Research Repository

See what's under the surface

Cell lysis and detoxification of cyanotoxins using a novel combination of microbubble generation and plasma microreactor technology for ozonation.

Pandhal, Jagroop; Siswanto, Anggun; Kuvshinov, Dmitriy; Zimmerman, William B.; Lawton, Linda; Edwards, Christine

Authors

Jagroop Pandhal

Anggun Siswanto

Dmitriy Kuvshinov

William B. Zimmerman

Linda Lawton

Christine Edwards

Abstract

There has been a steady rise in the incidences of algal blooms globally, and worryingly, there is increasing evidence that changes in the global climate are leading to a shift toward cyanobacterial blooms. Many cyanobacterial genera are harmful, producing several potent toxins, including microcystins, for which there are over 90 described analogues. There are a wide range of negative effects associated with these toxins including gastroenteritis, cytotoxicity, hepatotoxicity and neurotoxicity. Although a variety of oxidation based treatment methods have been described, ozonation and advanced oxidation are acknowledged as most effective as they readily oxidise microcystins to non-toxic degradation products. However, most ozonation technologies have challenges for scale up including high costs and sub-optimum efficiencies, hence, a low cost and scalable ozonation technology is needed. Here we designed a low temperature plasma dielectric barrier discharge (DBD) reactor with an incorporated fluidic oscillator for microbubble delivery of ozone. Both technologies have the potential to drastically reduce the costs of ozonation at scale. Mass spectrometry analysis revealed very rapid (

Journal Article Type Article
Publication Date Apr 30, 2018
Journal Frontiers in microbiology
Electronic ISSN 1664-302X
Publisher Frontiers Media
Peer Reviewed Peer Reviewed
Volume 9
Article Number 678
Institution Citation PANDHAL, J., SISWANTO, A., KUVSHINOV, D., ZIMMERMAN, W.B., LAWTON, L. and EDWARDS, C. 2018. Cell lysis and detoxification of cyanotoxins using a novel combination of microbubble generation and plasma microreactor technology for ozonation. Frontiers in microbiology [online], 9, article number 678. Available from: https://doi.org/10.3389/fmicb.2018.00678
DOI https://doi.org/10.3389/fmicb.2018.00678
Keywords Harmful algal blooms; Cyanobacteria; Cyanotoxins; Microbubbles; Ozonolysis; Plasma microreactor

Files




Downloadable Citations