Median CCC [Median Stabilit
DynABT ABT |DynABT ABT |DynABT ABT|DynABT ABT |DynABT ABT |DynABT ABT

Density 0.2, changes 2(%)

4.1 1107 1556 141 691 8.31 26.41 937 1358 72 564
42| 3908 4987 668 1544| 20.37 33.5| 1133 3737 87 1310

25
39

3

4
43| 6598 9089 | 1422 2411| 20.67 31.13 1278 5199 91 1777 5 34
44| 15173 22450 2682 5246| 36.29 52.42 7921 18607 742 4187 54 62
4.5 73051 84269| 14949 17969 16.33 39.94 1377 25921 95 6199 2 44
4.6 177267 170370 39241 35244 - - 205565 188617 42964 35633 - -
4.7] 96149 129664 20166 26004 - - 108513 123541 20957 24526 - -
4.8| 112436 129634 24159 26271 - - 123294 125345 24648 24999 - -
4.9 85917 99803| 17027 19782 - - 98236 92975| 18319 19395 - -

Constraint Changes 6(%)
41| 2234 1657 | 225 648 17.1 36.54 1953 1452| 100 398 14 37
42| 6779 6775| 1230 1919 31.07 46.3| 3685 4380 | 381 1343 36 51
4.3| 9601 10861| 1868 2706 33.07 46.53 5753 7574 | 947 1841| 39 48
4.4| 26788 29292| 4915 6708 52.37 61.86 16683 20158 3205 4904 61 66
45| 75872 77264| 14510 1681P 34.54 49.08 9213 22545| 1433 5540 36 58
4.6 159183 139501 32148 2856 - | 107662 94313| 20425 18939 - -
4.7| 171735 163474 34317 3233 - - | 152500 150577 30855 30847 - -
4.8| 163775 140217 32315 2869 - - | 154104 127484 28749 25684 - -
4.9| 131197 117767 23826 2245 - - | 118803 106355 21776 20324 - -
Constraint Changes 32(%)
4.1] 12408 6993 ] 1305 20500 42.18 56.23 8295 2689 | 339 1007 43 57
4.2| 19706 13531 2826 3613 50.90 60.03 12011 5855 | 895 2175/ 52 61
4.3| 53886 45458| 9984 1044¢ 51.11 60.43 15515 10114 1890 3139 52 62
4.4| 77395 68769| 14230 1621p 57.16 65.76 23579 20745 3707 4843 59 67
4.5 183139 158873 35975 3461p 55.48 62.03 53710 66718| 11238 15459 56 62
4.6| 267015 215258 51557 4499 - - | 139890 10934§ 25002 23862 - -
4.7| 345887 302694 62451 6146 272262 21147§ 51923 43559 - -
4.8| 375866 344063 71460 6869 - - | 215529 17708§ 40890 35357 - -
4.9| 285956 236785 49152 4593 - - | 242464 193879 40676 37039 - -

o<

=t O o O
'
'

DynDBA outperforms DynABT in terms of solution stability.ud take on this is
the fact that DynDBA with its min-conflict heuristic helpsetlalgorithm find a stable
solution. However it was shown that both algorithms demtecin terms of solution
stability as changes increase. This could be due to the lfiattats more changes are
introduced, the difference between the inital problem drelriew problem is more
pronounced, therefore new solutions are needed.

Table 4 presents results of our experiment on Graph Colguyioblems. DynABT
also outperforms DynDBA on messages and CCCs while DynDBfopas better on
solution stability.

5 Summary and Conclusions

We have presented DynABT, an asynchronous, systematicrsalgiorithm for DDisC-
SPs. An empirical comparison between DynABT and ABT on dyicaandom prob-
lems shows a significant reduction in computational effoid a substantial gain in
solution stability. Comparison with ABT however producesed results with Dyn-
ABT outperforming ABT on messages and concurrent congtciiecks on problems
with small changes. With Intermediate changes, ABT perfobmtter than DynABT



Table 3.DynABT vs DynDBA

Random Problems, density 0.2

—_

Avg Msgs

Avg CCC

Avg Stability

Median Msgs |

Median CCC [ Median Stability

DynABT DynDBA|DynABT DynDBA|DynABT DynDBA[DynABT DynDBA|[DynABT DynDBA|DynABT DynDBA

Density 0.2, changes 2(%)

0.1 152 403 40 121 0.09 0.1 151 401 38 120 0 0
0.2 152 402 43 125 0.27 0.21 151 402 42 120 0 0
0.3 161 485 53 151 0.96 0.45 156 404 49 120 0 0
0.4 283 2291 140 735 241 1.99 189 408 61 130 0 0
0.5 17941 42675 | 10442 12515 | 5.96 1.79 225 408 72 120 1 0
Constraint Changes 6(%)
0.1 280 415 44 121 0.32 0.28 279 410 42 120 0 0
0.2 281 430 53 131 0.76 0.63 279 411 52 120 1 1
0.3 293 582 80 187 1.65 0.97 285 416 65 125 1 1
0.4 547 4497 270 1511 5.28 431 327 520 81 180 2 2
0.5 51970 209324| 28851 64411 | 12.39 3.7 15807 20235 | 8783 6380 14 2
Constraint Changes 32(%)
0.1 986 523 77 139 15 1.25 984 457 74 120 1 1
0.2 991 673 120 193 3.92 2.51 988 476 119 150 4 2
0.3 1023 1387 198 426 7.15 4.32 1005 811 170 270 7 4
0.4 1670 8097 718 2691 | 13.87 10.34 | 1214 4624 331 1540 14 10
0.5 122384 608790| 75763 193657| 23.13 18.33 | 63667 586656| 38303 172440| 24 15

in the unsolvable region while DynABT outperforms ABT innes of stability for alll
categories of problem changes. Experimental results alsw that DynABT requires
less messages and constraint checks than DynDBA. Howbedgtter produces more

stable solutions.

We have also shown that both DynABT and DynDBA cope well witbiggems where
the rate of change is small but, as the number of changesaseseperformance de-
creases. This is unsurprising since, with a high rate of gbathe new problem is
substantially different from the previous one. Future werk investigate other ways
of improving the performance of DynABT in terms of solutidalsility.
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