Skip to main content

Research Repository

Advanced Search

All Outputs (57)

A review of deep learning methods for digitisation of complex documents and engineering diagrams. (2024)
Journal Article
JAMIESON, L., MORENO-GARCIA, C.F. and ELYAN, E. 2024. A review of deep learning methods for digitisation of complex documents and engineering diagrams. Artificial intelligence review [online], 57(6), article number 136. Available from: https://doi.org/10.1007/s10462-024-10779-2

This paper presents a review of deep learning on engineering drawings and diagrams. These are typically complex diagrams, that contain a large number of different shapes, such as text annotations, symbols, and connectivity information (largely lines)... Read More about A review of deep learning methods for digitisation of complex documents and engineering diagrams..

Two-layer ensemble of deep learning models for medical image segmentation. (2024)
Journal Article
DANG, T., NGUYEN, T.T., MCCALL, J., ELYAN, E. and MORENO-GARCÍA, C.F. 2024. Two-layer ensemble of deep learning models for medical image segmentation. Cognitive computation [online], In Press. Available from: https://doi.org/10.1007/s12559-024-10257-5

One of the most important areas in medical image analysis is segmentation, in which raw image data is partitioned into structured and meaningful regions to gain further insights. By using Deep Neural Networks (DNN), AI-based automated segmentation al... Read More about Two-layer ensemble of deep learning models for medical image segmentation..

Student interaction with a virtual learning environment: an empirical study of online engagement behaviours during and since the time of COVID-19. (2023)
Conference Proceeding
JOHNSTON, P., ZARB, M. and MORENO-GARCIA, C.F. 2023. Student interaction with a virtual learning environment: an empirical study of online engagement behaviours during and since the time of COVID-19. In Proceedings of the 2023 IEEE (Institute of Electrical and Electronics Engineers) Frontiers in education conference (FIE 2023),18-21 October 2023, College Station, TX, USA. Piscataway: IEEE [online], article number 10343048. Available from: https://doi.org/10.1109/fie58773.2023.10343048

This paper presents an experience report of online attendance and associated behavioural patterns during a module in the first complete semester undertaken fully online in the autumn of 2020, and the corresponding module deliveries in 2021 and 2022.... Read More about Student interaction with a virtual learning environment: an empirical study of online engagement behaviours during and since the time of COVID-19..

Robust cardiac segmentation corrected with heuristics. (2023)
Journal Article
CERVANTES-GUZMÁN, A., MCPHERSON, K., OLVERES, J., MORENO-GARCÍA, C.F., ROBLES, F.T., ELYAN, E. and ESCALANTE-RAMÍREZ, B. 2023. Robust cardiac segmentation corrected with heuristics. PLoS ONE [online], 18(10), article e0293560. https://doi.org/10.1371/journal.pone.0293560

Cardiovascular diseases related to the right side of the heart, such as Pulmonary Hypertension, are some of the leading causes of death among the Mexican (and worldwide) population. To avoid invasive techniques such as catheterizing the heart, improv... Read More about Robust cardiac segmentation corrected with heuristics..

Evaluation of attention-based LSTM and Bi-LSTM networks for abstract text classification in systematic literature review automation. (2023)
Journal Article
OFORI-BOATENG, R., ACEVES-MARTINS, M., JAYNE, C., WIRATUNGA, N. and MORENO-GARCIA, C.F. 2023. Evaluation of attention-based LSTM and Bi-LSTM networks for abstract text classification in systematic literature review automation. Porcedia computer science [online], 222: selected papers from the 2023 International Neural Network Society workshop on deep learning innovations and applications (INNS DLIA 2023), co-located with the 2023 International joint conference on neural networks (IJCNN), 18-32 June 2023, Gold Coast, Australia, pages 114-126. Available from: https://doi.org/10.1016/j.procs.2023.08.149

Systematic Review (SR) presents the highest form of evidence in research for decision and policy-making. Nonetheless, the structured steps involved in carrying out SRs make it demanding for reviewers. Many studies have projected the abstract screenin... Read More about Evaluation of attention-based LSTM and Bi-LSTM networks for abstract text classification in systematic literature review automation..

AGREE: a feature attribution aggregation framework to address explainer disagreements with alignment metrics. (2023)
Conference Proceeding
PIRIE, C., WIRATUNGA, N., WIJEKOON, A. and MORENO-GARCIA, C.F. 2023. AGREE: a feature attribution aggregation framework to address explainer disagreements with alignment metrics. In Malburg, L. and Verma, D. (eds.) Workshop proceedings of the 31st International conference on case-based reasoning (ICCBR-WS 2023), 17 July 2023, Aberdeen, UK. CEUR workshop proceedings, 3438. Aachen: CEUR-WS [online], pages 184-199. Available from: https://ceur-ws.org/Vol-3438/paper_14.pdf

As deep learning models become increasingly complex, practitioners are relying more on post hoc explanation methods to understand the decisions of black-box learners. However, there is growing concern about the reliability of feature attribution expl... Read More about AGREE: a feature attribution aggregation framework to address explainer disagreements with alignment metrics..

Digital transformation for offshore assets: a deep learning framework for weld classification in remote visual inspections. (2023)
Conference Proceeding
TORAL-QUIJAS, L.A., ELYAN, E., MORENO-GARCÍA, C.F. and STANDER, J. 2023. Digital transformation for offshore assets: a deep learning framework for weld classification in remote visual inspections. In Iliadis, L, Maglogiannis, I., Alonso, S., Jayne, C. and Pimenidis, E. (eds.) Proceedings of the 24th International conference on engineering applications of neural networks (EAAAI/EANN 2023), 14-17 June 2023, León, Spain. Communications in computer and information science, 1826. Cham: Springer [online], pages 217-226. Available from: https://doi.org/10.1007/978-3-031-34204-2_19

Inspecting circumferential welds in caissons is a critical task for ensuring the safety and reliability of structures in the offshore industry. However, identifying and classifying different types of circumferential welds can be challenging in subsea... Read More about Digital transformation for offshore assets: a deep learning framework for weld classification in remote visual inspections..

A novel application of machine learning and zero-shot classification methods for automated abstract screening in systematic reviews. (2023)
Journal Article
MORENO-GARCIA, C.F., JAYNE, C., ELYAN, E. and ACEVES-MARTINS, M. 2023. A novel application of machine learning and zero-shot classification methods for automated abstract screening in systematic reviews. Decision analytics journal [online], 6, article 100162. Available from: https://doi.org/10.1016/j.dajour.2023.100162

Zero-shot classification refers to assigning a label to a text (sentence, paragraph, whole paper) without prior training. This is possible by teaching the system how to codify a question and find its answer in the text. In many domains, especially he... Read More about A novel application of machine learning and zero-shot classification methods for automated abstract screening in systematic reviews..

Zero-error digitisation and contextualisation of piping and instrumentation diagrams using node classification and sub-graph search. (2022)
Conference Proceeding
RICA, E., ALVAREZ, S., MORENO-GARCIA, C.F. and SERRATOSA, F. 2022. Zero-error digitisation and contextualisation of piping and instrumentation diagrams using node classification and sub-graph search. In Krzyzak, A., Suen, C.Y., Torsello, A. and Nobile, N. (eds.) Structural, syntactic, and statistical pattern recognition: proceedings of the 2022 Joint International Association for Pattern Recognition (IAPR) international workshops on statistical techniques in pattern recognition, and structural and syntactic pattern recognition (S+SSPR 2022), 26-27 August 2022, Montréal, Canada. Lecture notes in computer science, 13813. Cham: Springer [online], pages 274-282. Available from: https://doi.org/10.1007/978-3-031-23028-8_28

Thousands of huge printed sheets depicting engineering drawings keep record of complex industrial structures from Oil & Gas facilities. Currently, there is a trend of digitising these drawings, having as final end the regeneration of the original com... Read More about Zero-error digitisation and contextualisation of piping and instrumentation diagrams using node classification and sub-graph search..

Obesity and its association with mental health among Mexican children and adolescents: systematic review. (2022)
Journal Article
GODINA-FLORES, N.L., GUTIERREZ-GÓMEZ, Y.Y., GARCÍA-BOTELLO, M., LÓPEZ-CRUZ, L., MORENO-GARCÍA, C.F. and ACEVES-MARTINS, M. 2023. Obesity and its association with mental health among Mexican children and adolescents: systematic review. Nutrition reviews [online], 81(6). pages 658-669. Available from: https://doi.org/10.1093/nutrit/nuac083

Obesity and mental health issues increasingly affect children and adolescents, but whether obesity is a risk factor for mental health issues is unclear. To systematically review the association between obesity and mental health issues (ie, anxiety a... Read More about Obesity and its association with mental health among Mexican children and adolescents: systematic review..

Cross domain evaluation of text detection models. (2022)
Conference Proceeding
ALI-GOMBE, A., ELYAN, E., MORENO-GARCÍA, C. and JAYNE, C. 2022. Cross domain evaluation of text detection models. In Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A. and Aydin, M. (eds.) Artificial neural networks and machine learning - ICANN 2022: proceedings of the 31st International conference on artificial neural networks (ICANN 2022), 6-9 September 2022, Bristol, UK, part III. Lecture notes in computer science, 13531. Cham: Springer [online], pages 50-61. Available from: https://doi.org/10.1007/978-3-031-15934-3_5

Text detection is a very common task across a wide range of domains, such as document image analysis, remote identity verification, amongst others. It is also considered an integral component of any text recognition system, where the performance of r... Read More about Cross domain evaluation of text detection models..

TransSLC: skin lesion classification in dermatoscopic images using transformers. (2022)
Conference Proceeding
SARKER, M.M.K., MORENO-GARCÍA, C.F., REN, J. and ELYAN, E. 2022. TransSLC: skin lesion classification in dermatoscopic images using transformers. In Yang, G., Aviles-Rivero, A., Roberts, M. and Schönlieb, C.-B. (eds.) Medical image understanding and analysis: proceedings of 26th Medical image understanding and analysis 2022 (MIUA 2022), 27-29 July 2022, Cambridge, UK. Lecture notes in computer sciences, 13413. Cham: Springer [online], pages 651-660. Available from: https://doi.org/10.1007/978-3-031-12053-4_48

Early diagnosis and treatment of skin cancer can reduce patients' fatality rates significantly. In the area of computer-aided diagnosis (CAD), the Convolutional Neural Network (CNN) has been widely used for image classification, segmentation, and rec... Read More about TransSLC: skin lesion classification in dermatoscopic images using transformers..

A general framework for partial to full image registration. (2022)
Working Paper
MORENO-GARCÍA, C.F. and SERRATOSA, F. 2022. A general framework for partial to full image registration. arXiv [online]. Available from: https://doi.org/10.48550/arXiv.2207.06387

Image registration is a research field in which images must be compared and aligned independently of the point of view or camera characteristics. In some applications (such as forensic biometrics, satellite photography or outdoor scene identification... Read More about A general framework for partial to full image registration..

Cultural factors related to childhood and adolescent obesity in Mexico: a systematic review of qualitative studies. (2022)
Journal Article
ACEVES-MARTINS, M., LÓPEZ-CRUZ, L., GARCÍA-BOTELLO, M., GODINA-FLORES, N.L., GUTIERREZ-GÓMEZ, Y.Y. and MORENO-GARCÍA, C.F. 2022. Cultural factors related to childhood and adolescent obesity in Mexico: a systematic review of qualitative studies. Obesity reviews [online], 23(9), article e13461. Available from: https://doi.org/10.1111/obr.13461

Culture and culturally specific beliefs or practices may influence perceptions and decisions, potentially contributing to childhood obesity. The objective of this study is to identify the cultural factors (expressed through decisions, behaviors, indi... Read More about Cultural factors related to childhood and adolescent obesity in Mexico: a systematic review of qualitative studies..

Obesity and oral health in Mexican children and adolescents: systematic review and meta-analysis. (2022)
Journal Article
ACEVES-MARTINS, M., GODINA-FLORES, N.L., GUTIERREZ-GÓMEZ, Y.Y., RICHARDS, D., LÓPEZ-CRUZ, L., GARCÍA-BOTELLO, M. and MORENO-GARCÍA, C.F. 2021. Obesity and oral health in Mexican children and adolescents: systematic review and meta-analysis. Nutrition reviews [online], 80(6), pages 1694-1710. Available from: https://doi.org/10.1093/nutrit/nuab088

Context: A relationship between obesity and poor oral health has been reported. Objective: To investigate the association between overweight/obesity and oral health in Mexican children and adolescents. Data Sources: A literature search was conducted... Read More about Obesity and oral health in Mexican children and adolescents: systematic review and meta-analysis..

Implementation of NAO robot maze navigation based on computer vision and collaborative learning. (2022)
Journal Article
MAGALLÁN-RAMÍREZ, D., MARTÍNEZ-AGUILAR, J.D., RODRÍGUEZ-TIRADO, A., BALDERAS, D., LÓPEZ-CAUDANA, E.O. AND MORENO-GARCÍA, C.F. 2022. Implementation of NAO robot maze navigation based on computer vision and collaborative learning. Frontiers in robotics and AI [online], 9, article 834021. Available from: https://doi.org/10.3389/frobt.2022.834021

Maze navigation using one or more robots has become a recurring challenge in scientific literature and real life practice, with fleets having to find faster and better ways to navigate environments such as a travel hub, airports, or for evacuation of... Read More about Implementation of NAO robot maze navigation based on computer vision and collaborative learning..

Computer vision and machine learning for medical image analysis: recent advances, challenges, and way forward. (2022)
Journal Article
ELYAN, E., VUTTIPITTAYAMONGKOL, P., JOHNSTON, P., MARTIN, K., MCPHERSON, K., MORENO-GARCIA, C.F., JAYNE, C. and SARKER, M.M.K. 2022. Computer vision and machine learning for medical image analysis: recent advances, challenges, and way forward. Artificial intelligence surgery [online], 2, pages 24-25. Available from: https://doi.org/10.20517/ais.2021.15

The recent development in the areas of deep learning and deep convolutional neural networks has significantly progressed and advanced the field of computer vision (CV) and image analysis and understanding. Complex tasks such as classifying and segmen... Read More about Computer vision and machine learning for medical image analysis: recent advances, challenges, and way forward..

Using artificial intelligence methods for systematic review in health sciences: a systematic review. [Appendices] (2022)
Dataset
BLAIZOT, A., VEETTIL, S.K., SAIDOUNG, P., MORENO-GARCIA, C.F., WIRATUNGA, N., ACEVES-MARTINS, M., LAI, N.M. and CHAIYAKUNAPRUK, N. 2022. Using artificial intelligence methods for systematic review in health sciences: a systematic review. [Appendices]. Research synthesis methods [online], 1393), pages 353-362. Available from: https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fjrsm.1553&file=jrsm1553-sup-0001-supinfo.docx

Systematic reviews are fundamental to evidence-based decision making, as they use a comprehensive search and synthesis of the available literature. Such an operation usually requires a team of reviewers to evaluate thousands of articles. With the exp... Read More about Using artificial intelligence methods for systematic review in health sciences: a systematic review. [Appendices].

Using artificial intelligence methods for systematic review in health sciences: a systematic review. (2022)
Journal Article
BLAIZOT, A., VEETTIL, S.K., SAIDOUNG, P., MORENO-GARCIA, C.F., WIRATUNGA, N., ACEVES-MARTINS, M., LAI, N.M. and CHAIYAKUNAPRUK, N. 2022. Using artificial intelligence methods for systematic review in health sciences: a systematic review. Research synthesis methods [online], 13(3), pages 353-362. Available from: https://doi.org/10.1002/jrsm.1553

The exponential increase in published articles makes a thorough and expedient review of literature increasingly challenging. This review delineated automated tools and platforms that employ artificial intelligence (AI) approaches and evaluated the re... Read More about Using artificial intelligence methods for systematic review in health sciences: a systematic review..

Interventions to prevent obesity in Mexican children and adolescents: systematic review. (2021)
Journal Article
ACEVES-MARTINS, M., LÓPEZ-CRUZ, L., GARCÍA-BOTELLO, M., GUTIERREZ-GÓMEZ, Y.Y. and MORENO-GARCÍA, C.F. 2022. Interventions to prevent obesity in Mexican children and adolescents: systematic review. Prevention science [online], 23(4), pages 563-586. Available from: https://doi.org/10.1007/s11121-021-01316-6

The prevalence of overweight and obesity has been rising among Mexican children and adolescents in the last decades. To systematically review obesity prevention interventions delivered to Mexican children and adolescents. Thirteen databases and one s... Read More about Interventions to prevent obesity in Mexican children and adolescents: systematic review..