Skip to main content

Research Repository

Advanced Search

Learning from small and imbalanced dataset of images using generative adversarial neural networks. (2019)
Thesis
ALI-GOMBE, A. 2019. Learning from small and imbalanced dataset of images using generative adversarial neural networks. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

The performance of deep learning models is unmatched by any other approach in supervised computer vision tasks such as image classification. However, training these models requires a lot of labeled data, which are not always available. Labelling a ma... Read More about Learning from small and imbalanced dataset of images using generative adversarial neural networks..

Multiple fake classes GAN for data augmentation in face image dataset. (2019)
Conference Proceeding
ALI-GOMBE, A., ELYAN, E. and JAYNE, C. 2019. Multiple fake classes GAN for data augmentation in face image dataset. In Proceedings of the 2019 International joint conference on neural networks (IJCNN 2019), 14-19 July 2019, Budapest, Hungary. Piscataway: IEEE [online], article ID 8851953. Available from: https://doi.org/10.1109/IJCNN.2019.8851953

Class-imbalanced datasets often contain one or more class that are under-represented in a dataset. In such a situation, learning algorithms are often biased toward the majority class instances. Therefore, some modification to the learning algorithm o... Read More about Multiple fake classes GAN for data augmentation in face image dataset..

MFC-GAN: class-imbalanced dataset classification using multiple fake class generative adversarial network. (2019)
Journal Article
ALI-GOMBE, A. and ELYAN, E. 2019. MFC-GAN: class-imbalanced dataset classification using multiple fake class generative adversarial network. Neurocomputing [online], 361, pages 212-221. Available from: https://doi.org/10.1016/j.neucom.2019.06.043

Class-imbalanced datasets are common across different domains such as health, banking, security and others. With such datasets, the learning algorithms are often biased toward the majority class-instances. Data Augmentation is a common approach tha... Read More about MFC-GAN: class-imbalanced dataset classification using multiple fake class generative adversarial network..