Topology for preserving feature correlation in tabular synthetic data.
(2022)
Presentation / Conference Contribution
ARIFEEN, M. and PETROVSKI, A. 2022. Topology for preserving feature correlation in tabular synthetic data. In Proceedings of the 15th IEEE (Institute of Electrical and Electronics Engineers) International conference on security of information and networks 2022 (SINCONF 2022), 11-13 November 2022, Sousse, Tunisia. Piscataway: IEEE [online], pages 61-66. Available from: https://doi.org/10.1109/SIN56466.2022.9970505
Tabular synthetic data generating models based on Generative Adversarial Network (GAN) show significant contributions to enhancing the performance of deep learning models by providing a sufficient amount of training data. However, the existing GAN-ba... Read More about Topology for preserving feature correlation in tabular synthetic data..