
LUONG, A.V., NGUYEN, T.T., LIEW, A.W.-C. and WANG, S. 2021. Heterogeneous ensemble selection for evolving data
streams. Pattern recognition [online], 112, article ID 107743. Available from:

https://doi.org/10.1016/j.patcog.2020.107743

Heterogeneous ensemble selection for evolving
data streams.

LUONG, A.V., NGUYEN, T.T., LIEW, A.W.-C. and WANG, S.

2021

This document was downloaded from
https://openair.rgu.ac.uk

https://doi.org/10.1016/j.patcog.2020.107743

Heterogeneous Ensemble Selection for Evolving Data Streams

Anh Vu Luong1, Tien Thanh Nguyen2, Alan Wee-Chung Liew1, Shilin Wang3

1 School of Information and Communication Technology, Griffith University, Australia
2 School of Computing Science and Digital Media, Robert Gordon University, Aberdeen, Scotland, UK

3 School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University, China

Abstract: Ensemble learning has been widely applied to both batch data classification and streaming data

classification. For the latter setting, most existing ensemble systems are homogenous, which means they

are generated from only one type of learning model. In contrast, by combining several types of different

learning models, a heterogeneous ensemble system can achieve greater diversity among its members, which

helps to improve its performance. Although heterogeneous ensemble systems have achieved many

successes in the batch classification setting, it is not trivial to extend them directly to the data stream setting.

In this study, we propose a novel HEterogeneous Ensemble Selection (HEES) method, which dynamically

selects an appropriate subset of base classifiers to predict data under the stream setting. We are inspired by

the observation that a well-chosen subset of good base classifiers may outperform the whole ensemble

system. Here, we define a good candidate as one that expresses not only high predictive performance but

also high confidence in its prediction. Our selection process is thus divided into two sub-processes:

accurate-candidate selection and confident-candidate selection. We define an accurate candidate in the

stream context as a base classifier with high accuracy over the current concept, while a confident candidate

as one with a confidence score higher than a certain threshold. In the first sub-process, we employ the

prequential accuracy to estimate the performance of a base classifier at a specific time, while in the latter

sub-process, we propose a new measure to quantify the predictive confidence and provide a method to learn

the threshold incrementally. The final ensemble is formed by taking the intersection of the sets of confident

classifiers and accurate classifiers. Experiments on a wide range of data streams show that the proposed

method achieves competitive performance with lower running time in comparison to the state-of-the-art

online ensemble methods.

Keywords: Data streams, Heterogeneous Ensembles, Ensemble Selection

1. Introduction

Traditional classification methods for batch data assume that the entire data can be stored in memory, and

the processing time is unlimited. However, many datasets, including sensor network data, video streams,

event logs, and traffic monitoring data, are often generated dynamically in real-time in the form of data

streams. There are some restrictions to be noted when designing a learning system for data streams [1]:

- be ready to make predictions on any sequentially arriving instances;

- expect an infinite sequence of instances processed under limited time and memory;

- the data can be statistically non-stationary (the appearance of concept drift); and

- each instance can only be examined once before it is discarded.

By combining the predictions of multiple base classifiers, an ensemble system often gives considerably

better results than a single classifier. Ensemble methods have been the winners in many prestigious data

mining competitions held by Netflix, KDD, and Kaggle. In addition to the accuracy improvement over a

single classifier, an ensemble often provides greater stability in the result. The use of ensemble is often

justified by the “No free lunch” theorem, which states that there is no universal best algorithm. In other

words, instead of trying to find the best learner for a specific problem, we can gather several methods and

combine them together to form a more robust algorithm. When constructing an ensemble system, the

differences among the outputs of its individual members, also known as ensemble diversity, play a crucial

role in promoting the ensemble performance. Also, ensemble methods are particularly useful for classifying

evolving data streams as they allow us to selectively remove or add a set of base classifiers when the concept

of data changes over time [2]. Commonly, there are two types of ensembles: Homogeneous Ensemble and

Heterogeneous Ensemble. Most ensemble algorithms developed for data streams fall into the first category,

in which all base classifiers are generated from one type of learning model, most frequently Hoeffding

Trees [3]. In this kind of ensemble, the diversity among base classifiers is often obtained by modifying the

characteristics of the base model or the input data. In contrast, the diversity of a heterogeneous ensemble is

the result of its members being generated from radically different learning models. Although many

heterogeneous ensemble systems have been developed for batch data classification, not many have been

developed for the data stream setting.

Ensemble selection is one of the most widely studied topics in ensemble learning as a well-chosen subset

of base classifiers often outperforms the whole ensemble system. Recently, many ensemble selection

methods have been proposed for batch data [4–6]. Unfortunately, it is not trivial to extend these methods

to the data stream setting, since all of them involve solving an optimization problem that requires going

through the training set many times to find the best configuration for the ensemble.

In this work, we introduce HEES, a heterogeneous ensemble selection technique that automatically picks a

competent subset of base classifiers to make predictions. Within the base classifier pool, we select those

with top performance on recently arrived data as well as those with high prediction confidence. To do that,

we define two sub-processes: accurate-candidate selection and confident-candidate selection. An accurate

candidate is a base classifier which exhibits high accuracy over recent data. Here, we use prequential

accuracy [7,8] to estimate the performance of each base classifier on newly arrived samples. On the other

hand, we define a confident candidate as a base classifier that has a higher confidence score than

its reliability threshold. We propose a new measure to quantify the predictive confidence and provide a

method to learn the reliability threshold under the stream setting. The selection procedure for each candidate

is first formulated as a set of online optimization problems, in each of which an error function of the

reliability threshold is minimized by applying the Stochastic Gradient Descent algorithm to update the

parameter incrementally. We also provide a theoretical analysis of the convergence of these optimization

problems.

Our contributions of this work are: (i) we propose a novel heterogeneous ensemble selection method that

dynamically determines an appropriate subset of base classifiers to make predictions based on their

confidence scores and their accuracy; (ii) we propose a measure that can estimate the confidence of a

classifier’s predictions; (iii) we provide a theoretical analysis of the convergence rate of the optimization

problems that represent the confident-candidate selection sub-process; (iv) we perform extensive

experiments to show that the proposed method is better than many well-known algorithms.

The paper is organized as follows. Section 2 presents related work. In section 3, we propose the novel

heterogeneous ensemble selection method. Experimental studies are conducted in Section 4. Results and

discussions are shown in section 5. Finally, we draw some conclusions in Section 6.

2. Background and Related work

When working with data streams, there are potentially infinitely many instances which come in one by one

and need to be processed under resource constraints [1]. Moreover, the data can be statistically non-

stationary, i.e., concept drift might appear over time. Classifiers for data streams, therefore, should have the

ability to detect and adapt to concept drifts in order to achieve high predictive performance. The evolving

data stream setting is the main motivation for the development of numerous online learning algorithms for

multi-class classification [9–12] and multi-label classification [13–15]. In this study, we consider the data

stream methods for multi-class classification.

Some classifiers for batch data can be modified to work under the stream setting, e.g., Naïve Bayes [16], 𝑘𝑘

Nearest Neighbours [17], Perceptron [18], Stochastic Gradient Descent [19]. Naïve Bayes is a well-known

instance-incremental classifier which performs Bayesian prediction while making the naïve assumption that

all features are mutually independent conditional on each class. Its popularity is attributed to its simplicity

and low computational cost. 𝑘𝑘 Nearest Neighbours (𝑘𝑘NN), also known as lazy learning classifier, makes

predictions by looking for 𝑘𝑘 nearest training samples to the test sample and obtaining prediction based on

the majority class among these 𝑘𝑘 neighbors. In the data stream setting, 𝑘𝑘NN only keeps a sliding window

of most recent instances with length 𝑤𝑤 and finds 𝑘𝑘 nearest neighbors in this window instead of the entire

data. Perceptron is a linear classifier that performs classification based on a linear function that combines

the feature vector with a set of weights. Stochastic gradient descent (SGD), also known as incremental

gradient descent, is an iterative method for optimizing a differentiable objective function. SGD is a simple

yet very efficient way to optimize convex loss functions, especially in the stream setting.

In the literature, most available ensemble systems for data stream are homogeneous, i.e., they comprise of

several base classifiers generated from one type of learning algorithm. Most notably, Oza and Russell

introduced Online Bagging and Online Boosting [20], adapted versions of Bagging and Boosting to the

data stream setting. Online Bagging builds a set of 𝑀𝑀 base classifiers, then incrementally trains each one

with a different representation of the original data set, in which samples are given weights according to the

Poisson(1) distribution. It has been shown that Online Bagging converges to the behavior of the traditional

Bagging if the number of instances approaches infinity. Leverage Bagging [9] enhances Online Bagging

by adding more randomization to the input and output of the ensemble members. Traditional Boosting for

batch data ameliorates a weak learner by employing a set of base classifiers built sequentially–more

specifically, each new base classifier is trained on a copy of the training set with more weight assigned to

the instances that were frequently misclassified by the previous base classifier. Oza and Russel used the

Poisson distribution to simulate Boosting’s behavior in the online setting. From some studies in the

literature [20–22], Online Bagging has outperformed Online Boosting. Recently, de Barros et al. proposed

a Boosting-like Online Learning Ensemble (BOLE) [10], which improves the accuracy of Oza and Russel’s

Online Boosting by weakening the conditions for experts to vote and using the DDM [23] method to detect

concept drift internally. Pham et al. [24] introduced a homogeneous ensemble algorithm based on Random

Projection and Hoeffding Trees. This method applies the Random Projection technique to create a number

of diverse instances for each instance and then forms an ensemble of several Hoeffiding Trees trained on

these new instances. This method applies the Random Projection technique to create a number of diverse

instances for each instance and then forms an ensemble of several Hoeffiding Trees trained on these new

instances. One advantage of using Random Projection technique is that it can reduce the dimension of the

data, giving the method the ability to deal with very high-dimensional data streams. Adaptive Random

Forest (ARF) [12] aims to adapt the classical Random Forest to the data stream setting by employing the

online bootstrap resampling, similar to Leveraging Bagging. To deal with concept drift, ARF uses two

change detectors per base tree to detect warnings and drifts. In particular, when a warning is triggered, a

background tree is created and updated without affecting the ensemble predictions. If the warning escalates

to a drift after a period of time, the background tree replaces the corresponding base tree in the ensemble.

Although this mechanism helps ARF effectively handle concept drift, it slows down the method and

increases the memory used. Recently, Gomes et al. introduced Streaming Random Patches (SRP) [36] ,

which resembles the classic Random Patches by combining the Random Subspace method and Online

Bagging. SRP exploits the global subspace randomization (as in Random Subspace), while ARF takes

advantage of local subspace randomization (as in Random Forest). In comparison to ARF, the SRP method

is slightly better in terms of accuracy, but its runtime is higher.

Heterogeneous ensembles have been extensively studied for batch data [25–27]. However, only a small

number of them were developed for the data stream setting, most remarkably HEFT-Stream [28] and

BLAST [29]. In the HEFT-Stream method, an ensemble of Hoeffding Trees and Naïve Bayes learners is

maintained, and when a sudden drift occurs, it adds a new classifier, whose type matches the current learner

with the highest weight. This method focuses on tackling the feature drift problem, which is

beyond the scope of this paper. The BLAST ensemble, on the other hand, used the Online Performance

Estimation framework [11, 29], which measures the performance of base classifiers over the set of 𝑤𝑤 most

recent samples, to select 𝑘𝑘 best base learners to classify a sample. Note that the fixed number of chosen

base classifiers limits the flexibility of this model. The authors proposed to use 𝑘𝑘 = 1, which means only

one base classifier is selected to make predictions. This choice only works well when there exists a dominant

candidate which outperforms all other base learners for a specific concept of data, which is not always the

case in practice. Also, as BLAST does not take into account the confidence in predictions of each base

classifier, it sometimes selects a classifier having ambiguous predictions, i.e., predictions are very closed

to the decision boundary. Recently, Idrees et al. introduced Heterogeneous Dynamic Weighted Majority

(HDWM) [37], which aims to switch between different types of base classifiers in an ensemble to promote

the predictive performance of online learning. It utilizes the “seed” learners of different types to create

ensemble diversity, avoiding the loss of diversity when base learners are removed from the ensemble due

to concept drift. Although the method successfully reduced human effort to choose the base classifiers for

an ensemble, its performance is not competitive to some state-of-the-art homogeneous ensembles.

Some ensemble selection methods have been proposed for data stream learning [33,11,38]. van Rijn et al.

proposed an algorithm selection for data streams, which is the first effort to do meta-learning on data

streams [33]. They utilized the sliding window technique to handle streaming data, aiming to predict what

algorithm will perform best for the next window of data. For each window, they first construct a new meta-

dataset based on data characteristics measured in the previous window and the meta-knowledge. An abstract

meta-algorithm is then employed to determine which algorithm will be used to predict the next window of

instances. One limitation of this method is how to determine the optimal value of the window size. Another

drawback is that it is a batch-incremental method, which is not applicable to high-speed instance-

incremental data streams. The heterogeneous ensemble BLAST [29] we mentioned above can be considered

as an ensemble selection method since it tries to select k best base classifiers to predict the next instance

based on the estimated performance of these learners on the current window of data. Recently, Krawczyk

et al. presented another ensemble selection method which allows the base classifiers to abstain from

contributing to the final decision of the ensemble [38]. The confidence level of each member is monitored

for each incoming instance and only learners with the confidence score exceed a certain threshold are

selected. In this method, the authors used one threshold for all the members, and this threshold is updated

based on the correct/incorrect decision of the whole ensemble. The use of only one threshold for all base

learners, however, limits the flexibility of this method.

One problem when dealing with data stream is concept drift. Data streams that exhibit concept drifts are

referred to as evolving or non-stationary data streams [2]. Since the nature of the data can change over time,

classifiers for data stream setting should have the ability to detect and adapt when these changes occur.

Some classifiers can naturally deal with concept drift, e.g., 𝑘𝑘 Nearest Neighbour keeps a window of 𝑤𝑤 most

recent samples so that it avoids learning obsolete samples, and therefore focuses on the current concept.

Another approach to tackle concept drift is to integrate the drift detectors into the classifiers. Examples of

well-known drift detectors are Drift Detection Method (DDM) [23], Adaptive Sliding Window Algorithm

(ADWIN) [30], and Early Drift Detection Method (EDDM) [31]. These are stand-alone methods that can

detect concept drifts and can be combined with any online classifier. A common assumption used in these

detectors is that if the distribution generating the data is stationary, the accuracy of the learning algorithm

will increase or maintain when we train the classifier on more data. From this assumption, a significant

drop in the accuracy rate is the evidence that the current classifier is out of date, and a new classifier should

be constructed to replace this obsolete learner.

3. Proposed method

3.1. Problem formulation

Given a data stream 𝑆𝑆 whose instances come as a sequence of data points �𝒙𝒙(𝑡𝑡)� where 𝒙𝒙(𝑡𝑡) is a 𝑑𝑑-

dimensional feature vector that arrives at time 𝑡𝑡. Assume that we can obtain the true label 𝑦𝑦(𝑡𝑡) ∈ 𝒴𝒴 =

{𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑀𝑀} of the data point 𝒙𝒙(𝑡𝑡) after some time, and it can be used for classifier training later on.

These are common assumptions for classification problems in the data stream setting [2,9,20,22].

When applying a heterogeneous ensemble of classifiers for data streams, we are given a set of 𝑄𝑄 online

base classifiers 𝑩𝑩 = �𝐵𝐵𝑞𝑞�,𝑞𝑞 = 1, … ,𝑄𝑄. For a data point 𝒙𝒙(𝑡𝑡), each base classifier returns output in the form

of Soft Label, i.e., the output that 𝒙𝒙(𝑡𝑡) is assigned to 𝑦𝑦𝑚𝑚 given by 𝐵𝐵𝑞𝑞:𝑃𝑃𝑞𝑞�𝑦𝑦𝑚𝑚�𝒙𝒙(𝑡𝑡)� ∈ [0,1]. The concatenated

outputs of the 𝑄𝑄 base classifiers on a data point 𝒙𝒙(𝑡𝑡) is given by:

𝐿𝐿�𝒙𝒙(𝑡𝑡)� = [𝑃𝑃1�𝑦𝑦1�𝒙𝒙(𝑡𝑡)�…𝑃𝑃1�𝑦𝑦𝑀𝑀�𝒙𝒙(𝑡𝑡)������������������
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑜𝑜 1𝑠𝑠𝑠𝑠𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝

…𝑃𝑃𝑄𝑄�𝑦𝑦1�𝒙𝒙(𝑡𝑡)�…𝑃𝑃𝑄𝑄�𝑦𝑦𝑀𝑀�𝒙𝒙(𝑡𝑡)������������������
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑜𝑜 𝑄𝑄𝑠𝑠ℎ 𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝

] (1)

After obtaining 𝐿𝐿(𝒙𝒙(𝑡𝑡)), we aim to develop an ensemble selection method to find a subset of 𝑩𝑩 that contains

appropriate candidates to predict 𝒙𝒙(𝑡𝑡). This improves not only the predictive accuracy but also efficiency in

the computation for classification of the ensemble.

3.2. Confident-candidate selection sub-process

When classifying a sample 𝒙𝒙(𝑡𝑡), the prediction of a classifier 𝐵𝐵𝑞𝑞 is with high confident if the probability

output for one class is much higher than that for the other classes, e.g., 𝑃𝑃𝑞𝑞�𝑦𝑦1�𝒙𝒙(𝑡𝑡)� = 0.95, 𝑃𝑃𝑞𝑞�𝑦𝑦2�𝒙𝒙(𝑡𝑡)� =

0.025, and 𝑃𝑃𝑞𝑞�𝑦𝑦3�𝒙𝒙(𝑡𝑡)� = 0.025 in a classification problem with three labels 𝒴𝒴 = {𝑦𝑦1,𝑦𝑦2,𝑦𝑦3}. In contrast,

if the predictions for all classes are similar for an instance 𝒙𝒙(𝑡𝑡), e.g., 𝑃𝑃𝑞𝑞�𝑦𝑦1�𝒙𝒙(𝑡𝑡)� = 0.32, 𝑃𝑃𝑞𝑞�𝑦𝑦2�𝒙𝒙(𝑡𝑡)� =

0.34, and 𝑃𝑃𝑞𝑞�𝑦𝑦3�𝒙𝒙(𝑡𝑡)� = 0.34, it is hard to assign 𝒙𝒙(𝑡𝑡) to a class. Based on this observation, we propose a

new measure 𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)� to quantify the confidence of the outputs given by a base classifier 𝐵𝐵𝑞𝑞 on a data point

𝒙𝒙(𝑡𝑡):

𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)� = 𝑃𝑃𝑞𝑞�𝑦𝑦𝑘𝑘�𝒙𝒙(𝑡𝑡)� − 1
𝑀𝑀−1

∑ 𝑃𝑃𝑞𝑞�𝑦𝑦𝑚𝑚�𝒙𝒙(𝑡𝑡)�𝑀𝑀
𝑚𝑚=1
𝑚𝑚≠𝑘𝑘

 (2)

where 𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚=1…𝑀𝑀𝑃𝑃𝑞𝑞�𝑦𝑦𝑚𝑚�𝒙𝒙(𝑡𝑡)�. Note that 𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)� is bounded in [0,1]. It is recognized that

𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)� is the difference between the maximum value among the predictions and the average of the other

values. Therefore, the larger 𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)� is, the higher the confidence of the outputs of classifier 𝐵𝐵𝑞𝑞 for 𝒙𝒙(𝑡𝑡) is,

i.e., confidence is proportional to 𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)�. The idea of subtracting the maximum probability to the average

of the other posterior probabilities in Eq. (2) comes from a fuzzy classification system in [44]. For each

base classifier, we use this formulation to represent a certain mar- gin of difference between the predicted

probabilities, which is necessary before comparing the accuracy of a base classifier to the others.

When making predictions for a sample 𝒙𝒙(𝑡𝑡), we select base classifiers with high confidence scores since

they allow us to make decisions easily in comparison to those with low confidence scores. We introduce

the reliability threshold to specify whether a base classifier expresses enough confidence in its prediction

according to its confidence score. In particular, we assign a reliability threshold 𝜃𝜃𝑞𝑞 to each base classifier

𝐵𝐵𝑞𝑞 and define a confident classifier as one whose confidence score is higher than its reliability threshold.

As different learning algorithms are used to generate the different base classifiers, aka different hypotheses,

in a heterogeneous ensemble system, different base classifiers should have different thresholds. The

selection rule for each base classifier 𝐵𝐵𝑞𝑞 can be formulated as follows:

�
𝐵𝐵𝑞𝑞 is selected to classify 𝒙𝒙(𝑡𝑡), if 𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)� > 𝜃𝜃𝑞𝑞
𝐵𝐵𝑞𝑞 is rejected to classify 𝒙𝒙(𝑡𝑡), otherwise

 (3)

Our task now is to determine the values of the reliability thresholds, which allows us to select base

classifiers for the sample 𝒙𝒙(𝑡𝑡). To do this, we formulate the confident-candidate selection sub-process as a

set of 𝑄𝑄 optimization problems, in each of which the objective is a function of 𝜃𝜃𝑞𝑞, and then solve them to

obtain the optimal values for 𝜃𝜃𝑞𝑞(𝑞𝑞 = 1,2, … ,𝑄𝑄).

Consider the selection problem 𝒫𝒫𝑞𝑞(𝒙𝒙(𝑡𝑡)), our aim is to determine whether or not we should select the base

classifier 𝐵𝐵𝑞𝑞 for an instance 𝒙𝒙(𝑡𝑡). This can be viewed as a binary classification problem whose goal is to

classify the base classifiers for an instance 𝒙𝒙(𝑡𝑡) into two classes: selected (class 1) and rejected (class 0).

Equation (3) specifies how we make predictions in the new classification problem 𝒫𝒫𝑞𝑞. Particularly, we

decide to select 𝐵𝐵𝑞𝑞 for an instance 𝒙𝒙(𝑡𝑡) if it is confident enough about its prediction, or we predict �̂�𝑎𝑞𝑞(𝒙𝒙(𝑡𝑡)) =

1 if 𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)� > 𝜃𝜃𝑞𝑞, and vice versa. This is equivalent to �̂�𝑎𝑞𝑞 = 𝕀𝕀[𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)� > 𝜃𝜃𝑞𝑞], where 𝕀𝕀[⋅] is the indicator

function.

We now define the loss function for 𝒫𝒫𝑞𝑞(𝒙𝒙(𝑡𝑡)) based on our prediction �̂�𝑎𝑞𝑞(𝒙𝒙(𝑡𝑡)) and the ground truth 𝑎𝑎𝑞𝑞(𝒙𝒙(𝑡𝑡))

of this problem. To do this, we first show how to obtain the true class label for 𝒫𝒫𝑞𝑞(𝒙𝒙(𝑡𝑡)). Given an instance

𝒙𝒙(𝑡𝑡), the objective is to select a base classifier which correctly predicts 𝒙𝒙(𝑡𝑡), and reject a base classifier that

misclassifies 𝒙𝒙(𝑡𝑡). Based on this observation, we can determine the ground truth 𝑎𝑎𝑞𝑞(𝒙𝒙(𝑡𝑡)) for the problem

𝒫𝒫𝑞𝑞(𝒙𝒙(𝑡𝑡)) as follows. When the true label 𝑦𝑦(𝑡𝑡) of 𝒙𝒙(𝑡𝑡) in the original classification problem is available, we

know whether or not the classifier 𝐵𝐵𝑞𝑞 makes a correct prediction for 𝒙𝒙(𝑡𝑡). If 𝒙𝒙(𝑡𝑡) is correctly classified by

𝐵𝐵𝑞𝑞, this sample will belong to the class selected (or 𝑎𝑎𝑞𝑞(𝒙𝒙(𝑡𝑡)) = 1) in the problem 𝒫𝒫𝑞𝑞(𝒙𝒙(𝑡𝑡)), whereas if 𝐵𝐵𝑞𝑞

misclassifies 𝒙𝒙(𝑡𝑡), then 𝑎𝑎𝑞𝑞(𝒙𝒙(𝑡𝑡)) = 0 (class rejected). The labeling process for 𝒫𝒫𝑞𝑞(𝒙𝒙(𝑡𝑡)) can be summarized

as follows:

�
𝑎𝑎𝑞𝑞�𝒙𝒙(𝑡𝑡)� = 1 , if 𝐵𝐵𝑞𝑞 correctly classifies 𝒙𝒙(𝑡𝑡)

𝑎𝑎𝑞𝑞�𝒙𝒙(𝑡𝑡)� = 0, if 𝐵𝐵𝑞𝑞 misclassifies 𝒙𝒙(𝑡𝑡)
 (4)

Given the true label 𝑎𝑎𝑞𝑞 and the prediction �̂�𝑎𝑞𝑞 for an instance 𝒙𝒙(𝑡𝑡) in the problem 𝒫𝒫𝑞𝑞, we can apply the cross-

entropy loss function as follows:

ℒ𝑞𝑞�𝒙𝒙(𝑡𝑡),𝜃𝜃𝑞𝑞� = �−𝑎𝑎𝑞𝑞 log�𝑠𝑠𝑞𝑞� − (1 − 𝑎𝑎𝑞𝑞)log (1 − 𝑠𝑠𝑞𝑞), if 𝑎𝑎𝑞𝑞 ≠ �̂�𝑎𝑞𝑞 = 𝕀𝕀[𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)� > 𝜃𝜃𝑞𝑞]
0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑎𝑎𝑤𝑤𝑒𝑒𝑠𝑠𝑒𝑒

 (5)

where 𝑎𝑎𝑞𝑞 = 𝑎𝑎𝑞𝑞�𝒙𝒙(𝑡𝑡)�, 𝑒𝑒𝑞𝑞 = 𝑒𝑒𝑞𝑞(𝒙𝒙(𝑡𝑡)), and 𝑠𝑠𝑞𝑞 = 𝑠𝑠𝑞𝑞�𝒙𝒙(𝑡𝑡),𝜃𝜃𝑞𝑞� = sigmoid�𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)� − 𝜃𝜃𝑞𝑞�.

Our goal is to find the optimal solution to the following optimization problem:

𝑎𝑎𝑒𝑒𝑚𝑚
𝜃𝜃𝑞𝑞∈ℝ

 ℒ𝑞𝑞�𝒙𝒙(𝑡𝑡),𝜃𝜃𝑞𝑞� (6)

To solve this problem under the stream setting, where the reliability threshold of each base classifier needs

to be updated on the fly based on newly arrived information, we apply the Stochastic Gradient Descent

algorithm to incrementally adjust each threshold 𝜃𝜃𝑞𝑞 ,𝑞𝑞 = 1, … ,𝑄𝑄 after the true label of the instance 𝒙𝒙(𝑡𝑡) is

revealed [41, 42]. In particular, whenever we make a wrong selection for 𝐵𝐵𝑞𝑞 at time 𝑡𝑡, i.e., 𝑎𝑎𝑞𝑞�𝒙𝒙(𝑡𝑡)� ≠

𝕀𝕀[𝑒𝑒𝑞𝑞 > 𝜃𝜃𝑞𝑞
(𝑡𝑡)], we update the corresponding threshold by the following rule:

𝜃𝜃𝑞𝑞
(𝑡𝑡+1) = 𝜃𝜃𝑞𝑞

(𝑡𝑡) − 𝜂𝜂(𝑡𝑡) 𝜕𝜕ℒ𝑞𝑞
𝜕𝜕𝜃𝜃𝑞𝑞

 (7)

where 𝜂𝜂(𝑡𝑡) is the learning rate.

We simplify the notations 𝑎𝑎𝑞𝑞 = 𝑎𝑎𝑞𝑞�𝒙𝒙(𝑡𝑡)�, 𝑒𝑒𝑞𝑞 = 𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)�, 𝑠𝑠𝑞𝑞 = 𝑠𝑠𝑞𝑞(𝒙𝒙(𝑡𝑡),𝜃𝜃𝑞𝑞), and then apply the chain rule:

𝜕𝜕ℒ𝑞𝑞
𝜕𝜕𝜃𝜃𝑞𝑞

=
𝜕𝜕ℒ𝑞𝑞
𝜕𝜕𝑠𝑠𝑞𝑞

×
𝜕𝜕𝑠𝑠𝑞𝑞
𝜕𝜕𝜃𝜃𝑞𝑞

= �
−𝑎𝑎𝑞𝑞
𝑠𝑠𝑞𝑞

+
1 − 𝑎𝑎𝑞𝑞
1 − 𝑠𝑠𝑞𝑞

�× 𝑠𝑠𝑞𝑞�1 − 𝑠𝑠𝑞𝑞�(−1)

= −𝑎𝑎𝑞𝑞�𝑠𝑠𝑞𝑞 − 1� − �1 − 𝑎𝑎𝑞𝑞�𝑠𝑠𝑞𝑞

= 𝑎𝑎𝑞𝑞 − 𝑠𝑠𝑞𝑞

Thus, the final update rule is given by:

�
𝜃𝜃𝑞𝑞

(𝑡𝑡+1) = 𝜃𝜃𝑞𝑞
(𝑡𝑡) − 𝜂𝜂(𝑡𝑡)�𝑎𝑎𝑞𝑞 − 𝑠𝑠𝑞𝑞�, if 𝑎𝑎𝑞𝑞 ≠ 𝕀𝕀 �𝑒𝑒𝑞𝑞 > 𝜃𝜃𝑞𝑞

(𝑡𝑡)�

𝜃𝜃𝑞𝑞
(𝑡𝑡+1) = 𝜃𝜃𝑞𝑞

(𝑡𝑡), 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑎𝑎𝑤𝑤𝑒𝑒𝑠𝑠𝑒𝑒
 (8)

We next provide the convergence analysis of this optimization problem. Specifically, we prove that if we

use the update rule (8), the reliability threshold 𝜃𝜃𝑞𝑞 converges to the optimal solution 𝜃𝜃𝑞𝑞∗ which minimizes

the loss ℒ𝑞𝑞, and the convergence rate is 𝑂𝑂(1/√𝑡𝑡). The main proof is shown in Theorem 1, which is

supported by three lemmas A1, A2, and A3 in the Appendix.

Theorem 1: Let 𝜃𝜃𝑞𝑞∗ = argmin
𝜃𝜃𝑞𝑞∈ℝ

 ℒ𝑞𝑞�𝒙𝒙(𝑡𝑡),𝜃𝜃𝑞𝑞�, and ℒ𝑞𝑞∗ = ℒ𝑞𝑞(𝒙𝒙(𝑡𝑡),𝜃𝜃𝑞𝑞∗). Choose 𝜂𝜂(𝑡𝑡) = 𝑝𝑝
√𝑡𝑡

 where 𝑐𝑐 is a

predefined positive number, then:

ℒ𝑞𝑞(�̅�𝜃𝑞𝑞)− ℒ𝑞𝑞∗ ≤
𝑝𝑝−1|1+2𝑝𝑝|2+𝑝𝑝2√𝑠𝑠−1

√𝑠𝑠
2√𝑡𝑡

 (9)

Where 𝜃𝜃𝑞𝑞 = 1
𝑡𝑡

(𝜃𝜃𝑞𝑞
(1) + 𝜃𝜃𝑞𝑞

(2) + ⋯+ 𝜃𝜃𝑞𝑞
(𝑡𝑡))

Proof.

Note that the cross-entropy loss function ℒ𝑞𝑞 is convex. Hence

𝜕𝜕ℒ𝑞𝑞
𝜕𝜕𝜃𝜃𝑞𝑞

× (𝜃𝜃𝑞𝑞
(𝑡𝑡) − 𝜃𝜃𝑞𝑞∗) ≥ ℒ𝑞𝑞 − ℒ𝑞𝑞∗ (10)

On the other hand:

𝔼𝔼 ��𝜃𝜃𝑞𝑞
(𝑡𝑡+1) − 𝜃𝜃𝑞𝑞∗�

2
� = 𝔼𝔼 ��𝜃𝜃𝑞𝑞

(𝑡𝑡) − 𝜂𝜂(𝑡𝑡) 𝜕𝜕ℒ𝑞𝑞
𝜕𝜕𝜃𝜃𝑞𝑞

− 𝜃𝜃𝑞𝑞∗�
2

�

= 𝔼𝔼[�𝜃𝜃𝑞𝑞
(𝑡𝑡) − 𝜃𝜃𝑞𝑞∗�

2
] − 2𝜂𝜂(𝑡𝑡)𝔼𝔼 �

𝜕𝜕ℒ𝑞𝑞
𝜕𝜕𝜃𝜃𝑞𝑞

× (𝜃𝜃𝑞𝑞
(𝑡𝑡) − 𝜃𝜃𝑞𝑞∗)� + (𝜂𝜂(𝑡𝑡))2𝔼𝔼 ��

𝜕𝜕ℒ𝑞𝑞
𝜕𝜕𝜃𝜃𝑞𝑞

�
2

�

≤ 𝔼𝔼[�𝜃𝜃𝑞𝑞
(𝑡𝑡) − 𝜃𝜃𝑞𝑞∗�

2
] − 2𝜂𝜂(𝑡𝑡)𝔼𝔼 �

𝜕𝜕ℒ𝑞𝑞
𝜕𝜕𝜃𝜃𝑞𝑞

× (𝜃𝜃𝑞𝑞
(𝑡𝑡) − 𝜃𝜃𝑞𝑞∗)�+ (𝜂𝜂(𝑡𝑡))2

(Here we use the result from Lemma A1: 𝔼𝔼 ��𝜕𝜕ℒ𝑞𝑞
𝜕𝜕𝜃𝜃𝑞𝑞

�
2
� ∈ [0,1])

Combining with the inequality (10), we obtain:

𝔼𝔼 ��𝜃𝜃𝑞𝑞
(𝑡𝑡+1) − 𝜃𝜃𝑞𝑞∗�

2
� ≤ 𝔼𝔼[�𝜃𝜃𝑞𝑞

(𝑡𝑡) − 𝜃𝜃𝑞𝑞∗�
2

]− 2𝜂𝜂(𝑡𝑡)�ℒ𝑞𝑞 − ℒ𝑞𝑞∗� + (𝜂𝜂(𝑡𝑡))2

⇒ 2�ℒ𝑞𝑞 − ℒ𝑞𝑞∗� ≤ (𝜂𝜂(𝑡𝑡))−1𝔼𝔼 ��𝜃𝜃𝑞𝑞
(𝑡𝑡) − 𝜃𝜃𝑞𝑞∗�

2
�+ 𝜂𝜂(𝑡𝑡) − (𝜂𝜂(𝑡𝑡))−1𝔼𝔼 ��𝜃𝜃𝑞𝑞

(𝑡𝑡+1) − 𝜃𝜃𝑞𝑞∗�
2
�

Calculating the sum of the inequality above from 𝑒𝑒 = 1,2, … , 𝑡𝑡 we have:

2��ℒ𝑞𝑞 − ℒ𝑞𝑞∗� ≤
𝑡𝑡

𝑝𝑝=1

(𝜂𝜂(1))−1𝔼𝔼 ��𝜃𝜃𝑞𝑞
(1) − 𝜃𝜃𝑞𝑞∗�

2
�+ �𝜂𝜂(𝑝𝑝)

𝑡𝑡

𝑝𝑝=1

+ �((𝜂𝜂(𝑝𝑝))−1 − (𝜂𝜂(𝑝𝑝−1))−1)𝔼𝔼 ��𝜃𝜃𝑞𝑞
(𝑝𝑝) − 𝜃𝜃𝑞𝑞∗�

2
�

𝑡𝑡

𝑝𝑝=2

≤ �𝜂𝜂(1)�−1|1 + 2𝑐𝑐|2 + �𝜂𝜂(𝑝𝑝)
𝑡𝑡

𝑝𝑝=1

+ ��(𝜂𝜂(𝑝𝑝))−1 − (𝜂𝜂(𝑝𝑝−1))−1�|1 + 2𝑐𝑐|2
𝑡𝑡

𝑝𝑝=2

(Here we use the result from Lemma A3)

= (𝜂𝜂(𝑡𝑡))−1|1 + 2𝑐𝑐|2 +�𝜂𝜂(𝑝𝑝)
𝑡𝑡

𝑝𝑝=1

=
√𝑡𝑡
𝑐𝑐

|1 + 2𝑐𝑐|2 + �
𝑐𝑐
√𝑒𝑒

𝑡𝑡

𝑝𝑝=1

≤
√𝑡𝑡
𝑐𝑐

|1 + 2𝑐𝑐|2 + 𝑐𝑐(2√𝑡𝑡 − 1)

where the last inequality uses ∑ 1
√𝑝𝑝

𝑡𝑡
𝑝𝑝=1 ≤ 2√𝑡𝑡 − 1.

From Jensen’s inequality, we have:

1
𝑡𝑡
��ℒ𝑞𝑞(𝜃𝜃𝑞𝑞

(𝑝𝑝))− ℒ𝑞𝑞∗� ≥ ℒ𝑞𝑞

𝑡𝑡

𝑝𝑝=1

��̅�𝜃𝑞𝑞� − ℒ𝑞𝑞∗

which indicates that:

ℒ𝑞𝑞��̅�𝜃𝑞𝑞� − ℒ𝑞𝑞∗ ≤
𝑐𝑐−1√𝑡𝑡|1 + 2𝑐𝑐|2 + 𝑐𝑐�2√𝑡𝑡 − 1�

2𝑡𝑡
=
𝑐𝑐−1|1 + 2𝑐𝑐|2 + 𝑐𝑐 2√𝑡𝑡 − 1

√𝑡𝑡
2√𝑡𝑡

In other words, ℒ𝑞𝑞��̅�𝜃𝑞𝑞� converges to ℒ𝑞𝑞∗ as 𝑡𝑡 approaches +∞, and the convergence rate is 𝑂𝑂(1/√𝑡𝑡).

The confident-candidate selection sub-process is presented in Function 1 and Function 2. The Function 1,

namely C_Selection, is employed to select confident base classifiers for a sample 𝒙𝒙(𝑡𝑡). First, we pass

𝒙𝒙(𝑡𝑡) through all base classifiers to obtain the concatenated outputs 𝐿𝐿(𝒙𝒙(𝑡𝑡)) (line 3) and then use it to calculate

the confidence score of each base classifier (line 5). Finally, a comparison between this confidence score

and the corresponding reliability threshold is drawn to decide whether or not should we select a base

classifier (lines 6-7). The Function 2 (or C_Update) is used to update the reliability thresholds when the

true label 𝑦𝑦(𝑡𝑡) of the sample 𝒙𝒙(𝑡𝑡) is available. This function checks if a base classifier makes a wrong

selection for 𝒙𝒙(𝑡𝑡) (line 5), then its reliability threshold will be updated by equation (8) (lines 6-7).

Function 1. Confident-candidate selection sub-process

Input: sample 𝒙𝒙(𝑡𝑡), 𝑩𝑩 = {𝐵𝐵𝑞𝑞}, 𝜽𝜽 = [𝜃𝜃1, … ,𝜃𝜃𝑄𝑄]

Output: 𝑪𝑪 – the set of confident classifiers

1. Function C_Selection:
2. 𝑪𝑪 = {∅}

3. Compute 𝐿𝐿�𝒙𝒙(𝑡𝑡)� by equation (1)

4. For 𝑞𝑞 = 1,2, … ,𝑄𝑄:

5. Compute 𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)� by equation (2)

6. If 𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)� > 𝜃𝜃𝑞𝑞
(𝑡𝑡):

7. 𝑪𝑪 = 𝑪𝑪 ∪ 𝐶𝐶𝑞𝑞

8. End If
9. End For
10. Return 𝑪𝑪
11. End Function

Function 2. Update reliability thresholds 𝜽𝜽 = [𝜃𝜃1, … ,𝜃𝜃𝑄𝑄]

Input: sample 𝒙𝒙(𝑡𝑡), label 𝑦𝑦(𝑡𝑡), 𝑩𝑩 = {𝐵𝐵1, … ,𝐵𝐵𝑄𝑄}

 𝜽𝜽 = [𝜃𝜃1, … ,𝜃𝜃𝑄𝑄] – the list of reliability thresholds

Output: 𝜽𝜽 = [𝜃𝜃1, … , 𝜃𝜃𝑄𝑄] – the list of updated reliability thresholds

1. Function C_Update:
2. For 𝑞𝑞 = 1,2, … ,𝑄𝑄:

3. Compute 𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)� and the prediction of 𝐵𝐵𝑞𝑞: 𝑦𝑦�𝑞𝑞
(𝑡𝑡) = argmaxym∈𝒴𝒴 𝑃𝑃𝑞𝑞�𝑦𝑦𝑚𝑚�𝒙𝒙

(𝑡𝑡)�

4. Compute 𝑎𝑎𝑞𝑞�𝒙𝒙(𝑡𝑡)� = 𝕀𝕀[𝑦𝑦�𝑞𝑞
(𝑡𝑡) = 𝑦𝑦(𝑡𝑡)]

5. If 𝑎𝑎𝑞𝑞�𝒙𝒙(𝑡𝑡)� ≠ 𝕀𝕀 �𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)� > 𝜃𝜃𝑞𝑞
(𝑡𝑡)�:

6. Compute 𝑠𝑠𝑞𝑞�𝒙𝒙(𝑡𝑡)� = 𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎𝑜𝑜𝑒𝑒𝑑𝑑 �𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)� − 𝜃𝜃𝑞𝑞
(𝑡𝑡)�

7. Update 𝜃𝜃𝑞𝑞
(𝑡𝑡+1) = 𝜃𝜃𝑞𝑞

(𝑡𝑡) − 𝜂𝜂(𝑡𝑡)(𝑎𝑎𝑞𝑞�𝒙𝒙(𝑡𝑡)� − 𝑠𝑠𝑞𝑞(𝒙𝒙(𝑡𝑡)))
8. End If
9. End For
10. Return 𝜽𝜽 = [𝜃𝜃1, … ,𝜃𝜃𝑄𝑄]
11. End Function

3.3. Accurate-candidate selection sub-process

In this sub-process, we use a performance measure to rank all the base classifiers and then choose the top

𝐾𝐾 best-performing candidates. The traditional metrics for batch classification, e.g., accuracy or F1 score at

a certain time, are not a reasonable choice in the data stream context [8]. Instead, metrics integrated with a

forgetting mechanism are especially suitable for the stream setting, since they can estimate how well a

classifier performs on recently arrived samples while ignoring the obsolete ones. In other words, the metrics

used in this setting should express the performance of a classifier on the current concept. This observation

inspires us to use the prequential accuracy metric [8]:

𝜌𝜌(α)(𝑡𝑡) = ∑ 𝛼𝛼𝑠𝑠−𝑘𝑘(1−𝑐𝑐𝑘𝑘)𝑠𝑠
𝑘𝑘=1
∑ 𝛼𝛼𝑠𝑠−𝑘𝑘𝑠𝑠
𝑘𝑘=1

 (11)

Here, 𝜌𝜌(α)(𝑡𝑡) is the prequential accuracy at the t-th instance, 𝑙𝑙𝑘𝑘 is the 0-1 loss at the 𝑘𝑘-th instance, and

𝛼𝛼 (0 < 𝛼𝛼 ≤ 1) is the fading factor to realize the forgetting mechanism. The smaller the fading factor 𝛼𝛼 is,

the faster we forget the accuracy rates of old instances. One can notice that if 𝛼𝛼 = 1, the prequential

accuracy metric becomes the standard accuracy metric commonly used in batch classification. In practice,

the fading factor 𝛼𝛼 is often chosen to be a number close to 1. From now on, we use 𝜌𝜌 to denote 𝜌𝜌(𝛼𝛼) to keep

the notation uncluttered.

Function 3. Update prequential accuracies 𝝆𝝆 = [𝜌𝜌1, … ,𝜌𝜌𝑄𝑄]

Input: sample 𝒙𝒙(𝑡𝑡), label 𝑦𝑦(𝑡𝑡), 𝑩𝑩 = {𝐵𝐵1, … ,𝐵𝐵𝑄𝑄}

 𝝆𝝆 = [𝜌𝜌1, … ,𝜌𝜌𝑄𝑄] – the list of prequential accuracies

Output: 𝝆𝝆′ – the sorted list of prequential accuracies
 𝑰𝑰 = [𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑄𝑄] – indices of 𝝆𝝆′

1. Function A_Update:
2. For 𝑞𝑞 = 1,2, … ,𝑄𝑄:

3. Compute the prediction of 𝐵𝐵𝑞𝑞: 𝑦𝑦�𝑞𝑞
(𝑡𝑡) = argmaxym∈𝒴𝒴 𝑃𝑃𝑞𝑞�𝑦𝑦𝑚𝑚�𝒙𝒙

(𝑡𝑡)�

4. Compute 0-1 loss: 𝑙𝑙𝑞𝑞 = 𝕀𝕀[𝑦𝑦�𝑞𝑞
(𝑡𝑡) ≠ 𝑦𝑦(𝑡𝑡)]

5. Update the prequential 𝑝𝑝𝑞𝑞 by equation (13)

6. End For
7. 𝒑𝒑′ = 𝑠𝑠𝑜𝑜𝑎𝑎𝑡𝑡(𝑝𝑝) = [𝑝𝑝𝑝𝑝1 ,𝑝𝑝𝑝𝑝2 , … , 𝑝𝑝𝑝𝑝𝑄𝑄]

8. 𝑰𝑰 = �𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑄𝑄�

9. Return 𝒑𝒑′, 𝑰𝑰

To update the prequential accuracy incrementally, we will calculate 𝜌𝜌(𝑡𝑡 + 1) through 𝜌𝜌(𝑡𝑡) and the 0-1 loss

at the (𝑡𝑡 + 1)-th instance 𝑙𝑙𝑡𝑡+1. Based on the definition of the prequential accuracy, we have:

𝜌𝜌(𝑡𝑡 + 1) = ∑ 𝛼𝛼𝑠𝑠+1−𝑘𝑘(1−𝑐𝑐𝑘𝑘)𝑠𝑠+1
𝑘𝑘=1
∑ 𝛼𝛼𝑠𝑠+1−𝑘𝑘𝑠𝑠+1
𝑘𝑘=1

= ∑ 𝛼𝛼𝑠𝑠−𝑘𝑘(1−𝑐𝑐𝑘𝑘)×α+(1−𝑐𝑐𝑠𝑠+1)𝑠𝑠
𝑘𝑘=1

∑ 𝛼𝛼𝑠𝑠−𝑘𝑘×𝛼𝛼𝑠𝑠
𝑘𝑘=1 +1

 (12)

Let the denominator of 𝜌𝜌(𝑡𝑡) be Ζ(𝑡𝑡) = ∑ 𝛼𝛼𝑡𝑡−𝑘𝑘𝑡𝑡
𝑘𝑘=1 , then the denominator of 𝜌𝜌(𝑡𝑡 + 1) can be calculated as

Ζ(𝑡𝑡 + 1) = ∑ 𝛼𝛼𝑡𝑡−𝑘𝑘 × 𝛼𝛼𝑡𝑡
𝑘𝑘=1 + 1 = Ζ(𝑡𝑡) × 𝛼𝛼 + 1. Substitute 𝑍𝑍(𝑡𝑡 + 1) into equation (12), we have

𝜌𝜌(𝑡𝑡 + 1) = 𝜌𝜌(𝑡𝑡)×Ζ(𝑡𝑡)×𝛼𝛼+(1−𝑐𝑐𝑠𝑠+1)
Ζ(𝑡𝑡+1)

 (13)

When the true label of the instance 𝒙𝒙(𝑡𝑡+1) is available, we know the value of 𝑙𝑙𝑡𝑡+1, and we can also compute

the value of 𝑍𝑍(𝑡𝑡 + 1) through 𝑍𝑍(𝑡𝑡); thus, we can now have access to the value 𝜌𝜌(𝑡𝑡 + 1) by using equation

(13).

The update phase of the accurate-candidate selection sub-process is presented in Function 3 (A_Update).

In this function, we apply equation (13) to update the prequential accuracy corresponding to each base

classifier (lines 2-6) and then sort the list of updated prequential accuracies. Finally, the function returns

this sorted list and its indices.

3.4. Proposed ensemble selection method

We have discussed how to select confident base classifiers in section 3.2 and how to select accurate base

classifiers in section 3.3. After having these two sets, we can intersect them to obtain both high-accuracy

and high-confidence base classifiers. To balance the contributions of the two sub-processes, we choose the

number of high-accuracy candidates 𝐾𝐾 to be the same as the number of base classifiers returned by the

confident-candidate selection sub-process.

The dynamic selection mechanism gives our framework high flexibility to deal with changes in data. The

number of base learners is automatically adapted to the new concept in the data without human intervention.

If we use a fixed size of the selected set, we need to tune one more parameter, which is not practical in data

stream learning.

The predictions of the base classifiers in the final set can either contribute equally to the final prediction or

be weighted according to the prequential accuracy calculated in the accurate-candidate selection sub-

process. We apply the latter strategy in our framework as some studies [10–12] suggested that using a

weighted voting scheme often gives higher predictive accuracy than a normal voting scheme. Here, the

prequential accuracy is used to weight the votes because it reflects the performance of a candidate on the

current data concept.

To handle concept drift, we integrate the ADWIN Drift Detector [30] to our proposed framework. ADWIN

detect changes by keeping recently arrived items in a variable-length window, whose maximal length

statistically satisfies the hypothesis “there has been no change in the average value inside the window”. If

this hypothesis is violated, a change is detected, and the window shrinks until the hypothesis holds. ADWIN

is practically useful, owning to the fact that it is parameter- and assumption-free, which means that it

automatically detects and adapts to the rate of concept drift. The only parameter in ADWIN is the

confidence bound 𝛿𝛿, a parameter inherent to all algorithms dealing with the random process, specifying

how confident the algorithm is about its outputs. Also, by compressing the window using a variant of the

exponential histogram technique, the resources used by ADWIN is highly efficient as it keeps a window of

length 𝑊𝑊 using only O(log 𝑊𝑊) memory and O(log 𝑊𝑊) processing time per item. In our framework, we use

ADWIN to keep track of the accuracy of each base classifier. When a change is detected for a base classifier,

we reset the learning process of this classifier. In this way, the base classifier completely forgets about the

old data and starts learning the new concept.

The details of the proposed method are presented in Algorithm 1. First, some necessary variables (𝑩𝑩,𝝆𝝆, 𝑰𝑰,𝜽𝜽)

are initialized (lines 1-4). For each instance 𝒙𝒙(𝑡𝑡), we use Function 1 (C_Selection) to select a set 𝑪𝑪 of

confident candidates (lines 5-7). Based on the cardinality 𝐾𝐾 of this set, we select a set 𝑨𝑨 of the top 𝐾𝐾 highest-

accuracy candidates (lines 8-11). We then take the intersection of the two sets to obtain the final set 𝑺𝑺 (line

12). Note that we select all the base classifiers to vote if 𝑺𝑺 is empty (lines 13-15). The final step of the

classification phase is to combine the votes of members in 𝑺𝑺 to derive the final vote (line 16). Here we use

the prequential accuracies to weight the votes as described above. When the true label 𝑦𝑦(𝑡𝑡) of the sample

𝒙𝒙(𝑡𝑡) is available, we pass it through Function 2 (C_Update) and Function 3 (A_Update) to update the

reliability thresholds 𝜽𝜽 and the prequential accuracies 𝝆𝝆, respectively (lines 17-18). Finally, ADWIN is

used to detect changes for each base classifier (lines 19-25). If ADWIN triggers a change for a base

classifier, we reset this classifier and then start its new learning process using the current instance 𝒙𝒙(𝑡𝑡) and

its true label 𝑦𝑦(𝑡𝑡).

Algorithm 1. Proposed ensemble selection method
Input: sample 𝒙𝒙(𝑡𝑡), label 𝑦𝑦(𝑡𝑡), 𝑩𝑩 = {𝐵𝐵1, … ,𝐵𝐵𝑞𝑞}

1. Initialize base models 𝐵𝐵𝑞𝑞 for all 𝑞𝑞 ∈ {1,2, … ,𝑄𝑄}
2. Initialize the list of prequential accuracies 𝝆𝝆: 𝜌𝜌𝑞𝑞 = 0 for all 𝑞𝑞 ∈ {1,2, … ,𝑄𝑄}
3. Initialize the indices of 𝝆𝝆: 𝑰𝑰 = [1, … ,𝑄𝑄]
4. Initialize the list of reliability thresholds 𝜽𝜽: 𝜃𝜃𝑞𝑞 = 1 for all 𝑞𝑞 ∈ {1,2, … ,𝑄𝑄}
5. For all samples 𝒙𝒙(𝑡𝑡):

 (Classify the sample 𝒙𝒙(𝑡𝑡))
6. 𝑪𝑪 = C_Selection(𝒙𝒙(𝑡𝑡),𝑩𝑩,𝜽𝜽)
7. 𝐾𝐾 = |𝑪𝑪|

8. 𝑨𝑨 = {∅} (𝑨𝑨 is the set of 𝐾𝐾 highest-accuracy candidates)
9. For 𝑞𝑞 = 1,2, … ,𝐾𝐾:
10. 𝑨𝑨 = 𝑨𝑨 ∪ 𝐵𝐵𝑝𝑝𝑞𝑞
11. End For
12. 𝑺𝑺 = 𝑪𝑪 ∩ 𝑨𝑨
13. If 𝑺𝑺 = ∅:
14. 𝑺𝑺 = 𝑩𝑩
15. End If
16. 𝑦𝑦�(𝑡𝑡) = 𝑺𝑺.𝑝𝑝𝑎𝑎𝑒𝑒𝑑𝑑𝑒𝑒𝑐𝑐𝑡𝑡(𝒙𝒙(𝑡𝑡)) (Combine the votes of members in 𝑺𝑺)

 (Update the ensemble when the true label 𝑦𝑦(𝑡𝑡) of 𝒙𝒙(𝑡𝑡) is revealed)

17. 𝜽𝜽 = C_Update(𝒙𝒙(𝑡𝑡),𝑦𝑦(𝑡𝑡),𝑩𝑩,𝜽𝜽)
18. 𝝆𝝆, 𝑰𝑰 = A_Update(𝒙𝒙(𝑡𝑡),𝑦𝑦(𝑡𝑡),𝑩𝑩,𝝆𝝆)
19. For 𝑞𝑞 = 1,2, … ,𝑄𝑄:
20. If ADWIN detects change for 𝐵𝐵𝑞𝑞:
21. Reset the base classifier 𝐵𝐵𝑞𝑞
22. Update the base classifier 𝐵𝐵𝑞𝑞 with �𝒙𝒙(𝑡𝑡),𝑦𝑦(𝑡𝑡)�
23. End If
24. End For
25. End For

Table 1. Data streams used in the experiments

Dataset name # of observations # of classes # of dimension
20_newsgroups 399,940 2 1000
Electricity 45,312 2 8
KDDCup99_full 4,898,431 23 41
Adult 48,842 2 14
Vehicle 98,528 2 100
Cod-rna 488,565 2 8
IMDB-F.drama 120,919 2 1001
CovType 581,012 7 54
Agrawal 1,000,000 2 9
AssetNegotiation-F2 1,000,000 2 5
AssetNegotiation-F3 1,000,000 2 5
AssetNegotiation-F4 1,000,000 2 5
BNG_tic-tac-toe 39,366 2 9
BNG_vote 131,072 2 16
BNG_trains 1,000,000 2 32
BNG_soybean 1,000,000 19 35
BNG_mushroom 1,000,000 2 22
BNG_kr-vs-kp_small 1,000,000 2 36
BNG_segment 1,000,000 7 19
BNG_ionosphere 1,000,000 2 34
BNG_credit-g 1,000,000 2 20
BNG_SPECT 1,000,000 2 22
BNG_solar-flare 1,000,000 6 12

BNG_page-blocks 295,245 5 10
BNG_lymph 1,000,000 4 18
BNG_labor 1,000,000 2 16
BNG_hepatitis 1,000,000 2 19
BNG_heart-statlog 1,000,000 2 13
BNG_heart-c 1,000,000 5 13
BNG_dermatology 1,000,000 6 34
BNG_credit-a 1,000,000 2 15
BNG_spambase 1,000,000 2 57
BNG_optdigits 1,000,000 10 64
BNG_anneal 1,000,000 6 38
BNG_wine 1,000,000 3 13
BNG_waveform-5000 1,000,000 3 40
BNG_sonar 1,000,000 2 60
BNG_satimage 1,000,000 6 36
BNG_cmc 55,296 3 9
Hyperplane_10_1E-4 1,000,000 5 10
Hyperplane_10_1E-3 1,000,000 5 10
LED_50000 1,000,000 10 24
RandomRBF_50_1E-4 1,000,000 5 10
RandomRBF_50_1E-3 1,000,000 5 10
RandomRBF_0_0 1,000,000 5 10
SEA_50000 1,000,000 2 3
SEA_50 1,000,000 2 3
Stagger3 1,000,000 2 3
Stagger2 1,000,000 2 3
Stagger1 1,000,000 2 3

3.5. Time complexity analysis

Suppose 𝒪𝒪(𝑈𝑈),𝒪𝒪(𝑉𝑉) are the average time complexities of the base classifiers’ classification process and

update process, respectively. The complexity of the learning process of the proposed method on a sample

(𝒙𝒙(𝑡𝑡),𝑦𝑦(𝑡𝑡)) is 𝒪𝒪(max (𝑄𝑄𝑈𝑈,𝑄𝑄log𝑄𝑄 + 𝑄𝑄𝑉𝑉 + 𝑄𝑄log𝑊𝑊)) in which 𝒪𝒪(𝑄𝑄𝑈𝑈) is the time complexity of the

classification process, and 𝒪𝒪(𝑄𝑄𝑙𝑙𝑜𝑜𝑎𝑎𝑄𝑄 + 𝑄𝑄𝑉𝑉 + 𝑄𝑄log𝑊𝑊) is the time complexity of the update process. In

detail, 𝒪𝒪(𝑄𝑄𝑈𝑈) and 𝒪𝒪(𝑄𝑄𝑉𝑉) are the time complexities of all base classifiers making predictions and updates,

respectively, while 𝒪𝒪(𝑄𝑄𝑙𝑙𝑜𝑜𝑎𝑎𝑄𝑄) is for sorting the list of prequential accuracies 𝝆𝝆 in the A_Update function.

Finally, 𝒪𝒪(𝑄𝑄log𝑊𝑊) is the time complexity of using ADWIN to detect changes for all base classifiers.

In practice, 𝒪𝒪(𝑙𝑙𝑜𝑜𝑎𝑎𝑊𝑊) and 𝒪𝒪(𝑙𝑙𝑜𝑜𝑎𝑎𝑄𝑄) are2 often much smaller than 𝒪𝒪(𝑉𝑉), so the running time of the update

process depends mostly on the time of all base classifiers performing updates. We can see later in the

experiments that the CPU running time of the proposed method is statistically comparable to the standard

heterogeneous ensemble with no selection method.

4. Experimental studies

4.1. Datasets

We conducted experiments on 50 data streams that are available in OpenML1 to evaluate the performance

of our proposed method. They are commonly used in the data stream literature [9,29,32,33], comprising of

both real-world data streams and synthetically generated data streams. Table 1 shows the details of these

datasets, and their descriptions can be found in the Supplementary Material.

4.2. Experimental setup

Two common evaluation procedures are often used for the stream setting: (1) Holdout method evaluates

the learning model on a single holdout set at regular time intervals. This approach is applicable when the

dataset has been well divided into train and test sets. However, it cannot provide reliable estimates for

non-stationary streams when using a fixed test set. (2) Prequential method first predicts the class label for

each arrived instance and then uses the ground truth to update the learning model.

For all experiments in this paper, we use the prequential evaluation method since not only is it more suitable

for evolving data streams than the holdout method, but it is also the most widely used procedure to evaluate

the performance of a classifier under the data stream setting. There are two main steps in this method:

- Predict the class label: At time 𝑡𝑡, we use our current model to predict the class label 𝑦𝑦�(𝑡𝑡) for

the sample 𝒙𝒙(𝑡𝑡).

- Update the model: if the true class label 𝑦𝑦(𝑡𝑡) of the sample 𝒙𝒙(𝑡𝑡) is revealed, the current model

is updated using (𝒙𝒙(𝑡𝑡),𝑦𝑦(𝑡𝑡)).

One common assumption in the prequential evaluation method is that the true class label 𝑦𝑦(𝑡𝑡) of the sample

𝒙𝒙(𝑡𝑡) is available before the next sample 𝒙𝒙(𝑡𝑡+1) arrives, so we can update our model with (𝒙𝒙(𝑡𝑡),𝑦𝑦(𝑡𝑡))

immediately after predicting 𝒙𝒙(𝑡𝑡). However, this assumption does not hold for many real-world applications

in which labels are not instantly obtained after making predictions. Gomes et al. [12] introduce the delayed

setting to simulate this scenario. In this study, we use the prequential evaluation with two different settings:

- Immediate prequential evaluation: each true label is instantly revealed to the model before the

next instance arrives.

- Delayed prequential evaluation: with delay 𝑑𝑑, the true label of the current sample is presented

after the model makes 𝑑𝑑 more predictions from the arrival time of this sample. The delay 𝑑𝑑 is

set to 1,000 in our experiments.

We use CPU running time, memory usage, and classification performance to evaluate the experiments. The

CPU running time is the summation of training and testing time measured in seconds. To quantify the

1 https://www.openml.org/

https://www.openml.org/

memory consumed by the learning algorithms, we use the RAM-Hours [34], i.e., one GB of RAM deployed

for 1 hour corresponds to one RAM-Hour. We use the predictive accuracy to access the classification

performance since this is the most frequently used metric in both batch and stream data [39,40]. We report

all these measures for both immediate setting and delayed setting.

To statistically compare the results of different stream classification methods, we apply the Friedman test

[35] to analyze the difference between each evaluation of multiple methods on multiple datasets.

Specifically, the Friedman test checks the null hypothesis that “all methods perform equally”. If the null

hypothesis is rejected, the Nemenyi post-hoc test is then conducted to compare all pairwise combinations

of the methods on multiple datasets. For these tests, we set the significance level to 0.05.

4.3. Benchmark algorithms

To demonstrate the performance of our proposed method for evolving data streams, we compare it with

well-known adaptive ensemble algorithms. First, the baseline Majority Vote Ensemble, which combines

the votes of all its members to make predictions, is used to show the improvement obtained by HEES. Here,

the ADWIN Drift Detector is integrated into the baseline to make it adapted to evolving data streams. We

call this ensemble MajorityVoteAdwin. Second, we compare HEES to the state-of-the-art heterogeneous

ensemble BLAST. Two versions of BLAST were introduced in [11]: BLAST with Fading Factor (BLAST

(FF)) and BLAST with Window (BLAST (Window)). Since the author has shown that the BLAST (FF)

works better than BLAST (Window), we only used BLAST (FF) in our experiments. The Fading Factor

and the number of active classifiers are set to 0.999 and 1, respectively, as suggested in the original paper.

We use the same pool of base classifiers for BLAST, MajorityVoteAdwin, and HEES, which is discussed

later in section 5.1.

Furthermore, HEES is compared to some well-known homogeneous ensemble methods, including Bagging

and Boosting variants. Bagging inspired methods are represented by Online Bagging with ADWIN

(OzaBagAdwin) [22], while Boosting variants being used are Online Boosting with ADWIN

(OzaBoostAdwin) and Boosting-like Online Learning Ensemble (BOLE) [10].

Finally, we compare HEES with one single method chosen from the pool of base classifiers shown in Table

2 to demonstrate the advantage of an ensemble method over a single base classifier. Here, we pick the

Extremely Fast Decision Trees (EFDT)[43] since it is the best performing single classifier in our

experiments (see the Nemenyi test result in Figure S1 in the Supplementary Material).

All the base classifiers and benchmark ensembles are available in the MOA2 library version 2019.05, and

their parameters are set to the defaults in this library if not mentioned.

Table 2. Base classifiers used in the experiments

Classifier Type Heterogeneous Ensemble

1. SGD (hinge loss) SVM

HEES4

HEES6

HEES8

HEES10

2. Hoeffding Tree Decision Tree

3. Random Hoeffding Tree Decision Tree

4. Perceptron Linear Model

5. Naïve Bayes Bayesian

6. Extremely Fast Decision Tree Decision Tree

7. Hoeffding Option Tree Option Tree

8. Hoeffding Adaptive Tree Decision Tree

9. 𝑘𝑘 Nearest Neighbors Lazy

10. Rule Classifier Decision Rules

*The classifiers are in descending order based on their computational speed

2 https://moa.cms.waikato.ac.nz/

https://moa.cms.waikato.ac.nz/

5. Results and discussions

5.1. Influence of parameters

a. Fading factor and learning rate

Our proposed method has only two parameters apart from those of ADWIN and of the base classifiers,

corresponding to the two selection sub-processes. The first parameter is the constant 𝑐𝑐 in the learning rate

Figure 1. Accuracy (immediate) of HEES with different values of 𝛼𝛼 and 𝑐𝑐 on 16 data streams.

𝜂𝜂 = 𝑝𝑝
√𝑡𝑡

 used to select the confident base classifiers. The second one is the fading factor 𝛼𝛼 used to control

the speed of forgetting of the prequential accuracy in the accurate-candidate selection sub-process.

In Figure 1, we present 3D plots of 16 data sets to illustrate the impact of using different values of 𝑐𝑐 and

𝛼𝛼. The x-axis shows 4 different values (0.9, 0.99, 0.999, 0.9999) for 𝛼𝛼, while the y-axis shows 7 different

values (0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1) for 𝑐𝑐. For each pair (𝛼𝛼, 𝑐𝑐), the accuracy of the corresponding

model is shown in the z-axis. We do not report the CPU running time and memory for these variants because

the two parameters 𝛼𝛼 and 𝑐𝑐 do not affect the time and memory used by HEES. From this figure, it is

observed that all the surfaces plotted are almost flat for all data streams, with only two exceptions:

Electricity and CovType. In both datasets, HEES obtains the best performance when 𝑐𝑐 = 1 and 𝛼𝛼 = 0.9.

However, the accuracy gap of HEES using other values of 𝑐𝑐 and 𝛼𝛼 is not significant (less than 3%). This

observation suggests that the impact of 𝛼𝛼 and 𝑐𝑐 on the proposed method’s accuracy is relatively

insignificant, or HEES is very robust to different values of its parameters. As a result, our method is easily

applicable to many real-world problems since it does not require much effort to tune parameters.

The minor effect of the two parameters in our framework can be explained as follows:

- In section 3.2, we used the parameter 𝑐𝑐 to control the learning rate 𝜂𝜂(𝑡𝑡) = 𝑝𝑝
√𝑡𝑡

 where 𝑡𝑡 is the number

of instances seen so far. When 𝑡𝑡 increases, the value of the learning rate 𝜂𝜂(𝑡𝑡) becomes smaller; thus,

the impact of the learning rate on the thresholds will get smaller. In other words, when we see more

incoming instances, the effect of the parameter 𝑐𝑐 on the confident-candidate selection sub-process

will become less. Therefore, this parameter has insignificant impact on the performance of the

proposed method on almost all datasets, except some small datasets like Electricity, BNG_tic-tac-

tor and Covtype.

- In the accurate-candidate selection sub-process (section 3.3), it is clear that if we change the value

of the Fading Factor 𝛼𝛼, the prequential accuracy of each base classifier will be affected. However,

this parameter would not affect the relative rankings of the base classifiers in terms of prequential

accuracy. Since we use these rankings to select base classifiers in the accurate-candidate selection

sub-process, the parameter 𝛼𝛼 only has a negligible effect on this selection sub-process. In addition,

the mechanism of this sub-process is similar to the BLAST method [11], whose authors also

claimed that the Fading Factor 𝛼𝛼 has a small impact on its performance.

In subsequent experiments, we use 𝑐𝑐 = 0.5 and 𝛼𝛼 = 0.999.

We also compare our method HEES to its variants with fixed reliability thresholds to show the benefit of

the threshold estimation module in the confident-candidate selection sub-process. Specifically, we use 5

different values for the fixed thresholds: 0.5, 0.6, 0.7, 0.8, 0.9. The Nemenyi test (see Figure S2 in the

Supplementary Material) shows that our proposed version of HEES significantly outperforms all its fixed-

threshold variants, demonstrating the advantage of dynamically learning the thresholds.

b. Number of base classifiers

We conduct an experiment using 10 different classifiers taken from the MOA library to see the impact of

different sets of base classifiers on the accuracy and running time of the proposed method. Unlike

homogeneous ensembles, which often need hundreds of base classifiers to obtain good performance,

heterogeneous ensembles require only a small number of base classifiers [11,28,37] to achieve a

comparable result with a much faster runtime, a key factor in data stream learning because of the sheer

volume and high speed of incoming instances. When constructing the base classifier pool for our

experiments, we select 10 very popular learning algorithms for data streams. These methods have been used

frequently in the data stream literature, especially in some state-of-the-art ensemble systems [11,28,33,37]

. Table 2 presents the details of the 10 chosen classifiers. As mentioned before, heterogeneous ensembles

use diverse learning algorithms to promote system diversity. Base classifiers of highly diverse learning

algorithms usually produce different predictions so that an ensemble of them can improve the classification

performance. Here, the 10 learning methods use significantly different approaches to train the base

Figure 2. Average accuracy and CPU running time of four variants of HEES based on 50 data streams.

classifiers, and this ensures the generation of diverse outputs.Table 2 also shows four variants of HEES,

each of which uses a different set of base classifiers. Particularly, HEES4, HEES6, HEES8, and HEES10 use

4, 6, 8, and 10 base classifiers, respectively. The comparison between these 4 variants is designed to

illustrate how the different number of base classifiers affects the performance and the runtime of HEES.

Figure 2 shows the result of this comparison. Here, we measure the accuracy (immediate setting) and CPU

running time of each variant on each dataset and then report the average accuracy and runtime over 50

datasets. We observe a trend where increasing the number of base classifiers results in classification

performance improvements. This is attributable to the fact that when having a larger pool of base classifiers,

more good candidates can be selected to contribute to the final prediction. However, the runtime also goes

up when we increase the number of base classifiers. Based on Figure 2, HEES8 can be considered the most

effective one since it offers a good trade-off between predictive performance and runtime. In particular,

HEES8 has higher accuracy and reasonable runtime in comparison with HEES6 and HEES4, while it is

much faster than HEES10 with only a small trade-off for accuracy. The inclusion of 𝑘𝑘NN and Rule Classifier

makes HEES10 extremely slow (hence the jump in running time as seen in Fig. 2 for HEES10). Experiments

in [11] show that the runtimes of 𝑘𝑘NN and Rule Classifier are very high in comparison to other online

classifiers, making them not suitable for high-speed data streams.

Further experiments in this work are based on the HEES8 and referred to solely as HEES. To make a fair

comparison, we also use the 8 base classifiers for the BLAST and MajorityVoteAdwin ensemble.

In addition, we also design experiments to investigate the behavior of the proposed method with

homogeneous base classifiers. Specifically, we integrate our selection algorithm to Online Bagging

ensemble of 100 Hoeffding Trees. We observe that our framework does not work well with Online Bagging

because of the following reason. Since all the base classifiers are generated from the Hoeffding Trees

algorithm, they behave similarly in our selection process. In the confident-candidate selection sub-

process, a plot of the values of the thresholds associated with the first ten base classifiers over time

on the Electricity and Covtype datasets (see Figure S3 in Supplementary Material) shows that the

first ten base classifiers behave similarly. Likewise, in the accurate-candidate selection sub-

process, all the base classifiers also have similar prequential accuracies over time, as shown in

Figure S4 in Supplementary Material. The similarity in the behavior of all base classifiers makes

the whole selection process inefficient because almost all the time, either all the base classifiers

are selected or none of them are selected.

5.2. Accuracy comparison

Tables 3 and 4 show the accuracy of all algorithms under the immediate setting and the delayed setting,

respectively. The P-values computed based on these rankings with Friedman test are 7.8e-16 for the

immediate setting and 2.2e-16 for the delayed setting; therefore, we rejected the null hypotheses that all

methods perform equally. We then conduct the Nemenyi significance tests, and the results are illustrated in

Figure 3. The figure shows that the proposed method is significantly better than MajorityVoteAdwin,

BOLE, EFDT, and OzaBoostAdwin in both settings. Moreover, HEES statistically outperforms BLAST in

the immediate setting. Meanwhile, there is no statistical difference in the pairwise comparison between the

proposed method and the remaining benchmark algorithms.

The proposed method obtains the best average rankings for both settings (2.25 for the immediate setting

and 2.46 for the delayed setting), followed by OzaBagAdwin (3.20 for the immediate setting and 2.97 for

the delayed setting). The OzaBoostAdwin has the lowest rankings in both settings (5.71 for the immediate

setting and 5.82 for the delayed setting), even worse than the single classifier EFDT. There is not much

variation with respect to ranking changes while comparing the results between the immediate and delayed

settings. The only change is that EFDT swaps rankings with BOLE, suggesting that this Boosting inspired

method is not suitable for delayed training.

Figure 3. The result of Nemenyi test based on accuracy. a. Immediate setting. b. Delayed setting

Figure 4. The result of Nemenyi test based on (a) CPU Running Time and (b) RAM-Hour

(a) (b)

(a) (b)

Under the immediate setting, the proposed method ranks first in terms of accuracy in 13 cases (26%), ranks

second in 18 cases (36%). HEES only performs poorly on the BNG_anneal dataset (rank 5th), but the

differences between the accuracies of HEES and the benchmark algorithms are not very significant. In

comparison with the state-of-the-art heterogeneous ensemble BLAST, our proposed method wins on 39

datasets (78%), performs equally on 1 dataset (2%), and loses on 10 datasets (20%).

For the delayed setting, there are 10 cases (20%) in which the proposed method performs best, and 19 cases

(38%) where it ranks second. HEES once again performs poorly on the BNG_anneal dataset (rank 5th). In

this setting, HEES also has low rankings on the Covtype dataset (rank 5th) and Electricity dataset (rank 5th).

However, HEES still has the best rankings on average like in the immediate setting, suggesting that the

proposed method works well in both settings.

5.3. Resources comparison

The CPU running times and the RAM-Hour scores of the benchmark algorithms and the proposed method

are presented in Table S1 and S2 (Supplementary Material). We only report the runtime and memory for

the immediate setting since the relative rankings of all methods remain the same in the delayed setting. We

once again conduct the Friedman tests to compare the CPU running times and the RAM-Hour scores of

multiple methods on multiple datasets. In this case, the P-values computed by the tests are less than 2.2e-

16 for both cases. Thus, we reject the null hypotheses that all methods perform equally in terms of the

consumed resources (time and memory). We then use the Nemenyi post-hoc test for all pairwise

comparisons among the 7 methods. The result of this test is illustrated in Figure 4.

In terms of CPU running time, the single classifier EFDT obtains the best average rankings (rank value

1.28), followed by the baseline MajorityVoteAdwin (rank value 3.18) and the proposed method HEES (rank

value 3.30). The Nemenyi test shows that EFDT requires significantly less running time in comparison to

all other methods. This makes sense, as each ensemble contains multiple single classifiers; thus, its runtime

is at least the sum of all base classifiers’ runtime. Another observation here is that heterogeneous ensemble

seems to run faster than homogeneous ensembles. This is due to the fact that a homogeneous ensemble

often includes many more base classifiers than a heterogeneous ensemble. Another reason is that slow base

classifiers like 𝑘𝑘NN and Rule Classifier are excluded in the 3 heterogeneous ensembles in our experiments

because of the time-accuracy trade-off discussed in section 5.1b. Based on the Nemenyi result, the proposed

method is significantly faster than OzaBagAdwin and OzaBoostAdwin, while there is no statistical

difference in the pairwise comparison between the proposed method and MajorityVoteAdwin and BLAST.

Meanwhile, the OzaBoostAdwin is the slowest method (rank value 6.80) in the experiment, which suggests

that it is not suitable for high-speed data streams.

Among all methods, the single classifier EFDT consumes the least memory per hour (rank value 1.48),

while OzaBoostAdwin requires the most memory overhead per hour (rank value 6.90). There is no

statistical difference in the pairwise comparison among the remaining methods. The relative rankings do

not vary much while comparing the results between the runtime and the RAM-Hour score. The only change

is that BOLE improves its ranking (rank value 3.72) to surpass HEES (rank value 3.74) and BLAST (rank

value 4.2).

5.4. Discussions

The OzaBoostAdwin method performs very poorly in our experiments. It ranks lowest in both performance

and resource comparisons. It is not surprising as experiments in many studies [20–22] have shown that

Online Boosting performs much worse than Online Bagging. We recommend using other Boosting variants

like BOLE instead of the original Online Boosting, especially for high-speed data streams.

The EFDT method is the best base classifier in our experiments. Being a single classifier, it obviously runs

much faster and consumes less memory than the other ensemble methods. However, in terms of accuracy,

it performs worse than the others except for OzaBoostAdwin (both settings) and BOLE (delayed setting).

In addition, EFDT obtains significantly lower rankings than the proposed method in both settings according

to the Nemenyi test.

The BOLE ensemble improves Oza and Russell’s Online Boosting by weakening the requirements to allow

the individual members to vote and employing the DDM method to handle concept drift. Our experiment

shows that it achieves higher accuracy in comparison to OzaBoostAdwin. Also, this method is fairly

memory efficient. However, it still ranks lower than other ensemble methods in terms of accuracy and

runtime.

The MajorityVoteAdwin ensemble is obtained by integrating the ADWIN drift detector to the MajorityVote

ensemble, which uses all its base classifiers to vote for each arrived sample. This method rank 4rd in both

immediate and delayed setting. We use the MajorityVoteAdwin ensemble as a baseline to our algorithm,

aiming to show that a well-chosen subset of base classifiers can outperform the whole ensemble system,

and the experiments show that our proposed method obtains better average ranking than this baseline.

BLAST is a heterogeneous ensemble that uses the Online Performance Estimation framework to rank the

base classifiers and then select the 𝑘𝑘 best base learners to make predictions. This method is quite similar to

the accurate-candidate selection sub-process in our method. However, the number of chosen base classifiers

in BLAST is fixed (the authors suggested to use 𝑘𝑘 = 1) before the stream starts, and it does not take into

account the confidence in the predictions of base classifiers. Consequently, the flexibility of BLAST is

restricted, and it can only achieve average performance in our experiments. In comparison to the

heterogeneous ensemble MajorityVoteAdwin in terms of accuracy, BLAST has slightly higher rankings

under both immediate setting and delayed setting. By contrast, its rankings is lower than the proposed

method and the homogeneous ensemble OzaBagAdwin. Futhermore, the resources consumed by BLAST

are more efficient than the three homogeneous ensembles OzaBagAdwin, OzaBoostAdwin, and BOLE.

The homogeneous ensemble OzaBagAdwin is built based on the Online Bagging and the drift detector

ADWIN. This ensemble obtained good predictive performance in many studies [11,21]. This is also shown

in our experiments, as it ranks 2nd in both the immediate setting and the delayed setting with regard to

accuracy. However, its CPU running time and RAM-Hour score are very high compared to the three

heterogeneous ensembles, as discussed in section 5.3. For high-speed data streams, one would prefer to use

a heterogeneous ensemble as it can obtain comparable accuracy with significantly less runtime and memory,

two very important factors in online learning.

The proposed method ranks first in the Nemenyi post hoc test in terms of accuracy for both the immediate

setting and the delayed setting. Our method is more flexible than both BLAST and MajorityVoteAdwin as

it can dynamically adjust the number of active classifiers selected to vote for the arriving samples. While

BLAST always chooses one best classifier according to the Online Performance Estimation Framework to

predict samples, and the MajorityVoteAdwin always uses the votes of all base classifiers, the proposed

method automatically selects a subset of base classifiers with variable size to make predictions. Moreover,

while the BLAST method only considers the recent performance of base classifiers, the proposed method

uses both the recent accuracy scores and the confidence in the predictions of the base classifiers to perform

the selection process. Consequently, the proposed method obtains better average rankings for both settings

in terms of accuracy, and it statistically beats MajorityVoteAdwin (both settings) and BLAST (immediate

setting). Also, the time and memory resources consumed by the proposed method is more efficient than

BLAST and all the homogeneous ensembles.

6. Conclusions

In this study, we proposed a novel heterogeneous ensemble selection method for evolving data streams by

selecting high-accuracy and high-confidence base classifiers. The selection process is divided into two sub-

processes: confident-candidate selection and accurate-candidate selection. When classifying a data sample,

each sub-process returns a set of base classifiers, and the intersection of these sets is used to make the final

vote. On the one hand, the confident-candidate selection is performed by introducing a reliability threshold

for each base classifier and following the rule that a classifier is allowed to vote if its confidence score

exceeds this threshold. We introduced a measure to quantify the confidence in the prediction of each

candidate. By using this measure, we model the confident-candidate selection sub-process as a classification

problem in which the reliability thresholds act as parameters, and then we apply the Stochastic Gradient

Descent algorithm to optimize these parameters in an online manner. On the other hand, in the accurate-

candidate selection sub-process, we employ the prequential accuracy to estimate the recent performance of

each base classifier and then use this score to rank the candidates. A set of base classifiers with the highest

rankings are returned by this sub-process. The size of this set is chosen to be equal to the size of the set

returned by the confident-candidate selection sub-process. Since the number of base classifiers chosen to

vote can vary for each arrived sample, our selection method is very flexible in comparison to other

heterogeneous ensembles, e.g., BLAST or MajorityVoteAdwin.

We compare HEES against state of the art ensembles over 50 data streams from both real-world applications

and synthetic data generators. We use two different settings to evaluate the performance of each ensemble:

immediate prequential setting and delayed prequential setting. The experiments show that not only does the

proposed method achieved high predictive performance in both settings, but it also uses very little time and

memory resources, two crucially important factors in the data stream context. Furthermore, we evaluated

how the parameters affect the performance of the proposed method. There are two parameters that control

the performance of HEES: the constant 𝑐𝑐 in the learning rate 𝜂𝜂 = 𝑝𝑝
√𝑡𝑡

 controlling the confident-candidate

selection sub-process and the fading factor 𝛼𝛼 controlling the accurate-candidate selection sub-process. We

experimentally demonstrated that the proposed method is very robust to these parameters, making it highly

applicable to many different data streams.

In future work, a plausible approach to improve HEES is to speed up the convergence in the confident-

candidate selection sub-process by using a second-order algorithm for online convex optimization, such as

the Stochastic Quasi-Newton Method. We are also interested in investigating how to develop an active

learning strategy for our framework to tackle various real-world problems, including delayed streams where

labels are not readily available. Another possibility is to implement a parallel version of HEES to resolve

the issue of high computation cost in many big data streams.

Table 3. Accuracy – immediate setting
Dataset name OzaBagAdwin OzaBoostAdwin BOLE BLAST EFDT MajorityVoteAdwin HEES
20_newsgroups 99.5497 (5) 79.9415 (7) 99.6800 (2) 99.5727 (4) 98.3428 (6) 99.6602 (3) 99.7520 (1)
Electricity 84.3485 (6) 88.7579 (2) 90.8280 (1) 85.1209 (4) 80.6431 (7) 84.4986 (5) 87.0101 (3)
KDDCup99_full 99.9470 (4) 30.0149 (7) 99.9803 (1) 99.9630 (3) 99.9053 (6) 99.9450 (5) 99.9690 (2)
Adult 84.7058 (1) 81.0245 (7) 82.2120 (6) 84.3147 (4) 83.8930 (5) 84.5788 (3) 84.6915 (2)
Vehicle 84.2096 (4) 79.9357 (7) 81.3718 (6) 84.4846 (2) 82.8709 (5) 84.2542 (3) 84.8510 (1)
Cod-rna 95.5766 (1) 95.2189 (4) 94.8686 (6) 95.0698 (5) 94.7104 (7) 95.4323 (3) 95.5676 (2)
IMDB-F.drama 63.0794 (5) 49.0212 (7) 55.7828 (6) 63.6128 (3) 63.2175 (4) 63.7758 (1) 63.7236 (2)
Covtype 84.7394 (5) 92.4809 (2) 92.6015 (1) 87.3579 (4) 84.6678 (7) 84.6709 (6) 88.4433 (3)
Agrawal 94.9480 (3) 91.3200 (7) 92.3598 (5) 94.9616 (2) 94.9662 (1) 91.8785 (6) 94.9203 (4)
AssetNegotiation-F2 94.8739 (4) 92.4566 (7) 93.1513 (6) 94.8781 (2.5) 94.8781 (2.5) 94.8582 (5) 94.8793 (1)
AssetNegotiation-F3 94.8030 (4) 92.0472 (7) 92.4183 (6) 94.8060 (2) 94.8034 (3) 94.4257 (5) 94.8070 (1)
AssetNegotiation-F4 94.7081 (4) 91.9490 (7) 93.2271 (6) 94.7128 (1) 94.7103 (3) 94.6968 (5) 94.7117 (2)
BNG_tic-tac-toe 74.0639 (1) 71.4728 (7) 73.3882 (6) 73.6016 (4) 73.7438 (2) 73.5051 (5) 73.7413 (3)
BNG_vote 96.5324 (2) 96.1342 (6) 95.6924 (7) 96.4874 (3) 96.4645 (4) 96.4256 (5) 96.5538 (1)
BNG_trains 94.2126 (3) 90.5996 (7) 94.5210 (1) 93.9019 (4) 93.8651 (5) 93.4647 (6) 94.3701 (2)
BNG_soybean 90.2813 (1) 88.9955 (6) 90.0764 (5) 90.1310 (4) 86.7306 (7) 90.2248 (2) 90.2079 (3)
BNG_mushroom 98.9510 (2) 98.7342 (7) 98.7764 (6) 98.9140 (4) 98.9246 (3) 98.8255 (5) 98.9634 (1)
BNG_kr-vs-kp_small 95.2423 (3) 93.8942 (6) 93.4371 (7) 95.2270 (4) 95.2751 (2) 94.9549 (5) 95.2980 (1)
BNG_segment 86.4928 (5) 84.4816 (7) 86.1050 (6) 86.7665 (2) 86.8029 (1) 86.5986 (4) 86.7249 (3)
BNG_ionosphere 95.2660 (2) 94.5796 (6) 96.3940 (1) 94.6508 (5) 94.5173 (7) 94.7751 (4) 95.2053 (3)
BNG_credit-g 78.2546 (1) 70.7416 (7) 76.5613 (6) 77.6404 (5) 77.6606 (4) 77.7167 (3) 78.1084 (2)
BNG_SPECT 84.9970 (1) 80.6309 (7) 82.0841 (6) 84.8693 (3) 84.7103 (5) 84.8150 (4) 84.9402 (2)
BNG_solar-flare 77.6641 (4) 71.3557 (7) 76.0827 (6) 77.6443 (5) 77.6665 (3) 77.6787 (2) 77.6800 (1)
BNG_page-blocks 90.4195 (5) 90.6088 (3) 89.8224 (7) 90.6393 (2) 90.6606 (1) 90.1804 (6) 90.5336 (4)
BNG_lymph 90.7837 (2) 88.2649 (7) 88.6689 (6) 90.4359 (4) 90.4381 (3) 90.4139 (5) 90.7974 (1)
BNG_labor 94.6272 (1) 93.9364 (7) 94.3634 (4) 94.2506 (5) 94.0453 (6) 94.4011 (3) 94.5580 (2)
BNG_hepatitis 92.0154 (1) 87.9413 (7) 90.1394 (6) 91.4911 (4) 91.3487 (5) 91.7023 (3) 91.7896 (2)
BNG_heart-statlog 88.7972 (1) 85.2580 (7) 87.5640 (6) 88.0921 (4) 88.0540 (5) 88.4014 (3) 88.5871 (2)
BNG_heart-c 88.2121 (3) 85.7231 (7) 87.5648 (6) 88.1843 (4) 88.2790 (2) 88.1045 (5) 88.2904 (1)
BNG_dermatology 98.5767 (3) 97.5513 (6) 97.9874 (5) 98.6070 (1) 97.1862 (7) 98.5645 (4) 98.6012 (2)
BNG_credit-a 88.3241 (2) 85.6891 (7) 86.5707 (6) 87.9507 (4) 87.9261 (5) 88.2832 (3) 88.3288 (1)
BNG_spambase 66.5615 (1) 59.8777 (6) 56.8125 (7) 66.4993 (3) 66.4295 (5) 66.4370 (4) 66.5413 (2)
BNG_optdigits 90.6541 (6) 93.4566 (1) 92.1487 (2) 91.7469 (3) 84.7050 (7) 90.7869 (5) 91.6997 (4)
BNG_anneal 94.8361 (6) 95.3469 (2) 95.7623 (1) 95.0877 (4) 95.1228 (3) 94.4914 (7) 94.9965 (5)
BNG_wine 93.9554 (1) 92.8401 (6) 92.4778 (7) 93.4094 (4) 93.2879 (5) 93.5994 (3) 93.8587 (2)
BNG_waveform-5000 88.6755 (1) 82.2002 (7) 86.2666 (6) 87.3046 (4) 86.7596 (5) 88.4340 (2) 88.3767 (3)
BNG_sonar 82.3031 (1) 74.5457 (7) 80.2281 (5) 80.7370 (4) 79.9985 (6) 81.4782 (3) 81.8965 (2)

BNG_satimage 84.0677 (4) 84.5127 (1) 83.5110 (5) 82.7787 (6) 82.6513 (7) 84.4883 (2) 84.3843 (3)
BNG_cmc 52.9062 (7) 54.0093 (1) 53.3890 (2) 53.1539 (4) 53.0147 (6) 53.0997 (5) 53.2353 (3)
Hyperplane_10_1E-4 90.0683 (4) 80.5298 (7) 87.8308 (6) 93.8233 (1) 88.9152 (5) 92.2226 (3) 92.9739 (2)
Hyperplane_10_1E-3 88.3785 (4) 74.7480 (7) 86.7038 (5) 91.8482 (1) 81.5866 (6) 89.8474 (3) 90.9733 (2)
LED_50000 73.9247 (2) 65.5604 (7) 73.9381 (1) 73.7455 (5) 69.8808 (6) 73.8899 (4) 73.8981 (3)
RandomRBF_50_1E-4 59.3582 (5) 62.3468 (4) 62.6365 (3) 64.1603 (2) 51.2695 (7) 58.6528 (6) 65.5343 (1)
RandomRBF_50_1E-3 51.9859 (1) 38.5476 (6) 50.4046 (2) 46.0909 (5) 31.8711 (7) 47.8790 (4) 48.8570 (3)
RandomRBF_0_0 87.6844 (2) 87.3722 (3) 88.5122 (1) 86.0249 (6) 86.0732 (5) 85.1414 (7) 86.5998 (4)
SEA_50000 88.3789 (4) 83.6650 (7) 88.2097 (5) 88.4505 (2) 84.8242 (6) 88.4936 (1) 88.4440 (3)
SEA_50 88.5785 (5) 83.3069 (7) 88.5975 (4) 88.9968 (3) 84.9588 (6) 89.2349 (1) 89.1715 (2)
Stagger3 99.9996 (4) 99.9992 (7) 99.9996 (4) 99.9996 (4) 99.9996 (4) 99.9996 (4) 99.9997 (1)
Stagger2 99.9988 (6) 99.9990 (3.5) 99.9993 (1) 99.9990 (3.5) 99.9985 (7) 99.9990 (3.5) 99.9990 (3.5)
Stagger1 99.9984 (7) 99.9996 (1) 99.9986 (6) 99.9989 (5) 99.9990 (3) 99.9990 (3) 99.9990 (3)
Average Ranking 3.2 5.71 4.56 3.54 4.79 3.95 2.25

Mean ± Std
87.2303

±11.6737

82.6725

±15.4537

86.4342

±12.3553

87.2439

±11.8804

85.6651

±13.5718

86.9977

±11.9088

87.5609

±11.6018

Table 4. Accuracy – delayed setting
Dataset name OzaBagAdwin OzaBoostAdwin BOLE BLAST EFDT MajorityVoteAdwin HEES
20_newsgroups 94.0024 (3) 75.3615 (7) 92.8483 (5) 94.5370 (1) 94.0583 (2) 92.7764 (6) 93.2664 (4)
Electricity 74.2530 (1) 72.3822 (3) 61.6041 (7) 71.5359 (4) 73.8604 (2) 66.1175 (6) 70.5385 (5)
KDDCup99_full 98.8968 (3) 29.0903 (7) 98.5026 (5) 99.2838 (2) 99.5231 (1) 98.4609 (6) 98.7061 (4)
Adult 84.6892 (1) 81.0209 (7) 81.9468 (6) 84.2649 (4) 83.9325 (5) 84.4969 (3) 84.6390 (2)
Vehicle 84.2312 (4) 79.9442 (7) 81.2577 (6) 84.5808 (2) 82.9434 (5) 84.2866 (3) 84.8741 (1)
Cod-rna 95.5700 (1) 95.2193 (4) 94.8438 (6) 95.0940 (5) 94.7029 (7) 95.4441 (3) 95.5672 (2)
IMDB-F.drama 62.7649 (5) 48.2134 (7) 54.5468 (6) 63.4603 (2) 63.1343 (4) 63.6596 (1) 63.4320 (3)
Covtype 80.4006 (2) 81.5064 (1) 54.0266 (7) 78.8272 (3) 77.9029 (4) 72.1413 (6) 73.1937 (5)
Agrawal 94.9468 (3) 91.3159 (7) 92.3709 (5) 94.9687 (2) 94.9701 (1) 91.8614 (6) 94.9293 (4)
AssetNegotiation-F2 94.8744 (4) 92.4504 (7) 93.1672 (6) 94.8792 (2) 94.8787 (3) 94.8604 (5) 94.8793 (1)
AssetNegotiation-F3 94.8018 (4) 92.0303 (7) 92.4089 (6) 94.8063 (2) 94.8027 (3) 94.4233 (5) 94.8068 (1)
AssetNegotiation-F4 94.7073 (4) 91.9579 (7) 93.2181 (6) 94.7124 (1) 94.7090 (3) 94.6958 (5) 94.7104 (2)
BNG_tic-tac-toe 74.0343 (1) 71.6989 (7) 73.2185 (6) 73.5912 (4) 73.5730 (5) 73.6459 (3) 73.6955 (2)
BNG_vote 96.5265 (1) 96.0691 (6) 95.6878 (7) 96.4773 (3) 96.4681 (4) 96.4066 (5) 96.5227 (2)
BNG_trains 94.2060 (3) 90.6086 (7) 94.5054 (1) 93.9393 (4) 93.8739 (5) 93.4570 (6) 94.3626 (2)
BNG_soybean 90.2778 (1) 89.0070 (6) 90.0951 (5) 90.1387 (4) 86.7397 (7) 90.2223 (2) 90.1985 (3)
BNG_mushroom 98.9510 (2) 98.7383 (7) 98.7793 (6) 98.9097 (4) 98.9209 (3) 98.8265 (5) 98.9643 (1)

BNG_kr-vs-kp_small 95.2408 (3) 93.9135 (6) 93.4673 (7) 95.2263 (4) 95.2812 (2) 94.9629 (5) 95.3045 (1)
BNG_segment 86.4942 (5) 84.4770 (7) 86.1200 (6) 86.7662 (2) 86.8013 (1) 86.6062 (4) 86.7239 (3)
BNG_ionosphere 95.2576 (2) 94.5783 (6) 96.3846 (1) 94.6505 (5) 94.5309 (7) 94.7835 (4) 95.2042 (3)
BNG_credit-g 78.2472 (1) 70.7168 (7) 76.5469 (6) 77.6535 (5) 77.6549 (4) 77.7169 (3) 78.1063 (2)
BNG_SPECT 84.6349 (5) 80.6923 (7) 82.0728 (6) 84.8444 (2) 84.7109 (4) 84.8102 (3) 84.9361 (1)
BNG_solar-flare 77.6624 (4) 71.3787 (7) 76.0667 (6) 77.6321 (5) 77.6638 (3) 77.6760 (1) 77.6752 (2)
BNG_page-blocks 90.4226 (5) 90.6330 (3) 89.8183 (7) 90.6439 (2) 90.6547 (1) 90.1783 (6) 90.5477 (4)
BNG_lymph 90.7838 (2) 88.2864 (7) 88.6525 (6) 90.4597 (3) 90.4298 (4) 90.4061 (5) 90.7993 (1)
BNG_labor 94.6284 (1) 93.9155 (7) 94.3555 (4) 94.2445 (5) 94.0563 (6) 94.4182 (3) 94.5579 (2)
BNG_hepatitis 92.0113 (1) 87.9235 (7) 90.1304 (6) 91.4978 (4) 91.3501 (5) 91.7042 (3) 91.7921 (2)
BNG_heart-statlog 88.8021 (1) 85.2636 (7) 87.4879 (6) 88.0866 (4) 88.0364 (5) 88.3980 (3) 88.5815 (2)
BNG_heart-c 88.2146 (3) 85.7466 (7) 87.5824 (6) 88.1988 (4) 88.2778 (2) 88.1208 (5) 88.3000 (1)
BNG_dermatology 98.5791 (3) 97.5428 (6) 97.9845 (5) 98.6057 (1) 97.1843 (7) 98.5581 (4) 98.6025 (2)
BNG_credit-a 88.3285 (1) 85.6916 (7) 86.6195 (6) 87.9363 (4) 87.9112 (5) 88.2561 (3) 88.3240 (2)
BNG_spambase 66.5681 (1) 59.9605 (6) 56.8422 (7) 66.4979 (3) 66.4323 (5) 66.4526 (4) 66.5488 (2)
BNG_optdigits 90.6578 (6) 93.4634 (1) 92.1441 (2) 91.7622 (3) 84.6937 (7) 90.7848 (5) 91.7193 (4)
BNG_anneal 94.8381 (6) 95.3412 (2) 95.7514 (1) 95.0783 (4) 95.1166 (3) 94.4916 (7) 95.0006 (5)
BNG_wine 93.9617 (1) 92.8295 (6) 92.4734 (7) 93.4021 (4) 93.2927 (5) 93.5857 (3) 93.8612 (2)
BNG_waveform-5000 88.6676 (1) 82.2098 (7) 86.2675 (6) 87.3264 (4) 86.7580 (5) 88.4303 (2) 88.3649 (3)
BNG_sonar 82.2996 (1) 74.5703 (7) 80.2744 (5) 80.7476 (4) 79.9782 (6) 81.4602 (3) 81.8719 (2)
BNG_satimage 84.0674 (4) 84.5183 (1) 83.5056 (5) 82.7361 (6) 82.6445 (7) 84.4900 (2) 84.3956 (3)
BNG_cmc 52.9266 (7) 54.0703 (1) 53.3723 (2) 53.2894 (4) 52.9947 (6) 53.1126 (5) 53.3630 (3)
Hyperplane_10_1E-4 90.0614 (4) 80.4910 (7) 87.7981 (6) 93.7854 (1) 88.9075 (5) 92.2184 (3) 92.9585 (2)
Hyperplane_10_1E-3 88.0007 (4) 74.6396 (7) 86.3944 (5) 91.1087 (1) 81.3541 (6) 89.3756 (3) 90.3773 (2)
LED_50000 73.9154 (2) 65.4797 (7) 73.9232 (1) 73.7171 (5) 69.7891 (6) 73.8633 (4) 73.8654 (3)
RandomRBF_50_1E-4 57.4138 (4) 55.8905 (6) 60.3925 (3) 60.4054 (2) 46.8032 (7) 56.7975 (5) 63.2767 (1)
RandomRBF_50_1E-3 29.7050 (2) 25.7519 (7) 31.2965 (1) 27.7276 (5) 27.6066 (6) 28.4070 (4) 28.6005 (3)
RandomRBF_0_0 87.6849 (2) 87.3710 (3) 88.4915 (1) 86.0423 (6) 86.0851 (5) 85.1371 (7) 86.5920 (4)
SEA_50000 88.3518 (4) 83.6253 (7) 88.1943 (5) 88.4316 (2) 84.7963 (6) 88.4752 (1) 88.4314 (3)
SEA_50 88.5362 (5) 83.2699 (7) 88.5684 (4) 88.9584 (3) 84.9324 (6) 89.1859 (1) 89.1362 (2)
Stagger3 99.9996 (5) 99.9993 (7) 99.9997 (2.5) 99.9997 (2.5) 99.9996 (5) 99.9996 (5) 99.9998 (1)
Stagger2 99.9990 (5) 99.9988 (6) 99.9992 (4) 99.9993 (3) 99.9987 (7) 99.9994 (1.5) 99.9994 (1.5)
Stagger1 99.9985 (4.5) 99.9996 (1) 99.9984 (7) 99.9985 (4.5) 99.9985 (4.5) 99.9988 (2) 99.9985 (4.5)
Average Ranking 2.97 5.82 4.97 3.32 4.55 3.91 2.46

Mean ± Std
86.3019

 ± 13.4755

81.6171

 ± 16.5411

84.4401

 ± 14.7469

86.2293

 ± 13.6211

85.1144

 ± 14.2148

85.7729

 ± 13.8250

86.3021

 ± 13.5163

Appendix

Lemma A1: 𝔼𝔼 ��𝜕𝜕ℒ𝑞𝑞
𝜕𝜕𝜃𝜃𝑞𝑞

�
𝟐𝟐
� is bounded in [0, 1].

Proof.

Since 𝑎𝑎𝑞𝑞 ∈ {0,1}, and 0 ≤ 𝑠𝑠𝑞𝑞 ≤ 1, we have:

−1 ≤
𝜕𝜕ℒ𝑞𝑞
𝜕𝜕𝜃𝜃𝑞𝑞

= 𝑎𝑎𝑞𝑞 − 𝑠𝑠𝑞𝑞 ≤ 1

⇒ 0 ≤ �
𝜕𝜕ℒ𝑞𝑞
𝜕𝜕𝜃𝜃𝑞𝑞

�
𝟐𝟐

≤ 1

⇒ 0 ≤ 𝔼𝔼 ��
𝜕𝜕ℒ𝑞𝑞
𝜕𝜕𝜃𝜃𝑞𝑞

�
𝟐𝟐

� ≤ 1∎

Lemma A2: If we choose 𝜃𝜃𝑞𝑞1 ∈ [0,1] and 𝜂𝜂(𝑡𝑡) = 𝑝𝑝
√𝑡𝑡

 where 𝑐𝑐 is predefined positive number, then 𝜃𝜃𝑞𝑞
(𝑡𝑡+1) is

bounded in [−𝜂𝜂(𝑡𝑡), 1 + 𝜂𝜂(𝑡𝑡)] ∀𝑡𝑡 = 1,2, …

Proof.

For 𝑡𝑡 = 2, we have 𝑎𝑎𝑞𝑞�𝒙𝒙(1)� ∈ {0,1}, and 0 < 𝑠𝑠𝑞𝑞�𝒙𝒙(𝑡𝑡)� < 1. Therefore

−𝜂𝜂(1) ≤ 𝜃𝜃𝑞𝑞
(2) = 𝜃𝜃𝑞𝑞

(1) − 𝜂𝜂(1)(𝑎𝑎𝑞𝑞�𝒙𝒙(1)� − 𝑠𝑠𝑞𝑞�𝒙𝒙(1)�) ≤ 1 + 𝜂𝜂(1).

Assume the statement holds for 𝑡𝑡. We will show that it also holds for 𝑡𝑡 + 1.

Denoting 𝑎𝑎𝑞𝑞 = 𝑎𝑎𝑞𝑞�𝒙𝒙(𝑡𝑡)�, 𝑒𝑒𝑞𝑞 = 𝑒𝑒𝑞𝑞�𝒙𝒙(𝑡𝑡)�, 𝑠𝑠𝑞𝑞 = 𝑠𝑠𝑞𝑞(𝒙𝒙(𝑡𝑡),𝜃𝜃𝑞𝑞), we consider three cases:

Case 1: 1 < 𝜃𝜃𝑞𝑞
(𝑡𝑡) ≤ 1 + 𝜂𝜂(𝑡𝑡−1)

Note that 0 ≤ 𝑒𝑒𝑞𝑞 ≤ 1, hence 𝑒𝑒𝑞𝑞 < 𝜃𝜃𝑞𝑞
(𝑡𝑡), this means 𝑠𝑠𝑞𝑞 < 0.5 and 𝐶𝐶𝑞𝑞is not selected. We only update the

threshold if 𝑎𝑎𝑞𝑞 = 1. In this case:

𝜃𝜃𝑞𝑞
(𝑡𝑡+1) = 𝜃𝜃𝑞𝑞

(𝑡𝑡) − 𝜂𝜂(𝑡𝑡)�𝑎𝑎𝑞𝑞 − 𝑠𝑠𝑞𝑞� ≤ 𝜃𝜃𝑞𝑞
(𝑡𝑡) − 𝜂𝜂(𝑡𝑡)(1 − 0.5)

 ≤ 1 + 𝜂𝜂(𝑡𝑡−1) − 0.5𝜂𝜂(𝑡𝑡) = 1 + 𝑝𝑝
√𝑡𝑡−1

− 0.5𝑝𝑝
√𝑡𝑡

 = 1 + 𝜂𝜂(𝑡𝑡) + 𝑝𝑝
√𝑡𝑡−1

− 1.5𝑝𝑝
√𝑡𝑡

< 1 + 𝜂𝜂(𝑡𝑡)

Where the last inequality uses: 𝑝𝑝
√𝑡𝑡−1

− 1.5𝑝𝑝
√𝑡𝑡

< 0 ∀𝑡𝑡 ≥ 2

Case 2: 0 ≤ 𝜃𝜃𝑞𝑞
(𝑡𝑡) ≤ 1

- If 𝑎𝑎𝑞𝑞 = 0, we update the threshold if 𝕀𝕀 �𝑒𝑒𝑞𝑞 > 𝜃𝜃𝑞𝑞
(𝑡𝑡)� = 1. In this case, 𝑠𝑠𝑞𝑞 > 0.5, then

 𝜃𝜃𝑞𝑞
(𝑡𝑡+1) = 𝜃𝜃𝑞𝑞

(𝑡𝑡) − 𝜂𝜂(𝑡𝑡)�𝑎𝑎𝑞𝑞 − 𝑠𝑠𝑞𝑞�

 ≤ 𝜃𝜃𝑞𝑞
(𝑡𝑡) − 𝜂𝜂(𝑡𝑡)(0 − 1) ≤ 1 + 𝜂𝜂(𝑡𝑡)

and 𝜃𝜃𝑞𝑞
(𝑡𝑡+1) ≥ 𝜃𝜃𝑞𝑞

(𝑡𝑡) − 𝜂𝜂(𝑡𝑡)(0− 0.5) ≥ 0

- If 𝑎𝑎𝑞𝑞 = 1, we update the threshold if 𝕀𝕀 �𝑒𝑒𝑞𝑞 > 𝜃𝜃𝑞𝑞
(𝑡𝑡)� = 0. In this case, 𝑠𝑠𝑞𝑞 ≤ 0.5, then

 𝜃𝜃𝑞𝑞
(𝑡𝑡+1) = 𝜃𝜃𝑞𝑞

(𝑡𝑡) − 𝜂𝜂(𝑡𝑡)�𝑎𝑎𝑞𝑞 − 𝑠𝑠𝑞𝑞�

 ≤ 𝜃𝜃𝑞𝑞
(𝑡𝑡) − 𝜂𝜂(𝑡𝑡)(1 − 0.5) ≤ 1

and 𝜃𝜃𝑞𝑞
(𝑡𝑡+1) ≥ 𝜃𝜃𝑞𝑞

(𝑡𝑡) − 𝜂𝜂(𝑡𝑡)(1− 0) ≥ −𝜂𝜂(𝑡𝑡)

Therefore -𝜂𝜂(𝑡𝑡) ≤ 𝜃𝜃𝑞𝑞
(𝑡𝑡+1) ≤ 1 + 𝜂𝜂(𝑡𝑡)

Case 3: −𝜂𝜂(𝑡𝑡) ≤ 𝜃𝜃𝑞𝑞
(𝑡𝑡) < 0

We have 0 ≤ 𝑒𝑒𝑞𝑞 ≤ 1, hence 𝑒𝑒𝑞𝑞 > 𝜃𝜃𝑞𝑞
(𝑡𝑡), this means that 𝑠𝑠𝑞𝑞 > 0.5 and 𝐶𝐶𝑞𝑞 is selected. We only update the

threshold if 𝑎𝑎𝑞𝑞 = 0. In this case:

𝜃𝜃𝑞𝑞
(𝑡𝑡+1) = 𝜃𝜃𝑞𝑞

(𝑡𝑡) − 𝜂𝜂(𝑡𝑡)�𝑎𝑎𝑞𝑞 − 𝑠𝑠𝑞𝑞� ≥ 𝜃𝜃𝑞𝑞
(𝑡𝑡) − 𝜂𝜂(𝑡𝑡)(0 − 0.5)

 ≥ −𝜂𝜂(𝑡𝑡−1) + 0.5𝜂𝜂(𝑡𝑡) > −𝜂𝜂(𝑡𝑡).

By induction, we have −𝜂𝜂(𝑡𝑡) ≤ 𝜃𝜃𝑞𝑞
(𝑡𝑡+1) ≤ 1 + 𝜂𝜂(𝑡𝑡) ∀𝑡𝑡 ≥ 1∎

Lemma A3: Suppose 𝜃𝜃𝑞𝑞∗ = argmin
𝜃𝜃𝑞𝑞∈ℝ

 ℒ𝑞𝑞�𝒙𝒙(𝑡𝑡),𝜃𝜃𝑞𝑞�. Choose 𝜂𝜂(𝑡𝑡) = 𝑝𝑝
√𝑡𝑡

 where 𝑐𝑐 is a predefined positive

number. We have 𝔼𝔼��𝜃𝜃𝑞𝑞
(𝑡𝑡) − 𝜃𝜃𝑞𝑞∗�

2
� ≤ |1 + 2𝑐𝑐|2 ∀𝑡𝑡 ≥ 1.

Proof.

If 𝜃𝜃𝑞𝑞 > 1, we have 𝑒𝑒𝑞𝑞 ≤ 1 < 𝜃𝜃𝑞𝑞, so 𝐶𝐶𝑞𝑞 is not selected. In this case, we make wrong selection if 𝑎𝑎𝑞𝑞 = 1,

hence the loss ℒ𝑞𝑞�𝒙𝒙(𝑡𝑡),𝜃𝜃𝑞𝑞� = −log (sigmoid�𝑒𝑒𝑞𝑞 − 𝜃𝜃𝑞𝑞�). We can see that the loss ℒ𝑞𝑞 get larger if 𝜃𝜃𝑞𝑞

increases.

Similarly, if 𝜃𝜃𝑞𝑞 < 0, the loss ℒ𝑞𝑞 get larger if 𝜃𝜃𝑞𝑞 decreases.

Therefore, if there is a 𝜃𝜃𝑞𝑞∗ ∈ ℝ that minimizes ℒ𝑞𝑞�𝒙𝒙(𝑡𝑡),𝜃𝜃𝑞𝑞�, it will be bounded in [−𝜖𝜖, 1 + 𝜖𝜖], where 𝜖𝜖 is an

arbitrary positive number. Choose 𝜖𝜖 = 𝑐𝑐, we obtain 𝜃𝜃𝑞𝑞∗ ∈ [−𝑐𝑐, 1 + 𝑐𝑐].

Now note that 𝜂𝜂(𝑡𝑡) ≤ 𝑐𝑐 ∀𝑡𝑡 ≥ 1, combining with the Lemma 2, we have 𝜃𝜃𝑞𝑞
(𝑡𝑡) ∈ [−𝑐𝑐, 1 + 𝑐𝑐] ∀𝑡𝑡 ≥ 1. Then

−1 − 2𝑐𝑐 ≤ 𝜃𝜃𝑞𝑞
(𝑡𝑡) − 𝜃𝜃𝑞𝑞∗ ≤ 1 + 2𝑐𝑐

⇒ �𝜃𝜃𝑞𝑞
(𝑡𝑡) − 𝜃𝜃𝑞𝑞∗�

2
≤ |1 + 2𝑐𝑐|2

⇒ 𝔼𝔼��𝜃𝜃𝑞𝑞
(𝑡𝑡) − 𝜃𝜃𝑞𝑞∗�

2
� ≤ |1 + 2𝑐𝑐|2 ∀𝑡𝑡 ≥ 1∎

References

[1] A. Bifet, R. Gavaldà, Adaptive learning from evolving data streams, in: International Symposium
on Intelligent Data Analysis, Springer, 2009: pp. 249–260.

[2] H.M. Gomes, J.P. Barddal, F. Enembreck, A. Bifet, A survey on ensemble learning for data stream
classification, ACM Computing Surveys (CSUR). 50 (2017) 23.

[3] P. Domingos, G. Hulten, Mining high-speed data streams, in: Kdd, 2000: p. 4.
[4] R.M.O. Cruz, D.V.R. Oliveira, G.D.C. Cavalcanti, R. Sabourin, FIRE-DES++: Enhanced online

pruning of base classifiers for dynamic ensemble selection, Pattern Recognition. 85 (2019) 149–
160.

[5] R.M.O. Cruz, R. Sabourin, G.D.C. Cavalcanti, T.I. Ren, META-DES: A dynamic ensemble
selection framework using meta-learning, Pattern Recognition. 48 (2015) 1925–1935.

[6] B. Krawczyk, M. Galar, M. Woźniak, H. Bustince, F. Herrera, Dynamic ensemble selection for
multi-class classification with one-class classifiers, Pattern Recognition. 83 (2018) 34–51.

[7] J. Gama, R. Sebastião, P.P. Rodrigues, Issues in evaluation of stream learning algorithms, in:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ACM, 2009: pp. 329–338.

[8] J. Gama, R. Sebastião, P.P. Rodrigues, On evaluating stream learning algorithms, Machine
Learning. 90 (2013) 317–346.

[9] A. Bifet, G. Holmes, B. Pfahringer, Leveraging bagging for evolving data streams, in: Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, Springer,
2010: pp. 135–150.

[10] R.S.M. de Barros, S.G.T. de Carvalho Santos, P.M.G. Júnior, A boosting-like online learning
ensemble, in: 2016 International Joint Conference on Neural Networks (IJCNN), IEEE, 2016: pp.
1871–1878.

[11] J.N. van Rijn, G. Holmes, B. Pfahringer, J. Vanschoren, The online performance estimation
framework: heterogeneous ensemble learning for data streams, Machine Learning. 107 (2018) 149–
176.

[12] H.M. Gomes, A. Bifet, J. Read, J.P. Barddal, F. Enembreck, B. Pfharinger, G. Holmes, T.
Abdessalem, Adaptive random forests for evolving data stream classification, Machine Learning.
106 (2017) 1469–1495.

[13] T.T. Nguyen, M.T. Dang, A.V. Luong, A.W.C. Liew, T. Liang, J. McCall, Multi-label classification
via incremental clustering on an evolving data stream, Pattern Recognition. 95 (2019) 96-113.

[14] T.T. Nguyen, T.T.T. Nguyen, A.V. Luong, Q.V.H. Nguyen, A.W.C. Liew, B. Stantic, Multi-label
classification via label correlation and first order feature dependance in a data stream, Pattern
Recognition. 90 (2019) 35-51.

[15] A. Osojnik, P. Panov, S. Džeroski, Multi-label classification via multi-target regression on data
streams, Machine Learning. 106 (2017) 745–770.

[16] G.H. John, P. Langley, Estimating continuous distributions in Bayesian classifiers, in: Proceedings
of the Eleventh Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers
Inc., 1995: pp. 338–345.

[17] J. Beringer, E. Hüllermeier, Efficient instance-based learning on data streams, Intelligent Data
Analysis. 11 (2007) 627–650.

[18] F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the
brain., Psychological Review. 65 (1958) 386.

[19] L. Bottou, Stochastic learning, in: Summer School on Machine Learning, Springer, 2003: pp. 146–
168.

[20] N.C. Oza, Online bagging and boosting, in: 2005 IEEE International Conference on Systems, Man
and Cybernetics, SMC 2005: pp. 2340–2345.

[21] N.C. Oza, S. Russell, Experimental comparisons of online and batch versions of bagging and
boosting, in: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, 2001: pp. 359–364.

[22] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, R. Gavaldà, New ensemble methods for evolving
data streams, in: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, 2009: pp. 139–148.

[23] J. Gama, P. Medas, G. Castillo, P. Rodrigues, Learning with drift detection, in: Brazilian
Symposium on Artificial Intelligence, Springer, 2004: pp. 286–295.

[24] X.C. Pham, M.T. Dang, S.V. Dinh, S. Hoang, T.T. Nguyen, A.W.C. Liew, Learning from data
stream based on random projection and Hoeffding tree classifier, in: 2017 International Conference
on Digital Image Computing: Techniques and Applications (DICTA), IEEE, 2017: pp. 1–8.

[25] Y. Xia, C. Liu, B. Da, F. Xie, A novel heterogeneous ensemble credit scoring model based on
bstacking approach, Expert Systems with Applications. 93 (2018) 182–199.

[26] T.T. Nguyen, M.P. Nguyen, X.C. Pham, A.W.C. Liew, Heterogeneous classifier ensemble with
fuzzy rule-based meta learner, Information Sciences. 422 (2018) 144–160.

[27] J.-F. Connolly, E. Granger, R. Sabourin, Evolution of heterogeneous ensembles through dynamic
particle swarm optimization for video-based face recognition, Pattern Recognition. 45 (2012) 2460–
2477.

[28] H.-L. Nguyen, Y.-K. Woon, W.-K. Ng, L. Wan, Heterogeneous ensemble for feature drifts in data
streams, in: Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer, 2012:
pp. 1–12.

[29] J.N. van Rijn, G. Holmes, B. Pfahringer, J. Vanschoren, Having a blast: Meta-learning and
heterogeneous ensembles for data streams, in: 2015 Ieee International Conference on Data Mining,
IEEE, 2015: pp. 1003–1008.

[30] A. Bifet, R. Gavalda, Learning from time-changing data with adaptive windowing, in: Proceedings
of the 2007 SIAM International Conference on Data Mining, SIAM, 2007: pp. 443–448.

[31] M. Baena-Garcıa, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavalda, R. Morales-Bueno, Early
drift detection method, in: Fourth International Workshop on Knowledge Discovery from Data
Streams, 2006: pp. 77–86.

[32] J. Read, A. Bifet, B. Pfahringer, G. Holmes, Batch-incremental versus instance-incremental
learning in dynamic and evolving data, in: International Symposium on Intelligent Data Analysis,
Springer, 2012: pp. 313–323.

[33] J.N. van Rijn, G. Holmes, B. Pfahringer, J. Vanschoren, Algorithm selection on data streams, in:
International Conference on Discovery Science, Springer, 2014: pp. 325–336.

[34] A. Bifet, G. Holmes, B. Pfahringer, E. Frank, Fast perceptron decision tree learning from evolving
data streams, in: Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer,
2010: pp. 299–310.

[35] J. Demšar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine
Learning Research. 7 (2006) 1–30.

[36] H.M. Gomes, J. Read, A. Bifet, Streaming Random Patches for Evolving Data Stream
Classification, in: 2019 IEEE 19th Int. Conf. Data Min., 2019.

[37] M.M. Idrees, L.L. Minku, F. Stahl, A. Badii, A heterogeneous online learning ensemble for non-
stationary environments, Knowledge-Based Syst. 188 (2020) 104983.

[38] B. Krawczyk, A. Cano, Online ensemble learning with abstaining classifiers for drifting and noisy
data streams. Applied Soft Computing, (2018) 68, 677-692.

[39] A. Tharwat, Classification assessment methods. Applied Computing and Informatics, in press,
(2018).

[40] A. Bifet , R. Gavaldà, G. Holmes , B. Pfahringer , Machine learning for data streams: with practical
examples in MOA, MIT Press, 2018.

[41] D.P. Bertsekas , Incremental gradient, subgradient, and proximal methods for convex optimization:
A survey, Optim. Mach. Learn. 1-38 (2011) 3 2010 . Bertsekas, D. P. (2011). Incremental gradient,
subgradient, and proximal methods for convex optimization: A survey. Optimization for Machine
Learning, 2010(1-38), 3.

[42] E. Hazan , Introduction to online convex optimization, Found. Trend Optim. 2 (3–4) (2016)
157–325.

[43] C. Manapragada , G.I. Webb , M. Salehi , Extremely fast decision tree, in: Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 1953–
1962.

[44] T. Murata , H. Ishibuchi , T. Nakashima , M. Gen , Fuzzy partition and input selection by genetic
algorithms for designing fuzzy rule-based classification systems, in: International Conference on
Evolutionary Programming, Springer, Berlin, Heidelberg, 1998, pp. 407–416.

	coversheet_journal_article
	LUONG 2021 Heterogeneous ensemble (AAM)

