Skip to main content

Research Repository

Advanced Search

All Outputs (51)

A survey on wireless body area networks: architecture, security challenges and research opportunities. (2021)
Journal Article
HAJAR, M.S., AL-KADRI, M.O. and KALUTARAGE, H.K. 2021. A survey on wireless body area networks: architecture, security challenges and research opportunities. Computers and security [online], 104, article ID 102211. Available from: https://doi.org/10.1016/j.cose.2021.102211

In the era of communication technologies, wireless healthcare networks enable innovative applications to enhance the quality of patients’ lives, provide useful monitoring tools for caregivers, and allows timely intervention. However, due to the sensi... Read More about A survey on wireless body area networks: architecture, security challenges and research opportunities..

Resource efficient boosting method for IoT security monitoring. (2021)
Presentation / Conference Contribution
ZAKARIYYA, I., AL-KADRI, M.O. and KALUTARAGE, H. 2021. Resource efficient boosting method for IoT security monitoring. In Proceedings of 18th Institute of Electrical and Electronics Engineers (IEEE) Consumer communications and networking conference 2021 (CCNC 2021), 9-12 January 2021, [virtual conference]. Piscataway: IEEE [online], article 9369620. Available from: https://doi.org/10.1109/ccnc49032.2021.9369620

Machine learning (ML) methods are widely proposed for security monitoring of Internet of Things (IoT). However, these methods can be computationally expensive for resource constraint IoT devices. This paper proposes an optimized resource efficient ML... Read More about Resource efficient boosting method for IoT security monitoring..

Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. (2020)
Journal Article
WICKRAMASINGHE, I. and KALUTARAGE, H. 2021. Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft computing [online], 25(3), pages 2277-2293. Available from: https://doi.org/10.1007/s00500-020-05297-6

Naïve Bayes (NB) is a well-known probabilistic classification algorithm. It is a simple but efficient algorithm with a wide variety of real-world applications, ranging from product recommendations through medical diagnosis to controlling autonomous v... Read More about Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation..

ETAREE: an effective trend-aware reputation evaluation engine for wireless medical sensor networks. (2020)
Presentation / Conference Contribution
HAJAR, M.S., AL-KADRI, M.O. and KALUTARAGE, H. 2020. ETAREE: an effective trend-aware reputation evaluation engine for wireless medical sensor networks. In Proceedings of 2020 Institute of Electrical and Electronics Engineers (IEEE) Communications and network security conference (CNS 2020), 29 June - 1 July 2020, [virtual conference]. Piscataway: IEEE [online], article ID 9162325. Available from: https://doi.org/10.1109/CNS48642.2020.9162325

Wireless Medical Sensor Networks (WMSN) will play a significant role in the advancements of modern healthcare applications. Security concerns are still the main obstacle to the widespread adoption of this technology. Conventional security approaches,... Read More about ETAREE: an effective trend-aware reputation evaluation engine for wireless medical sensor networks..

Reducing computational cost in IoT cyber security: case study of artificial immune system algorithm. (2019)
Presentation / Conference Contribution
ZAKARIYYA, I., AL-KADRI, M.O., KALUTARGE, H. and PETROVSKI, A. 2019. Reducing computational cost in IoT cyber security: case study of artificial immune system algorithm. In Obaidat, M. and Samarati, P. (eds.) Proceedings of the 16th International security and cryptography conference (SECRYPT 2019), co-located with the 16th International joint conference on e-business and telecommunications (ICETE 2019), 26-28 July 2019, Prague, Czech Republic. Setúbal, Portugal: SciTePress [online], 2, pages 523-528. Available from: https://doi.org/10.5220/0008119205230528.

Using Machine Learning (ML) for Internet of Things (IoT) security monitoring is a challenge. This is due to their resource constraint nature that limits the deployment of resource-hungry monitoring algorithms. Therefore, the aim of this paper is to i... Read More about Reducing computational cost in IoT cyber security: case study of artificial immune system algorithm..

Context-aware anomaly detector for monitoring cyber attacks on automotive CAN bus. (2019)
Presentation / Conference Contribution
KALUTARAGE, H.K., AL-KADRI, M.O., CHEAH, M. and MADZUDZO, G. 2019. Context-aware anomaly detector for monitoring cyber attacks on automotive CAN bus. In Hof, H.-J., Fritz, M., Kraub, C. and Wasenmüller, O. (eds.). Proceedings of 2019 Computer science in cars symposium (CSCS 2019), 8 October 2019, Kaiserslautern, Germany. New York: ACM [online], article number 7. Available from: https://doi.org/10.1145/3359999.3360496

Automotive electronics is rapidly expanding. An average vehicle contains million lines of software codes, running on 100 of electronic control units (ECUs), in supporting number of safety, driver assistance and infotainment functions. These ECUs are... Read More about Context-aware anomaly detector for monitoring cyber attacks on automotive CAN bus..

Anomaly detection in network traffic using dynamic graph mining with a sparse autoencoder. (2019)
Presentation / Conference Contribution
JIA, G., MILLER, P., HONG, X., KALUTARAGE, H. and BAN, T. 2019. Anomaly detection in network traffic using dynamic graph mining with a sparse autoencoder. In Proceedings of 18th Institution of Electrical and Electronics Engineers (IEEE) international Trust, security and privacy in computing and communications conference, co-located with 13th IEEE international Big data science and engineering conference (TrustCom/BigDataSE), 5-8 August 2019, Rotorua, New Zealand. Piscataway: IEEE [online], pages 458-465. Available from: https://doi.org/10.1109/TrustCom/BigDataSE.2019.00068

Network based attacks on ecommerce websites can have serious economic consequences. Hence, anomaly detection in dynamic network traffic has become an increasingly important research topic in recent years. This paper proposes a novel dynamic Graph and... Read More about Anomaly detection in network traffic using dynamic graph mining with a sparse autoencoder..

Strengthening student engagement: evaluating the role of the digital skills agenda in higher education. (2019)
Presentation / Conference Contribution
LAWANI, A., SINGH, A., MCNEIL, A., DURACK, B. and KALUTARAGE, H. 2019. Strengthening student engagement: evaluating the role of the digital skills agenda in higher education. Presented at the 2019 Department for the Enhancement of Learning, Teaching and Access (DELTA) learning and teaching conference (LTC 2019): learning without borders, 2 May 2019, Aberdeen, UK.

Digital technology can contribute to all three areas of the TEF: teaching quality; learning environment; and student outcomes (Davies S, Mullan and Feldman 2017). Digital skills are helpful in designing enhanced and effective learning activities (Cop... Read More about Strengthening student engagement: evaluating the role of the digital skills agenda in higher education..

Feature trade-off analysis for reconnaissance detection. (2018)
Book Chapter
KALUTARAGE, H.K. and SHAIKH, S.A. 2018. Feature trade-off analysis for reconnaissance detection. In Heard, N., Adams, N., Rubin-Delanchy, P. and Turcotte, M. (eds.) Data science for cyber security. Security science and technology, 3. London: World Scientific [online], chapter 5, pages 95-126. Available from: https://doi.org/10.1142/9781786345646_005

An effective cyber early warning system (CEWS) should pick up threat activity at an early stage, with an emphasis on establishing hypotheses and predictions as well as generating alerts on (unclassified) situations based on preliminary indications. T... Read More about Feature trade-off analysis for reconnaissance detection..

Towards a threat assessment framework for apps collusion. (2017)
Journal Article
KALUTARAGE, H.K., NGUYEN, H.N. and SHAIKH, S.A. 2017. Towards a threat assessment framework for apps collusion. Telecommunication systems [online], 66(3), pages 417-430. Available from: https://doi.org/10.1007/s11235-017-0296-1

App collusion refers to two or more apps working together to achieve a malicious goal that they otherwise would not be able to achieve individually. The permissions based security model of Android does not address this threat as it is rather limited... Read More about Towards a threat assessment framework for apps collusion..

Detecting stealthy attacks: efficient monitoring of suspicious activities on computer networks. (2015)
Journal Article
KALUTARAGE, H.K., SHAIKH, S.A., WICKRAMASINGHE, I.P., ZHOU, Q. and JAMES, A.E. 2015. Detecting stealthy attacks: efficient monitoring of suspicious activities on computer networks. Computers and electrical engineering [online], 47, pages 327-344. Available from: https://doi.org/10.1016/j.compeleceng.2015.07.007

Stealthy attackers move patiently through computer networks – taking days, weeks or months to accomplish their objectives in order to avoid detection. As networks scale up in size and speed, monitoring for such attack attempts is increasingly a chall... Read More about Detecting stealthy attacks: efficient monitoring of suspicious activities on computer networks..