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Classification of imbalanced datasets has attracted substantial research interest over the past decades.

Imbalanced datasets are common in several domains such as health, finance, security and others. A

wide range of solutions to handle imbalanced datasets focus mainly on the class distribution problem

and aim at providing more balanced datasets by means of resampling. However, existing literature

shows that class overlap has a higher negative impact on the learning process than class distribution.

In this paper, we propose overlap-based undersampling methods for maximizing the visibility of the

minority class instances in the overlapping region. This is achieved by the use of soft clustering and the

elimination threshold that is adaptable to the overlap degree to identify and eliminate negative instances

in the overlapping region. For more accurate clustering and detection of overlapped negative instances,

the presence of the minority class at the borderline areas is emphasized by means of oversampling.

Extensive experiments using simulated and real-world datasets covering a wide range of imbalance and

overlap scenarios including extreme cases were carried out. Results show significant improvement in

sensitivity and competitive performance with well-established and state-of-the-art methods.

Keywords: class overlap; imbalanced data; undersampling; classification; adaptive threshold; Fuzzy C-
means; epilepsy; Parkinson’s disease.

1. Introduction

A dataset with a skewed distribution over its classes

is called an imbalanced dataset. For example, an im-

balanced dataset may contain 90% of samples from

Class I and the remaining 10% from Class II. This

situation is common in many real-world problems

such as anomaly detection,1 medical diagnosis,2 ob-

ject recognition3 and business analysis.4 In such do-

mains, the under-represented class is generally the

class of interest. Thus, in this paper, where binary-

class problems are focused, we refer to the minority

class and the majority class as the positive class and

the negative class unless otherwise stated.

Since traditional learning algorithms are gener-

ally designed to maximize the overall accuracy,5 they

tend to be biased towards the over-represented class

in imbalanced scenarios. Oversampling and under-

sampling data to obtain better class distributions are

commonly used to address this issue. Existing data

resampling methods that aim to rebalance data dis-

tribution have potential to improve classification re-

sults.6–8 However, many of them do not factor in the

problem of class overlap, which occurs when exam-

ples from different classes share similar values in fea-

tures. Class overlap is a major obstacle in classifica-

tion tasks and often shows a higher negative impact

than class imbalance.9–11 Moreover, the impact of

class imbalance is highly dependent on the presence

of class overlap.12 This explains better performance

of some overlap-based solutions over those that solely
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focus on rebalancing class distributions.9,12,13

A recent method, Overlap-Based Undersampling

(OBU), proved to enhance the classification of imbal-

anced datasets.14 It aims at maximizing the visibility

of minority class instances by eliminating majority

class instances in the overlapping region. The au-

thors hypothesized that each class possessed its own

uniqueness, and hence the two classes could roughly

be represented by two distinct clusters. Any sam-

ples with high similarity to the other class’ properties

were then considered to be in the overlapping region.

They employed a soft clustering algorithm to dis-

cover such instances, which had indistinctive mem-

bership degrees. Results showed competitive perfor-

mance with a state-of-the-art method and significant

improvement in sensitivity. However, some key limi-

tations of the method, such as an empirical setting of

the elimination threshold and excessive elimination

of majority class instances, need to be addressed.

In this paper, we propose methods that extend

OBU to overcome its drawbacks and improve perfor-

mance. The main contributions are outlined below:

• Adaptive-threshold OBU (AdaOBU) is presented

with an automatic elimination threshold adapt-

able to the degree of class overlap for more accu-

rate identification and elimination of overlapped

negative instances.

• Boosted OBU (BoostOBU) is proposed to re-

duce excessive elimination of negative instances.

This is achieved by improving the performance

of the clustering algorithm by means of empha-

sizing the presence of minority class instances

along the borderline. Consequently, the identi-

fication and elimination of overlapped majority

class instances are more accurate and the exces-

sive elimination is reduced. This is illustrated in

Fig 1, where Fig 1(a) shows the original data and

Fig 1(b) is the result of OBU. Fig 1(c) shows

how the minority class borderline is emphasized

leading to less excessive elimination of negative

instances as can be seen in Fig 1(d).

• Extensive experiments using simulated and real-

world datasets with various learning algorithms

were carried out. These cover extreme scenarios

of class overlap and class imbalance.

• The proposed methods were successfully applied

to automated prediction of Epilepsy and Parkin-

son’s disease.

Figure 1. (a) The original data (b) with OBU applied,
and (c) the minority class borderline is emphasized be-
fore (d) identifying and removing overlapped majority
class instances.

2. Related Work

Data resampling is a common approach for han-

dling imbalanced datasets. Many resampling meth-

ods mainly focused on rebalancing the dataset.8,15

However, rebalancing solutions were often outper-

formed by other methods that mainly focused on the

problem of class overlap. This can be explained by

several studies that reported a higher negative im-

pact of class overlap on the performance of learning

algorithms than class imbalance.10,11 It was shown

that a dataset with no class overlap could be per-

fectly classified regardless of imbalance degree. More-

over, when the class overlap was low, class imbalance

had no significant effects on the classification results.

To tackle the problem of class overlap, meth-

ods to resample borderline instances or over-

lapped instances were proposed. Borderline-SMOTE

(BLSMOTE)16 used neighborhood searching to iden-

tify borderline minority class instances, from which

new instances were synthesized. DBMUTE13 em-

ployed a density-based clustering algorithm to locate

instances in different areas, and undersampled ma-

jority class instances in the overlapping area. It was

shown that BLSMOTE and DBMUTE performed

better than Safe-level-SMOTE17 (SLSMOTE) and

DBSMOTE,7 which utilized the same algorithms

as them to identify different types of instances but

avoided resampling in the overlapping region. Since

DBMUTE does not balance class distributions, this
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evidences a higher impact of class overlap.

In SMOTE-IPF,18 noisy instances were removed

after performing SMOTE.6 By doing so, sparse pos-

itive instances near the borderline mistaken as noise

would no longer appear as noise and hence would

not be filtered out. Also, by having more positive

instances in the overlapping area, some negative in-

stances were filtered out, which enhanced the visibil-

ity of the positive class to the learning algorithm.

In Support Vector Machine (SVM), support vec-

tors are mostly composed of borderline instances

while non-support vectors reside further away from

the borderline. Based on this premise, the authors

of Ref. 19 proposed to oversample and undersam-

ple support and non-support vectors, respectively.

By doing so, more informative instances were em-

phasized and information loss could be minimized.

To the best of our knowledge, more of overlap-

based methods considered borderline instances and

relatively few have been proposed to address the

entire overlapping region. To maximize the visibil-

ity of the minority class, neighborhood-based (NB-

based) undersampling12 was proposed to remove

majority class instances from the overlapping re-

gion. Four methods based on neighborhood search-

ing to accurately locate overlapped majority class

instances were designed. Competitive results with

other state-of-the-art methods were achieved. Simi-

larly, ADASYN enhanced the presence of the minor-

ity class by oversampling in the overlapping region

and showed improvement in sensitivity.20 However,

as opposed to NB-based undersampling, ADASYN

does not guarantee the maximum visibility of the

positive class instances as negative instances will still

be present in the overlapping region.

A redundancy-driven method was proposed

to progressively eliminate overlapped negative in-

stances based on similarity and contribution fac-

tors.21 Even though class overlap was considered, the

elimination was carried out until the classes were bal-

anced. Thus, applying this method on a highly im-

balanced dataset could result in excessive elimination

of negative instances, and on the other hand, insuf-

ficient removal may occur when imbalance is low.

HardEnsemble incorporated oversampling and

undersampling to address overlapped instances of

both classes.22 Undersampling was based on in-

stance’s contribution to the classification accuracy,

which potentially facilitated removal of majority

class instances in the overlapping region. Under the

same criterion, oversampling was done particularly

on overlapped minority class instances. These pro-

cesses were carried out simultaneously and the result-

ing datasets were used to train RUSBoost.23 Another

ensemble-based method utilizing an Evolutionary Al-

gorithm (EA) was proposed.24 EA was used to selec-

tively remove overlapped majority class instances.

These ensemble-based methods often showed bet-

ter performance than other state-of-the-art methods.

However, they require high computational complex-

ities, especially when EA is also used.

3. Methods

3.1. Related algorithms

3.1.1. FCM: Fuzzy C-means

Fuzzy C-means (FCM)25 is one of the most

commonly-used soft clustering algorithms. Unlike

hard clustering, a soft clustering algorithm allows

each instance to be a member of many clusters. The

likelihood of belonging to a cluster is expressed as a

membership degree, whose value is between 0 and 1.

The membership degrees of an instance sum up to

1. FCM follows a similar procedure to the k-means

algorithm. It starts by randomly initializing cluster

centroids. Then, the within-cluster variance is calcu-

lated from the fractional distances of all instances to

each centroid as expressed in Eq. 1, where µij is the

membership degree of xi in the cluster j, xi is the ith

instance, and cj is the cluster centroid. Subsequently,

the new centroids are recalculated. These steps are

iterated until the objective function is minimized.

Jm =

N∑
i=1

C∑
j=1

µl
ij ||xi − cj ||

2
, 1 ≤ m ≤ ∞ (1)

3.1.2. OBU: Overlap-Based Undersampling

OBU aims at maximizing the visibility of the pos-

itive class by removing most negative instances in

the overlapping region.14 The authors proposed that

in a binary-class dataset, the classes could mainly

be represented by two unique clusters based on their

outstanding characteristics and thus samples in the

overlapping region would have high similarity to the

other cluster’s properties. They employed FCM to

discover the two unique clusters and identify samples

that potentially resided in the overlapping region.
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As described in Alg. 1, FCM is applied to the

training set T to determine two distinct clusters and

assign membership degrees to each sample indicating

the likelihood of belonging to the two clusters. Nega-

tive instances that have high membership degrees in

the positive cluster are considered potentially overlap

with positive instances, and thus are eliminated from

the training set. The cut-off membership degree for

potential overlapped instances, i.e. the elimination

threshold (µth), needs to be empirically set.

3.1.3. BLSMOTE: Borderline-SMOTE

BLSMOTE is an improvement of SMOTE6 by over-

sampling only borderline samples.16 It is based on

the idea that samples far from the borderline are

less likely to be misclassified and hence contribute

less to the classification. In BLSMOTE, minority

class samples are identified as “danger”, “safe” and

“noise” based on the number of majority class sam-

ples in their k nearest neighbors. Only danger sam-

ples, which are highly likely to be in the border-

line region, are used for linear-interpolating oversam-

pling. BLSMOTE has two models – BLSMOTE1 and

BLSMOTE2. BLSMOTE1 only generates new in-

stances from the danger samples and their minority

class nearest neighbors whereas in BLSMOTE2 all

nearest neighbors are considered regardless of class.

3.2. The proposed algorithms

3.2.1. AdaOBU: Adaptive-threshold OBU

AdaOBU incorporates an adaptive elimination

threshold in OBU as shown in Fig. 2 allowing the

method to be more generalized across datasets with

varying overlap degrees. The adaptive threshold is

self-adjusting to the fuzziness of the dataset, which

is indicated by how similar instances are to their own

class’ properties on average. By this definition, it is

suggested that a dataset is fuzzy when a large num-

ber of instances have indistinct membership degrees.

In other words, we can say that there likely to be a

high class overlap when a dataset is highly fuzzy.

Figure 2. A diagram showing the extensions of OBU by
AdaOBU and BoostOBU

The algorithm of AdaOBU is shown in Alg. 2.

Line 3− 5 express how the adaptive threshold (µth)

is computed. First, the average membership degrees

of all negative instances belonging to the negative

cluster (µ̄neg) and the positive cluster (µ̄pos) are cal-

culated. Then, the minimum between µ̄neg and µ̄pos

is used as µth. The rationale behind this is as follows.

The difference between the two means (|µ̄neg− µ̄pos|)
indicates the fuzziness of the dataset. According to

FCM, membership degrees range between 0 and 1;

thus, 0 ≤ |µ̄neg− µ̄pos| ≤ 1. In an extreme case when

|µ̄neg − µ̄pos|| = 0, none of the clusters shows dis-

tinct nature of the negative class. This suggests high

overlapping between the two classes. The opposite

applies in the other extreme case of |µ̄neg−µ̄pos| = 1.

Accordingly, the overlapping degree and hence elim-

ination amount are to be proportional to the smaller

value between µ̄neg and µ̄pos. Then, the elimination

process as of Line 6− 7 of Alg. 2 is followed.

3.2.2. BoostOBU: Boosted OBU

BoostOBU is a hybrid method presented to improve

the detection of negative instances in the overlapping

region, hence reducing excessive elimination. Erro-

neous elimination of OBU could have been partly

due to low visibility of positive instances within the

overlapping region, which caused poor performance

of the clustering algorithm. To address this issue,

BoostOBU aims at improving the presence of the
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positive class, especially along the borderline, be-

fore applying clustering. The adaptive elimination

threshold proposed in 3.2.1 is also integrated in

BoostOBU as illustrated in Fig. 2.

For the purpose of emphasizing the border of the

minority class, BLSMOTE1 is used. This can be jus-

tified as follows. Firstly, BLSMOTE proved to suc-

cessfully improve the visibility of minority class bor-

ders to the learning algorithm with higher sensitiv-

ity over SMOTE16 achieved. Secondly, since it avoids

oversampling noisy samples, the effect of noise would

not be enlarged. Thirdly, BLSMOTE1 only synthe-

sizes based on minority class samples, thus it is en-

sured that the minority class border is highlighted

rather than being expanded.

Alg. 3 outlines BoostOBU. BLSMOTE is first

applied and followed by overlap-based undersam-

pling based on the adaptive elimination threshold.

4. Experiments

Extensive experiments covering a wide range of im-

balanced and overlapped datasets were carried out.

This includes 66 synthetic datasets and 68 pub-

lic real-world datasets, 2 of which are large and

high-dimensional. Results were compared against

well-established methods and state-of-the-art meth-

ods. The Friedman test and 1xN post-hoc Wilcoxon

signed rank tests with Holm correction were carried

out to assess the significance of the result improve-

ment. For reproducibility, the code of our methods

and simulated datasets used is available on GitHuba.

4.1. Setup

Three sets of experiments were carried out. Simu-

lated datasets and small to medium-sized real-world

datasets were used in Experiment I and Experiment

II, respectively. Experiment III was carried out on

large real-world datasets. SVM was chosen as the

learning algorithm. Sensitivity, specificity, G-mean,

and F1-score were used to asses the methods. Results

were compared against SMOTE,6 BLSMOTE,16 k-

means undersampling (kmUnder)8 and OBU.14 In

Experiment II, further evaluation using Decision

Tree (J48), k-nearest neighbors (kNN) and Ran-

dom Forests (RF), and comparison against more ro-

bust methods, SMOTE-ENN,26 SMOTEBagging27

(SMTBagging) and RUSBoost23 were carried out.

4.2. Overlap quantification

Since class overlap has not been mathematically well-

characterised, several approaches have been formu-

lated to estimate the overlap degree.9,12,28 However,

these methods are not generalised across datasets

due to some constrains such as the requirement of

normal distribution of data28 and inconsistency in

results.9 In Ref. 12, the authors suggested that the

overlap degree of simulated data should be deter-

mined with respect to the minority class. This is

because the minority class is naturally more over-

whelmed by the class overlap as depicted in Fig. 3.

Minority class area

Overlapping area
0

10

20

30

40

50

0 20 40 60
x1

x 2

Figure 3. Area approximations

For the purpose of synthesising various overlap

scenarios in our experiment, we followed the method

of Ref. 12 expressed as in Eq. 2, where the area ap-

proximations are illustrated in Fig. 3.

overlap(%) =
overlapping area

minority class area
∗ 100 (2)

4.3. Datasets

In Experiment I, we used 66 simulated binary-class

datasets,12 which cover a wide range of class over-

ahttps://github.com/fonkafon/BoostedOBU
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lap and class imbalance degrees. The class imbalance

degree was calculated as imb = N
P , where N and P

are the numbers of negative and positive instances.

To evaluate the performance of our methods in rela-

tion to the changes in class imbalance and class over-

lap, the datasets were uniformly distributed in two-

dimensional space (i.e. data densities of the positive

and negative classes were equal in each dataset).

All datasets were generated with a fixed number

of negative samples and fixed data space of the posi-

tive class. The number of positive samples was based

on the imbalance degree. The density of the negative

class was made equal to that of the positive class.

Thus, at a higher imbalance degree, data density was

lower. This resulted in many variations of datasets.

Fig. 4 illustrates two examples of simulated datasets.

Both datasets have 100 negative samples. There are

6 positive samples in Fig. 4(a) and 33 in Fig. 4(b)

making imb = 15 and imb = 3. The density of data

in Fig. 4(a) is lower than that in Fig. 4(b) (axes are

of different scales).

Figure 4. Examples of two synthetic datasets with 50%
class overlap and (a) imb = 15 and (b) imb = 3.

For Experiment I, we simulated datasets with

the imbalance degrees of 1.5, 3, 12, 30, 60 and 120.

At each imbalance degree, the overlap degree ranged

from 0%− 100% in a step of 10. The number of neg-

ative instances generated in each dataset was 6, 000

while the number of positive instances was varied

between 50− 4, 000 based on the imbalance degree.

In Experiment II, 66 datasets from UCI Reposi-

tory29 and KEEL Repository30 were used. As shown

in Table 1, the datasets vary in imbalance degrees

(1.82-129.44 ), number of features (3-34 ), and num-

ber of instances (92-5,472 ).

Experiment III was carried out on large and

high-dimensional datasets. These were the breast

cancer dataset from KDD Cup 2008 b and the hand-

Table 1. Datasets used in Experiment II

Dataset Instances Imb f Dataset Instances Imb f
Glass1 214 1.82 9 ecoli0147vs2356 336 10.59 7
Ecoli0vs1 220 1.86 7 led7digit02456789vs1 443 10.97 7
Wisconsin 683 1.86 9 ecoli01vs5 240 11 6
Pima 768 1.87 8 glass0146vs2 205 11.06 9
Iris0 150 2 4 Glass2 214 11.59 9
Glass0 214 2.06 9 cleveland0vs4 177 12.62 13
Yeast1 1484 2.46 8 ecoli0146vs5 280 13 6
Haberman 306 2.78 3 Shuttle0vs4 1829 13.87 9
Vehicle2 846 2.88 18 Yeast1vs7 459 14.3 7
Vehicle1 846 2.9 18 Glass4 214 15.46 9
Vehicle3 846 2.99 18 Ecoli4 336 15.8 7
Glass0123vs456 214 3.2 9 Pageblocks13vs2 472 15.86 10
Vehicle0 846 3.25 18 Abalone0918 731 16.4 8
Ecoli1 336 3.36 7 dermatology6 358 16.9 34
Newthyroid1 215 5.14 5 Glass016vs5 184 19.44 9
Newthyroid2 215 5.14 5 Shuttle2vs4 129 20.5 9
Ecoli2 336 5.46 7 Yeast1458vs7 693 22.1 8
Segmemt0 2308 6.02 19 Glass5 214 22.78 9
Glass6 214 6.38 9 Yeast2vs8 482 23.1 8
Yeast3 1484 8.1 8 Yeast4 1484 28.1 8
Ecoli3 336 8.6 7 winequalityred4 1599 29.17 11
Pageblocks0 5472 8.79 10 Yeast1289vs7 947 30.57 8
Yeast2vs4 514 9.08 8 winequalityred8vs6 656 35.44 11
ecoli067vs35 222 9.09 7 Ecoli0137vs26 281 39.14 7
glass015vs2 172 9.12 9 abalone21vs8 581 40.5 8
yeast02579vs368 1004 9.14 8 Yeast6 1484 41.4 8
ecoli046vs5 203 9.15 6 winequalitywhite3vs7 900 44 11
ecoli0267vs35 224 9.18 7 winequalityred8vs67 855 46.5 11
glass04vs5 92 9.22 9 abalone19vs10111213 1622 49.69 8
ecoli0346vs5 205 9.25 7 winequalitywhite39vs5 1482 58.28 11
Yeast05679vs4 528 9.35 8 shuttle2vs5 3316 66.67 9
Vowel0 988 9.98 13 winequalityred3vs5 691 68.1 11
ecoli067vs5 220 10 6 Abalone19 4174 129.44 8

written digits dataset from the MNIST database.31

The breast cancer dataset is binary-class with 117

features and 102,294 samples. It contains 101,671

negative and 623 positive samples, which makes

imb = 163.20. The handwritten digits dataset is 10-

class with 784 features and 60,000 samples. As our

methods are designed for binary-class datasets, we

used the one-vs-all scheme to make two binary-class

datasets, MNIST 3 and MNIST 5, which had class 3

and class 5 as the minority class. These two classes

were ones of hard-to-classify numbers and even the

most challenging classes for a deep-learning based

method.32 In each dataset, the minority class was

undersampled to obtain a higher imbalance degree.

In MNIST 3, class 3 was undersampled such that

imb = 43.90, which made of 53,869 negative and

1,227 positive instances. In MNIST 5, class 5 was

undersampled such that imb = 20.13, which made of

53,869 negative and 2,711 positive instances.

For all datasets, partitioning of 80:20 of train-

ing to testing sets was used. To diminish the effect

of noisy instances, we normalized data using stan-

dard scores. In Experiment I and II, 10-fold cross-

validation was employed in the training phase for

the purpose of model selection. No cross-validation

was applied to the large datasets in Experiment III

as sufficient training data was available.

bhttps://www.kdd.org/kdd-cup/view/kdd-cup-2008
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4.4. Parameter Settings

To provide a fair comparison, no parameters tuning

or optimization were performed in our experiments.

AdaOBU has no free parameters. In BoostOBU, the

k value of BLSMOTE was set to 5. For SMOTE,

BLSMOTE, OBU, and SMOTE-ENN the same pa-

rameter settings as in the original work were used.

These were k = 5 in SMOTE and BLSMOTE, and

µth = 0.45 in OBU. In SMOTE-ENN, k = 5 and

k = 3 were set for SMOTE and ENN. As for SMT-

Bagging and RUSBoost, 40 and 10 weak learners

were used, respectively, as suggested by Ref. 33.

The Radial Bias Function kernel was used for

SVMs with the default settings of cost (C) = 1 and

γ = 1
f , where f is the number of features. For J48

and RF, the number of features determined at each

split, mtry=
√
f . The number of trees (mtree) in RF

was 500. Lastly, k = 5 was used for kNN.

5. Results and Discussion

5.1. Experiment I: Simulated datasets

Results on 66 simulated datasets are shown in Fig. 5.

The performance of OBU and the proposed exten-

sions are marked with dashed lines, and the other

methods are marked with solid lines. The shaded ar-

eas are the areas under the performance curves of

the baseline (SVM with no resampling).

BoostOBU achieved the top performance across

all metrics in most imbalance and overlap scenar-

ios. AdaOBU showed competitive performance with

OBU across all metrics and provided comparable re-

sults with well-established and state-of-the-art meth-

ods, especially at higher imbalance degrees.

In Fig. 5, AdaOBU showed clear improvement

over the baseline in sensitivity and G-mean across

most imbalance and overlap degrees. This is also con-

firmed by its average performance across 66 scenarios

given in Table 2, where the top result in each metric

is highlighted in bold. The symbols next to each value

indicate the results of significance tests at 95% con-

fidence level comparing the results cross 66 datasets.

An asterisk (*) denotes a statistically significant dif-

ference between the method and AdaOBU, and a

dagger (†) denotes a statistically significant differ-

ence between the method and BoostOBU.

Table 2 shows that AdaOBU improved sensitiv-

ity from 67.75% to 97.5% and G-mean from 77.86%

to 91% on average. As can be seen in Fig. 5, AdaOBU

was competitive in sensitivity, specificity and G-

mean with SMOTE, BLSMOTE and kmUnder at

higher imbalance degrees. However, AdaOBU suf-

fered from high false positives (FP), especially when

the imbalance and overlap degrees were high. This

must have been caused by excessive elimination as

a result of inaccurate identification and removal of

negative instances. More excessive elimination was

likely to occur at higher imbalance and overlap de-

grees, where the visibility of the minority class to the

clustering algorithm was lower, resulting in poorer

performance of the clustering algorithm. Only in

a few cases with no overlap or slight overlap that

AdaOBU showed the smallest FP compared to the

other methods since a smaller number of negative in-

stances was removed. As shown in Table 2, AdaOBU

achieved higher F1-score and had competitive sensi-

tivity, specificity and G-mean with OBU on average

indicating less excessive elimination. Therefore, the

proposed adaptive threshold has shown to be able to

effectively replace the free parameter in OBU.

From Table 2, BoostOBU achieved the highest

average sensitivity (99.5%) and F1-score (77.73%).

Even though the average specificity of BoostOBU

was not as high as SMOTE, BLSMOTE and

kmUnder, Fig. 5 shows that BoostOBU, in fact,

provided competitive specificity with those methods

across most imbalance degrees. The exception oc-

curred at very low imbalance degrees, especially at

imb = 1.5, where BoostOBU outperformed the other

methods in sensitivity but suffered from low speci-

ficity. Similarly, at all imbalance and overlap levels,

except at imb = 1.5, BoostOBU often achieved the

highest G-mean among all methods. This indicates

a good trade-off between the accuracy of the posi-

tive and the negative classes achieved by BoostOBU.

In terms of F1-score, BoostOBU performed com-

petitively with SMOTE, BLSMOTE and kmUnder.

However, Fig. 5 shows that BoostOBU clearly out-

performed these methods at very high to extreme

imbalance degrees, i.e. imb = 60 and 120. These re-

sults indicate that BoostOBU not only could provide

the highest sensitivity but also significantly reduced

the number of false positives from OBU.

In conclusion, the competitive and higher results

of AdaOBU compared to OBU across a wide range of

overlap and imbalance scenarios proved that the pro-

posed adaptive threshold could potentially replace

parameter tuning in OBU. The significantly better
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Table 2. Average results and statistical test results from Experiment I

Baseline SMOTE BLSMOTE kmUnder OBU AdaOBU BoostOBU

sensitivity 67.75*† 98.11† 98.56† 98.35† 97.46† 97.5† 99.5
specificity 96.2*† 90.35*† 89.87*† 89.63* 84.38*† 85.41† 87.47
G-mean 77.86*† 93.87* 93.78* 91.71† 90.43*† 91† 92.41
F1-score 69.88*† 76.41* 75.59* 68.54*† 57.57*† 62.04† 77.73

*The difference in results of the method and of AdaOBU is statistically significant.
†The difference in results of the method and of BoostOBU is statistically significant.

performance of BoostOBU over OBU and AdaOBU

across all metrics (Table 2) suggests that empha-

sizing the presence of borderline positive instances

helped improve the detection of overlapped negative

instances. Moreover, BoostOBU outperformed all of

the well-established and state-of-the-art methods in

sensitivity and F1-score while achieving competitive

performance in specificity and G-mean. These results

show that BoostOBU provided the most optimized

solution among the methods.

5.1.1. Adaptive threshold analysis

We collected the threshold values for analysing its re-

lation to imbalance and overlap degrees. Results ver-

ified that the adaptive threshold was automatically

proportional to the amount of overlapped samples.

Fig. 6 presents the plots of µth in different sce-

narios. Across all imbalance degrees, the plots show

a clear trend of µth increasing with the degree of

class overlap as hypothesized. From no overlap to

complete overlap, the variations in µth were 12.41%

at imb = 1.5, 12.34% at imb = 3, 8.88% at imb = 12,

3.59% at imb = 30, 5.07% at imb = 60 and 1.82%

at imb = 120. This result shows that the proposed

adaptive threshold was able to adapt to changes in

the overlap degree making the elimination amount

directly proportional to the degree of class overlap.

Figure 6. Self-adaptability of the elimination threshold
at different imbalance and overlap degrees

Fig. 6 also shows that µth is inversely propor-

tional to the imbalance degree. As discussed in Sec-

tion 4.3, at a higher imbalance degree, there were

fewer negative instances in the overlapping region.

Consequently, fewer negative instances would be re-

moved. This is another evidence that µth was able to

self-adjust to different overlap scenarios.

5.2. Experiment II: Real-world datasets

The performance of AdaOBU and BoostOBU on 66

real-world datasets was consistent with that in Ex-

periment I, apart from slight variations in the ranks,

which was partly due to more comparison methods

added in this experiment. AdaOBU and BoostOBU

were among the methods that provided highest sensi-

tivity. Their G-mean and F1-score were also compa-

rable with others. Due to space limit, Table 3-6 show

results of 24 representative datasets sorted from low

to high imbalance degrees as examples to aid the dis-

cussion. These 24 examples were selected to cover all

ranges of imbalance ratios and all performance be-

haviors of 66 datasets. However, the discussion will

be based on the results of the 66 datasets, whose

detailed results are available on GitHub.

In Table 3-6, ranks based on the performance

compared across all methods are also provided next

to the metric values. Rank 1 indicates the best per-

formance across all methods on the dataset, and so

on. The average rank of each method and significance

test results across all 66 datasets are provided.

As seen in Table 3, AdaOBU achieved the high-

est sensitivity rank followed by OBU, kmUnder and

BoostOBU. AdaOBU provided the highest sensitiv-

ity on 41 datasets and Boost OBU on 31 datasets.

More importantly, both methods outperformed the

ensemble-based methods, namely SMTBagging and

RUSBoost. In particular, AdaOBU was significantly

better than SMTBagging as well as the baseline,

SMOTE, BLSMOTE and SMOTE-ENN in sensitiv-

ity. The imbalance degree did not seem to affect the

performance of AdaOBU and BoostOBU, which was
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Table 3. Sensitivity results from Experiment II

Dataset
Sensitivity Value/Rank

Baseline SMOTE BLSMOTE kmUnder SMOTE-ENN SMTBagging RUSBoost OBU AdaOBU BoostOBU

Glass1 25 9 37.5 7 62.5 4 62.5 4 12.5 10 37.5 7 62.5 4 75 2 87.5 1 75 2
Glass0 80 8 90 3 60 10 90 3 80 8 90 3 90 3 90 3 100 1 100 1
Vehicle1 100 1 100 1 100 1 100 1 100 1 90 8 100 1 100 1 90 8 90 8
Vehicle3 0 7 0 7 33.33 3 33.33 6 33.33 3 33.33 3 0 7 100 1 66.67 2 0 7
Vehicle0 66.67 8 60 9 80 5 73.33 7 60 9 80 5 86.67 4 100 1 100 1 100 1
Ecoli2 80 4 100 1 80 4 60 9 60 9 80 4 100 1 80 4 100 1 80 4
Segmemt0 18.75 10 50 6 43.75 8 56.25 4 31.25 9 56.25 4 50 6 75 2 68.75 3 81.25 1
Pageblocks0 81.98 10 92.79 5 95.5 3 91.89 6 93.69 4 91.89 7 90.09 8 87.39 9 100 1 100 1
glass015vs2 0 9 33.33 4 33.33 4 66.67 1 0 9 33.33 4 33.33 4 66.67 1 66.67 1 33.33 4
Vowel0 89.23 9 96.92 6 89.23 9 100 1 98.46 5 95.38 8 95.38 7 100 1 100 1 100 1
cleveland0vs4 50 2 0 6 0 6 100 1 0 6 0 6 50 2 50 2 50 2 0 6
Yeast1vs7 41.86 9 88.37 5 81.4 8 95.35 2 25.58 10 88.37 5 95.35 2 95.35 1 93.02 4 88.37 5
Ecoli4 38.1 9 71.43 7 76.19 6 85.71 3 21.43 10 69.05 8 78.57 5 85.71 2 90.48 1 83.33 4
Shuttle2vs4 41.18 10 74.12 6 78.82 4 71.76 7 51.76 9 71.76 8 75.29 5 82.35 3 85.88 2 87.06 1
Yeast2vs8 0 9 33.33 1 33.33 1 33.33 6 0 9 33.33 1 16.67 7 33.33 1 16.67 7 33.33 1
Yeast4 70 9 90 2 100 1 90 2 40 10 80 7 90 2 80 7 90 2 90 2
Yeast1289vs7 75 3 75 3 0 8 50 6 0 8 75 3 100 1 0 8 100 1 25 7
winequalityred8vs6 0 10 33.33 8 100 1 100 1 66.67 7 33.33 8 100 1 66.67 4 66.67 4 66.67 4
Yeast6 62.5 9 100 1 87.5 6 75 7 50 10 100 1 100 1 75 7 100 1 100 1
winequalityred8vs67 0 6 0 6 0 6 100 1 0 6 0 6 33.33 5 100 1 100 1 66.67 4
abalone19vs10111213 0 10 16.67 4 16.67 4 33.33 3 16.67 8 16.67 4 16.67 8 50 1 50 1 16.67 4
winequalitywhite39vs5 0 7 0 7 20 6 100 1 0 7 0 7 60 2 40 3 40 3 40 3
winequalityred3vs5 0 10 50 2 50 2 100 1 50 2 50 2 50 2 50 2 50 2 50 2
Abalone19 71.43 8 85.71 3 85.71 3 71.43 9 42.86 10 85.71 3 100 1 85.71 3 100 1 85.71 3

Average‡ 5.64*† 3.73* 4.82*† 2.77 5.88*† 3.91* 3.17 2.12 2.09† 2.91

‡The average and the significance test results are based on 66 datasets.

Table 4. Specificity results from Experiment II

Dataset
Specificity Value/Rank

Baseline SMOTE BLSMOTE kmUnder SMOTE-ENN SMTBagging RUSBoost OBU AdaOBU BoostOBU

Glass1 99.27 1 91.24 4 86.13 6 84.67 7 98.54 2 91.97 3 81.75 8 67.88 9 61.31 10 87.59 5
Glass0 100 1 100 1 92.86 7 98.21 5 100 1 100 1 96.43 6 57.14 9 55.36 10 67.86 8
Vehicle1 100 1 96.88 6 100 1 93.75 7 90.63 9 100 1 100 1 93.75 7 100 1 59.38 10
Vehicle3 100 1 94.29 5 94.29 5 57.14 8 97.14 3 94.29 5 100 1 31.43 9 28.57 10 97.14 3
Vehicle0 88.89 1 81.48 2 70.37 5 66.67 6 77.78 3 77.78 3 59.26 7 25.93 10 51.85 8 51.85 9
Ecoli2 100 1 100 1 100 1 100 1 100 1 100 1 94.59 10 100 1 100 1 100 1
Segmemt0 100 1 57.78 6 55.56 8 66.67 3 71.11 2 62.22 4 55.56 7 53.33 9 57.78 5 33.33 10
Pageblocks0 98.17 1 94.2 7 91.65 8 95.21 4 96.54 3 94.6 5 94.4 6 98.07 2 23.01 10 36.56 9
glass015vs2 100 1 96.77 4 80.65 6 54.84 8 100 1 100 1 90.32 5 16.13 10 29.03 9 64.52 7
Vowel0 96.96 5 99.75 2 96.96 5 99.24 4 100 1 99.49 3 94.94 7 64.3 9 61.77 10 81.52 8
cleveland0vs4 100 1 100 1 100 1 65.63 10 100 1 100 1 100 1 100 1 100 1 100 1
Yeast1vs7 93.6 1 72 6 70.4 7 76 4 91.2 2 78.4 3 68 8 21.6 10 24 9 72.8 5
Ecoli4 94.44 1 76.19 5 76.19 5 74.6 7 94.44 1 79.37 3 76.98 4 22.22 10 27.78 9 32.54 8
Shuttle2vs4 93.36 1 72.99 5 61.61 7 70.62 6 85.31 2 74.88 3 72.99 4 56.87 8 56.87 9 51.18 10
Yeast2vs8 100 1 80.3 7 80.3 7 75.76 10 98.48 2 83.33 5 90.91 4 83.33 5 78.79 9 93.18 3
Yeast4 98.91 1 95.65 4 95.65 4 93.48 7 98.91 1 95.65 4 92.39 8 88.04 9 86.96 10 97.83 3
Yeast1289vs7 100 1 91.3 8 94.57 7 72.83 9 97.83 5 95.65 6 100 1 100 1 71.74 10 98.91 4
winequalityred8vs6 100 1 92.13 3 94.49 2 38.58 10 91.34 5 92.13 3 79.53 7 70.87 9 78.74 8 89.76 6
Yeast6 99.31 2 98.61 4 97.92 5 94.1 9 99.31 2 97.92 5 94.79 8 95.14 7 90.97 10 99.65 1
winequalityred8vs67 100 1 93.41 5 94.61 4 38.92 10 93.41 6 96.41 3 78.44 7 73.05 8 67.07 9 97.01 2
abalone19vs10111213 100 1 89.94 3 83.33 7 66.04 10 92.14 2 87.42 5 89.62 4 66.35 8 66.35 8 84.91 6
winequalitywhite39vs5 99.31 1 92.78 5 90.72 6 11.68 10 93.47 3 97.59 2 89 7 81.44 8 80.76 9 93.13 4
winequalityred3vs5 100 1 96.32 5 97.79 3 50 10 96.32 4 96.32 5 88.24 7 63.97 8 58.82 9 100 1
Abalone19 100 1 94.46 5 88.24 8 94.12 6 100 1 91.35 7 84.43 10 95.5 4 86.51 9 95.85 3

Average 1.51*† 3.52*† 4.8* 6.29 2.23*† 3.09*† 5.74* 6.38† 6.69† 4.37

consistent with the results in Experiment I.

Non-winning cases in sensitivity of AdaOBU

may have been due to other variations such as data

density that we have not considered in this work.

In most cases that AdaOBU improved the sensi-

tivity over OBU, highest sensitivity was achieved.

There were few exceptions, for example, on Shut-

tle2vs4, where BoostOBU improved the performance

further from AdaOBU and had the highest sensitiv-

ity. The decreases in sensitivity on Vehicle1, Vehi-

cle3, Yeast1vs7 and Yeast2vs8 from OBU evidence

unsuccessful cases of the adaptive threshold. Since

the adaptive threshold is solely distance-based, other

factors such as local data density may have caused

the inaccuracy during the clustering process. Simi-

larly, the results on cleveland0vs4, Yeast4, winequal-

ityred8vs6 and some others where none of the OBU-

based methods won suggested that considering only

the distance factor may not be sufficient. Many

non-winning cases of BoostOBU over AdaOBU such

as Vehicle3, Yeast1289vs7 and abalone19vs10111213

were highly likely affected by the poor performance

of BLSMOTE as can be seen in Table 3.

Table 4 shows that all methods commonly led to

decreases in specificity. These were due to the trade-

offs for higher sensitivity, except for SMOTE-ENN,
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Table 5. G-mean results from Experiment II

Dataset
G-mean Value/Rank

Baseline SMOTE BLSMOTE kmUnder SMOTE-ENN SMTBagging RUSBoost OBU AdaOBU BoostOBU

Glass1 49.82 9 58.49 8 73.37 2 72.75 4 35.1 10 58.73 7 71.48 5 71.35 6 73.25 3 81.05 1
Glass0 89.44 5 94.87 1 74.64 8 94.02 3 89.44 5 94.87 1 93.16 4 71.71 10 74.4 9 82.38 7
Vehicle1 100 1 98.43 4 100 1 96.82 5 95.2 7 94.87 8 100 1 96.82 5 94.87 8 73.1 10
Vehicle3 0 7 0 7 56.06 2 43.64 6 56.9 1 56.06 2 0 7 56.06 2 43.64 5 0 7
Vehicle0 76.98 2 69.92 8 75.03 3 69.92 7 68.31 9 78.88 1 71.66 6 50.92 10 72.01 4 72.01 5
Ecoli2 89.44 4 100 1 89.44 4 77.46 9 77.46 9 89.44 4 97.26 3 89.44 4 100 1 89.44 4
Segmemt0 43.3 10 53.75 5 49.3 8 61.24 3 47.14 9 59.16 4 52.7 6 63.25 1 63.03 2 52.04 7
Pageblocks0 89.71 8 93.49 4 93.55 2 93.54 3 95.11 1 93.24 5 92.22 7 92.57 6 47.97 10 60.46 9
glass015vs2 0 9 56.8 3 51.85 5 60.46 1 0 9 57.74 2 54.87 4 32.79 8 43.99 7 46.37 6
Vowel0 93.02 6 98.32 3 93.02 6 99.62 1 99.23 2 97.42 4 95.16 5 80.19 9 78.6 10 90.29 8
cleveland0vs4 70.71 2 0 6 0 6 81.01 1 0 6 0 6 70.71 2 70.71 2 70.71 2 0 6
Yeast1vs7 62.6 7 79.77 5 75.7 6 85.13 1 48.3 8 83.24 2 80.52 3 45.38 10 47.25 9 80.21 4
Ecoli4 59.98 6 73.77 5 76.19 3 79.97 1 44.99 9 74.03 4 77.77 2 43.64 10 50.13 8 52.07 7
Shuttle2vs4 62 10 73.55 2 69.69 6 71.19 4 66.45 9 73.31 3 74.13 1 68.44 7 69.89 5 66.75 8
Yeast2vs8 0 9 51.74 4 51.74 4 50.25 6 0 9 52.7 2 38.92 7 52.7 2 36.24 8 55.73 1
Yeast4 83.21 9 92.78 3 97.8 1 91.72 4 62.9 10 87.48 7 91.19 5 83.93 8 88.47 6 93.83 2
Yeast1289vs7 86.6 2 82.75 5 0 8 60.34 6 0 8 84.7 3 100 1 0 8 84.7 4 49.73 7
winequalityred8vs6 0 10 55.42 8 97.21 1 62.11 7 78.03 3 55.42 8 89.18 2 68.73 6 72.45 5 77.36 4
Yeast6 78.78 9 99.3 2 92.56 6 84.01 8 70.46 10 98.95 3 97.36 4 84.47 7 95.38 5 99.83 1
winequalityred8vs67 0 6 0 6 0 6 62.39 4 0 6 0 6 51.13 5 85.47 1 81.89 2 80.42 3
abalone19vs10111213 0 10 38.72 5 37.27 9 46.92 3 39.19 4 38.17 7 38.65 6 57.6 1 57.6 1 37.62 8
winequalitywhite39vs5 0 7 0 7 42.6 5 34.18 6 0 7 0 7 73.08 1 57.08 3 56.84 4 61.03 2
winequalityred3vs5 0 10 69.4 5 69.93 3 70.71 1 69.4 4 69.4 5 66.42 7 56.56 8 54.23 9 70.71 1
Abalone19 84.52 8 89.98 5 86.97 7 81.99 9 65.47 10 88.49 6 91.89 2 90.48 4 93.01 1 90.64 3

Average 5.3 4.03 5.48 4.08 5.73 3.97 4.26 4.89 4.68 4.48

Table 6. F1-score results from Experiment II

Dataset
F1-score Value/Rank

Baseline SMOTE BLSMOTE kmUnder SMOTE-ENN SMTBagging RUSBoost OBU AdaOBU BoostOBU

Glass1 36.36 2 26.09 7 31.25 3 29.41 4 18.18 10 27.27 5 26.32 6 20.69 8 20.59 9 38.71 1
Glass0 88.89 4 94.74 1 60 7 90 3 88.89 4 94.74 1 85.71 6 41.86 10 44.44 9 52.63 8
Vehicle1 100 1 95.24 4 100 1 90.91 8 86.96 9 94.74 5 100 1 90.91 7 94.74 6 56.25 10
Vehicle3 0 7 0 7 33.33 2 10.53 6 40 1 33.33 2 0 7 20 4 13.33 5 0 7
Vehicle0 71.43 2 62.07 8 68.57 5 62.86 7 60 9 72.73 1 66.67 6 60 9 69.77 3 69.77 4
Ecoli2 88.89 3 100 1 88.89 3 75 9 75 9 88.89 3 83.33 8 88.89 3 100 1 88.89 3
Segmemt0 31.58 9 37.21 6 32.56 8 45 3 29.41 10 42.86 5 36.36 7 48.98 1 47.83 2 44.07 4
Pageblocks0 82.73 3 76.01 6 70.9 8 78.46 4 83.53 2 76.69 5 75.19 7 85.46 1 22.7 10 26.27 9
glass015vs2 0 9 40 2 20 5 21.05 4 0 9 50 1 28.57 3 12.9 8 14.81 6 13.33 7
Vowel0 85.93 5 97.67 3 85.93 5 97.74 2 99.22 1 96.12 4 84.35 7 47.97 9 46.26 10 64.04 8
cleveland0vs4 66.67 1 0 6 0 6 26.67 5 0 6 0 6 66.67 1 66.67 1 66.67 1 0 6
Yeast1vs7 52.17 7 65.52 5 60.87 6 71.93 1 33.85 10 70.37 2 66.13 3 45.05 8 44.94 9 66.09 4
Ecoli4 49.23 6 58.82 5 61.54 3 65.45 1 31.03 10 59.79 4 63.46 2 40.91 9 44.44 7 43.21 8
Shuttle2vs4 52.24 10 61.46 2 57.51 6 58.65 4 55 9 61.31 3 62.14 1 56.91 7 58.63 5 56.49 8
Yeast2vs8 0 9 11.76 4 11.76 4 10 7 0 9 13.33 2 10.53 6 13.33 2 5.71 8 23.53 1
Yeast4 77.78 4 78.26 3 83.33 2 72 6 53.33 10 72.73 5 69.23 7 55.17 9 58.06 8 85.71 1
Yeast1289vs7 85.71 2 40 4 0 8 12.9 7 0 8 54.55 3 100 1 0 8 23.53 6 33.33 5
winequalityred8vs6 0 10 14.29 5 46.15 1 7.14 9 25 2 14.29 5 18.75 4 9.52 8 12.5 7 22.22 3
Yeast6 66.67 4 80 2 66.67 4 38.71 9 57.14 6 72.73 3 51.61 7 42.86 8 38.1 10 94.12 1
winequalityred8vs67 0 6 0 6 0 6 5.56 4 0 6 0 6 5 5 11.76 2 9.84 3 40 1
abalone19vs10111213 0 10 5.13 4 3.33 9 3.45 8 6.25 1 4.26 6 5 5 5.17 2 5.17 2 3.64 7
winequalitywhite39vs5 0 7 0 7 6.06 5 3.75 6 0 7 0 7 15 1 6.56 3 6.35 4 14.81 2
winequalityred3vs5 0 10 25 3 33.33 2 5.56 7 25 3 25 3 10.53 6 3.85 8 3.39 9 66.67 1
Abalone19 83.33 1 41.38 5 25.53 9 34.48 6 60 2 31.58 7 23.73 10 46.15 4 26.42 8 48 3

Average 4* 3.55* 5.36 4.97 4.98 3.48* 4.91 5.62† 5.7† 4.17

which had poorer performance than the baseline

in both sensitivity and specificity. AdaOBU, which

achieved the highest average rank in sensitivity, had

the lowest specificity on average. This indicates that

the trade-offs of AdaOBU were high, which may not

be suitable for some application domains.

Comparing BoostOBU with the other meth-

ods, its winning over BLSMOTE and RUSBoost on

both sensitivity and specificity proved that Boos-

tOBU provided a better solution than these ap-

proaches. The method also showed higher average

specificity than kmUnder while their average sensi-

tivity ranks were comparable. Compared with OBU

and AdaOBU, which had higher sensitivity, Boos-

tOBU had significantly higher average specificity.

In contrast, its specificity was lower than SMOTE,

SMOTE-ENN and SMTBagging, which achieved

lower sensitivity. However, BoostOBU won on 24 out

of 66 datasets whereas each of SMOTE and SMT-

Bagging only had 21 winning cases. These results

only suggest different trade-offs between sensitivity

and specificity of BoostOBU and these methods.

Their g-mean and F1-score will be discussed for a

more conclusive comparison.

Table 5 shows that AdaOBU and BoostOBU

had higher average G-mean than the baseline,
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BLSMOTE, SMOTE-ENN and OBU. However, the

statistical tests did not indicate significant differ-

ences between our methods and the others. Thus,

it may be said that AdaOBU and BoostOBU had

comparable G-mean to the other methods on aver-

age. However, it is worth pointing out that AdaOBU

and BoostOBU achieved the highest G-mean on 18

and 20 datasets while SMTBagging and RUSBoost,

which had higher average ranks, only won on 16 and

15 datasets.

In Table 6, BoostOBU showed significantly

higher average rank on F1-score than OBU and

AdaOBU. This suggests that BoostOBU provided

a better trade-off between the accuracy of the two

classes than OBU and AdaOBU. Even though Boos-

tOBU had a lower average rank than SMTBagging

and SMOTE, it far outnumbered the two methods

in winning cases by 23 to 17 and 18, respectively.

Extremely low F1-score can be observed in Table 6,

especially on large and highly imbalanced datasets.

In many cases, e.g. on Yeast6 and Abalone19, low

F1-score is seen although high values in the other

metrics were achieved. This is because F1-score fac-

tors in precision, which considers true positives (TP)

and FP. On a large and highly imbalanced scenario,

the calculation of F1-score can be heavily dominated

by high FP regardless of specificity. The 23 winning

cases of BoostOBU were spread throughout all im-

balance degrees. In particular, it handled extremely

imbalanced datasets better than the the other meth-

ods. This is evidence that BoostOBU performed the

best among the methods in minimising information

loss while maximising sensitivity.

Both AdaOBU and BoostOBU have shown their

superior results over other well-established and state-

of-the-art methods including ensemble-based meth-

ods in many cases. AdaOBU achieved the highest av-

erage sensitivity but suffered from high information

loss in the negative class. BoostOBU, which often

provided high sensitivity and most favourable trade-

offs of relatively smaller FP, may be more preferred

in many problem domains.

For further evaluation, an additional experiment

using J48, kNN and RF was carried out (Detailed

results are available on GitHub). Statistical analy-

sis suggests that there were no significant differences

in the results using SVM compared to J48 and RF.

However, AdaOBU with kNN performed poorer than

AdaOBU with SVM across all metrics. Our results

also showed that BoostOBU with kNN achieved sig-

nificantly higher sensitivity and lower performance

in other metrics compared to SVM. These results are

consistent with literature,34 which showed that SVM

outperformed other algorithms in sensitivity when

there were fewer negative instances in the overlap-

ping region.

5.3. Experiment III: Large datasets

Table 7 shows the results on the three large and high-

dimensional datasets. In all scenarios, AdaOBU ob-

tained higher sensitivity than OBU, and BoostOBU

further improved from AdaOBU. Results in other

measures varied across datasets.

On the breast cancer dataset, AdaOBU and

BoostOBU significantly improved sensitivity from

the baseline, BLSMOTE, and OBU. They outper-

formed kmUnder in specificity, and outperformed

the baseline and OBU in G-mean. BoostOBU also

achieved higher G-mean than BLSMOTE. AdaOBU

and BoostOBU suffered from high FP as can be seen

from low F1-score. It is worth pointing out that none

of the methods could yield high sensitivity without

a high decrease in F1-score. This trade-off was likely

caused by the issue of high class overlap. This is evi-

denced by the results of SMOTE, which showed sig-

nificant improvement in sensitivity from 28.23% to

70.16% and slightly lower specificity from 99.96%

to 97.5% compared to the baseline. However, F1-

score of SMOTE was largely reduced from 41.92%

to 24.17% due to the bias caused by relatively large

FP compared to the number of TP.

On MNIST 3, BoostOBU was among the meth-

ods that produced the most favorable results. Boos-

tOBU showed good performance across all metrics.

It achieved the second-highest sensitivity of 92.24%,

high specificity of 99.13%, the highest G-mean of

95.62%, and relatively high F1-score of 80%. This

was significantly higher than the overall performance

of kmUnder, which produced the highest sensitiv-

ity but very low specificity, G-mean and F1-score.

AdaOBU showed improvement over OBU in sensi-

tivity and G-mean, however suffered from high FP.

BoostOBU improved further from AdaOBU with

higher sensitivity and a reduction in FP as reflected

by high specificity and F1-score. Note that OBU with

the fixed elimination threshold used in Ref. 14 failed

to undersample this dataset as well as MNIST 5.

On MNIST 5, AdaOBU and BoostOBU
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Table 7. Results on the large datasets from Experiment III

Dataset Metric Baseline SMOTE BLSMOTE kmUnder OBU AdaOBU BoostOBU

Breast Cancer

sensitivity 28.23 70.16 55.65 94.35 42.74 58.87 75
specificity 99.96 97.5 97.08 66.34 99.91 78.37 78.83
G-mean 53.12 82.71 73.5 79.12 65.35 67.92 76.89
F1-score 41.92 24.17 17.56 3.3 54.08 3.18 4.11

MNIST 3

sensitivity 82.45 87.76 84.08 95.92 82.45 87.35 92.24
specificity 99.8 99.82 99.89 36.56 99.8 97.75 99.13
G-mean 90.71 93.6 91.64 59.22 90.71 92.4 95.62
F1-score 86.14 89.77 88.98 6.43 86.14 61.06 80

MNIST 5

sensitivity 90.96 93.91 93.91 95.94 90.96 93.73 94.1
specificity 99.61 99.61 99.69 91.81 99.61 85.95 95.38
G-mean 95.18 96.72 96.76 93.85 95.18 89.75 94.74
F1-score 91.47 93.05 93.82 53.17 91.47 39.32 65.55

provided competitive sensitivity with SMOTE,

BLSMOTE and kmUnder and outperformed the

baseline and OBU. AdaOBU did not performed as

well as the other methods in terms of specificity,

G-mean and F1-score due to excessive elimination.

Consequently, BoostOBU showed low F1-score. How-

ever, BoostOBU had reasonable specificity and G-

mean, and produce higher specificity, G-mean and

F1-score than kmUnder.

The proposed AdaOBU and BoostOBU per-

formed relatively well on the large datasets in terms

of sensitivity compared to other methods. Competi-

tive results in specificity and G-mean were achieved

in some cases. However, they often suffered from high

FP partly due to the trade-off nature on a large and

highly imbalanced datasets.

5.4. Discussion

Results on simulated and real-world datasets showed

that our proposed methods often achieved high sen-

sitivity. Compared to other methods, BoostOBU,

in particular, provided higher sensitivity with bet-

ter trade-offs of relatively smaller FP in most cases.

The improvement in sensitivity of our methods is

attributed to better visibility of the minority class

near the borderline, which was obtained after remov-

ing majority class instances from the overlapping re-

gion. This allowed the learning algorithm to learn

the maximum boundary of the minority class with-

out interference of majority class instances. More-

over, by removing majority class instances in the

overlapping region, the effect of class imbalance is

also reduced. This helps improve the results in the

case that the proposed methods fail to completely

remove class overlap. Furthermore, by oversampling

borderline minority class instances in BoostOBU to

enhance the performance of the clustering algorithm,

the presence of the minority class near the boundary

was also increased as an additional benefit.

Higher sensitivity and better trade-offs of Boos-

tOBU over other methods can be justified as fol-

lows. While BoostOBU attempted to maximize the

presence of the minority class near the borderline,

SMOTE and k-means undersampling only aimed to

rebalance the class distribution. The improvement

in the presence of the minority class in the over-

lapping region by SMOTE and k-means undersam-

pling was limited by the imbalance degree. Also,

as opposed to k-means undersampling, BoostOBU

was unlikely to remove instances outside of the over-

lapping region causing smaller unnecessary informa-

tion loss. Lastly, BLSMOTE only dealt with border-

line instances whereas BoostOBU addressed the en-

tire overlapping region. These enabled BoostOBU to

achieve higher sensitivity and higher F1-score. This

higher F1 score can be attributed to a higher increase

in TP in relation to a smaller FP, which indicates a

good trade-off of the method.

6. Applications

This section demonstrates the used of the proposed

methods in predictive diagnostics of neurological dis-

orders that widely affect people around the world and

increase the risk of premature death – epilepsy and

Parkinson’s disease.

6.1. Epileptic seizure

Epilepsy is a neurological disorder that causes un-

provoked, recurrent seizures due to abnormal elec-

trical activity in the brain. There are many types

of seizures depending on which part of the brain is

affected and how far it spreads. Some types cause

patients to lose awareness, which can lead to serious

physical injuries while some can cause sudden un-
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explained death.35 Electroencephalogram (EEG) is

a common test used in diagnosing epilepsy.36 Sev-

eral methods for computer-aided detection of epilep-

tic seizures based on EEG have been proposed.35,36

Many of these employed artificial neural network

algorithms for more accurate prediction.37,38 Deep

learning algorithms often provide promising results;

however, they require a sufficiently large number of

training samples and are computationally expensive.

Also, among these methods, the problem of class im-

balance in epilepsy data was rarely discussed.

We propose the use of our resampling methods

on an epileptic seizure problem. We used an epilep-

tic seizure recognition dataset from UCI repository29

containing 11, 500 samples, of which are 2, 300 epilep-

tic seizure (positive) cases and 9, 200 cases with no

seizures (negative). Each sample contains 178 fea-

tures, which are the values of EEG recorded at a dif-

ferent point in time. The same experimental settings

as in Section 4 were used with SVM as the baseline.

Results in Table 8 showed that BoostOBU

achieved the highest detection rate of epileptic

seizures of 98.26% with the geometric mean of the

correctly predicted positive and negative cases com-

parable to other methods of 95.53%. The results

among BoostOBU, SMOTE, BLSMOTE, SMOTE-

ENN, SMTBagging and RUSBoost were competitive

in sensitivity and G-mean, which were better than

kmUnder, OBU and AdaOBU. It can be observed

that all methods provided high accuracy. This could

be partly due to the availability of sufficient sam-

ples of both classes and a low imbalance degree even

though there is a high degree of class overlap as evi-

denced by µth near 0.5 of AdaOBU and BoostOBU.

6.2. Parkinson’s disease

Parkinson’s Disease (PD) is a progressive nervous

system disorder that affects movement. It is the sec-

ond most common neurological disease, which im-

pacts a large number of elders worldwide.39 PD grad-

ually damages the brain, thus early diagnosis will be

beneficial in treatment to reduce symptoms. How-

ever, clinical symptoms are not noticeable in an

early stage.40 Mathematical-related and computer-

assitsted methods have been proposed to address to

issue.40–43 Existing approaches were based on detect-

ing potential PD cases from EEG,42 gait or speech

signals39,41 and images.43

Here, we demonstrate the use of our proposed

method to classify PD samples and healthy sam-

ples based on a speech dataset. The dataset obtained

from UCI repository29 contains 195 samples, which

are 147 samples with PD and 48 healthy samples,

and each sample has 23 features. Note that on this

dataset, even though the positive class (PD) is the

majority class, all resampling methods were not mod-

ified and were applied based on the minority and

majority class concept.

Results in Table 8 showed 100% accuracy of

BoostOBU on both PD and healthy test cases, which

clearly outperformed all other methods. AdaOBU

could increase the prediction accuracy of healthy

cases to 100% however with the decreased accuracy

on PD samples of 89.66%. The low µth indicates that

the dataset tends to have small class overlap; thus,

and relatively fewer majority class samples might

have been removed by BoostOBU. With more ac-

curacy and more necessary removal of overlapped

majority class instances performed by BoostOBU

compared to other methods, BoostOBU was able to

achieve the highest performance.

7. Conclusions

In this paper, new overlap-based undersampling

methods were proposed. By removing negative in-

stances from the overlapping region based on an

adaptive threshold, exceptional improvement in mi-

nority class accuracy with relatively small trade-

offs of false positives was achieved. The proposed

methods proved to enhance the classification of well-

known imbalanced datasets and outperformed ex-

isting methods across a wide range of simulated

and real-world datasets of varying class imbalance

and class overlap degrees. These results can be at-

tributed to some advantages of our methods over

other common undersampling approaches. First, the

adaptive elimination threshold enables the under-

sampling amount to be proportional to the overlap

degree. This also results in minimizing the excessive

elimination, which reduces information loss. Second,

enhancing the presence of the positive class near the

borderline areas showed to be beneficial to the over-

all performance of the method.

Future work will address limitations of the

methods. These may include the dependencies on

the techniques used such as BLSMOTE and the

distance-based algorithms. Results showed that the

performance of BoostOBU could be highly depen-
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Table 8. Results on Epilepsy and Parkinson’s Predictions

Dataset Metric/µth Baseline SMOTE BLSMOTE kmUnder SMOTE-ENN SMTBagging RusBoost OBU AdaOBU BoostOBU

Epilepsy sensitivity 92.83 97.83 96.52 93.04 97.83 95.87 98.04 92.83 96.96 98.26
specificity 98.1 97.23 97.45 95.63 97.28 98.15 97.12 98.1 85.92 92.88
G-mean 95.43 97.53 96.98 94.33 97.55 97 97.58 95.43 91.27 95.53
F1-score 92.62 93.65 93.38 98.21 93.75 94.33 93.57 92.62 76.57 86.67
µth - - - - - - - 0.45 0.499983 0.499985

Parkinson’s sensitivity 96.55 96.55 100 89.66 93.1 75.86 96.55 100 89.66 100
specificity 55.56 77.78 77.78 88.89 44.44 100 88.89 0 100 100
Gmean 73.24 86.66 88.19 89.27 64.33 87.1 92.64 0 94.69 100
F1-score 91.8 94.92 96.67 92.86 88.52 86.27 96.55 86.57 94.55 100
µth - - - - - - 0.45 0.265354 0.266147

dant on how BLSMOTE performs, thus other over-

sampling methods that could provide better results

may be explored. The distance-based clustering algo-

rithm used in the proposed methods may introduce

the curse of dimensionality, which could have also

affected the results in the large data experiments.

This issue may be addressed with other soft cluster-

ing algorithms that showed less dependency on sim-

ilarity measure such as ones used in Ref. 44, 45. Al-

ternatively, projecting data onto a lower-dimensional

space using a technique such as Principle Compo-

nents Analysis may be considered. Moreover, the per-

formance of the proposed methods were observed to

be more consistent on the simulated datasets than

on the real-world datasets. This could be partly due

to the difference in data uniformity. Thus, another

potential improvement is to also factor in other infor-

mation such as class density and local data density,

which could be done using the techniques introduced

in Ref. 46. Finally, the problem of small disjuncts in

the minority class could be tackled by an adaptive

selection on the number of clusters.
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Vicente, A. Gómez-Rodellar, D. Palacios-Alonso,
Z. Smekal, I. Eliasova, M. Kostalova and I. Rek-
torova, Vowel articulation dynamic stability related
to parkinsons disease rating features: Male dataset,
Int. J. Neural Syst. 29(02) (2019) p. 1850037.

42. A. H. Ansari, P. J. Cherian, A. Caicedo, G. Naulaers,
M. De Vos and S. Van Huffel, Neonatal seizure detec-
tion using deep convolutional neural networks, Int.
J. Neural Syst. 29(04) (2019) p. 1850011.

43. F. Segovia, J. M. Gorriz Sáez, J. Ramı́rez
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