Skip to main content

Research Repository

Advanced Search

All Outputs (27)

MADONNA: browser-based malicious domain detection through optimized neural network with feature analysis. (2024)
Conference Proceeding
SENANAYAKE, J., RAJAPAKSHA, S., YANAI, N., KOMIYA, C. and KALUTARAGE, H. 2024. MADONNA: browser-based malicious domain detection through optimized neural network with feature analysis. In Meyer, N. and Grocholewska-Czuryło, A. (eds.) Revised selected papers from the proceedings of the 38th International conference on ICT systems security and privacy protection (IFIP SEC 2023), 14-16 June 2023, Poznan, Poland. IFIP advances in information and communication technology, 679. Cham: Springer [online], pages 279-292. Available from: https://doi.org/10.1007/978-3-031-56326-3_20

The detection of malicious domains often relies on machine learning (ML), and proposals for browser-based detection of malicious domains with high throughput have been put forward in recent years. However, existing methods suffer from limited accurac... Read More about MADONNA: browser-based malicious domain detection through optimized neural network with feature analysis..

Mitigating gradient inversion attacks in federated learning with frequency transformation. (2024)
Conference Proceeding
PALIHAWADANA, C., WIRATUNGA, N., KALUTARAGE, H. and WIJEKOON, A. 2024. Mitigating gradient inversion attacks in federated learning with frequency transformation. In Katsikas, S. et al. (eds.) Computer security: revised selected papers from the proceedings of the International workshops of the 28th European symposium on research in computer security (ESORICS 2023 International Workshops), 25-29 September 2023, The Hague, Netherlands. Lecture notes in computer science, 14399. Cham: Springer [online], part II, pages 750-760. Available from: https://doi.org/10.1007/978-3-031-54129-2_44

Centralised machine learning approaches have raised concerns regarding the privacy of client data. To address this issue, privacy-preserving techniques such as Federated Learning (FL) have emerged, where only updated gradients are communicated instea... Read More about Mitigating gradient inversion attacks in federated learning with frequency transformation..

Enhancing security assurance in software development: AI-based vulnerable code detection with static analysis. (2024)
Conference Proceeding
RAJAPAKSHA, S., SENANAYAKE, J., KALUTARAGE, H. and AL-KADRI, M.O. 2024. Enhancing security assurance in software development: AI-based vulnerable code detection with static analysis. In Katsikas, S. et al. (eds.) Computer security: revised selected papers from the proceedings of the International workshops of the 28th European symposium on research in computer security (ESORICS 2023 International Workshops), 25-29 September 2023, The Hague, Netherlands. Lecture notes in computer science, 14399. Cham: Springer [online], part II, pages 341-356. Available from: https://doi.org/10.1007/978-3-031-54129-2_20

The presence of vulnerable source code in software applications is causing significant reliability and security issues, which can be mitigated by integrating and assuring software security principles during the early stages of the development lifecyc... Read More about Enhancing security assurance in software development: AI-based vulnerable code detection with static analysis..

Computer security: revised selected papers from the proceedings of the International workshops of the 28th European symposium on research in computer security (ESORICS 2023 International Workshops) (2024)
Conference Proceeding
KATSIKAS, S. et al. (eds.) 2024. Computer security: revised selected papers from the proceedings of the International workshops of the 28th European symposium on research in computer security (ESORICS 2023 International Workshops), 25-29 September 2023, The Hague, Netherlands. Lecture notes in computer science, 14399. Cham: Springer [online], part II. Available from: https://doi.org/10.1007/978-3-031-54129-2

This is the proceedings of seven of the international workshops that were held as part of the 28th edition of the European Symposium on Research in Computer Security (ESORICS).

FedREVAN: real-time detection of vulnerable android source code through federated neural network with XAI. (2024)
Conference Proceeding
SENANAYAKE, J., KALUTARAGE, H., PETROVSKI, A., AL-KADRI, M.O. and PIRAS, L. 2024. FedREVAN: real-time detection of vulnerable android source code through federated neural network with XAI. In Katsikas, S. et al. (eds.) Computer security: revised selected papers from the proceedings of the International workshops of the 28th European symposium on research in computer security (ESORICS 2023 International Workshops), 25-29 September 2023, The Hague, Netherlands. Lecture notes in computer science, 14399. Cham: Springer [online], part II, pages 426-441. Available from: https://doi.org/10.1007/978-3-031-54129-2_25

Adhering to security best practices during the development of Android applications is of paramount importance due to the high prevalence of apps released without proper security measures. While automated tools can be employed to address vulnerabiliti... Read More about FedREVAN: real-time detection of vulnerable android source code through federated neural network with XAI..

Android code vulnerabilities early detection using AI-powered ACVED plugin. (2023)
Conference Proceeding
SENANAYAKE, J., KALUTARAGE, H., AL-KADRI, M.O., PETROVSKI, A. and PIRAS, L. 2023. Android code vulnerabilities early detection using AI-powered ACVED plugin. In Atluri, V. and Ferrara, A.L. (eds.) Data and applications security and privacy XXXVII; proceedings of the 37th annual IFIP WG (International Federation for Information Processing Working Group) 11.3 Data and applications security and privacy 2023 (DBSec 2023), 19-21 July 2023, Sophia-Antipolis, France. Lecture notes in computer science (LNCS), 13942. Cham: Springer [online], pages 339-357. Available from: https://doi.org/10.1007/978-3-031-37586-6_20

During Android application development, ensuring adequate security is a crucial and intricate aspect. However, many applications are released without adequate security measures due to the lack of vulnerability identification and code verification at... Read More about Android code vulnerabilities early detection using AI-powered ACVED plugin..

Labelled Vulnerability Dataset on Android source code (LVDAndro) to develop AI-based code vulnerability detection models. (2023)
Conference Proceeding
SENANAYAKE, J., KALUTARAGE, H., AL-KADRI, M.O., PIRAS, L. and PETROVSKI, A. 2023. Labelled Vulnerability Dataset on Android source code (LVDAndro) to develop AI-based code vulnerability detection models. In De Capitani di Vimercati, S. and Samarati, P. (eds.) Proceedings of the 20th International conference on security and cryptography, 10-12 July 2023, Rome, Italy, volume 1. Setúbal: SciTePress [online], pages 659-666. Available from: https://doi.org/10.5220/0012060400003555

Ensuring the security of Android applications is a vital and intricate aspect requiring careful consideration during development. Unfortunately, many apps are published without sufficient security measures, possibly due to a lack of early vulnerabili... Read More about Labelled Vulnerability Dataset on Android source code (LVDAndro) to develop AI-based code vulnerability detection models..

AI-powered vulnerability detection for secure source code development. (2023)
Conference Proceeding
RAJAPAKSHA, S., SENANAYAKE, J., KALUTARAGE, H. and AL-KADRI, M.O. 2023. AI-powered vulnerability detection for secure source code development. In Bella, G., Doinea, M. and Janicke, H. (eds.) Innovative security solutions for information technology and communications: revised selected papers of the 15th International conference on Security for information technology and communications 2022 (SecITC 2022), 8-9 December 2022, [virtual conference]. Lecture notes in computer sciences, 13809. Cham: Springer [online], pages 275-288. Available from: https://doi.org/10.1007/978-3-031-32636-3_16

Vulnerable source code in software applications is causing paramount reliability and security issues. Software security principles should be integrated to reduce these issues at the early stages of the development lifecycle. Artificial Intelligence (... Read More about AI-powered vulnerability detection for secure source code development..

DQR: a double Q learning multi agent routing protocol for wireless medical sensor network. (2023)
Conference Proceeding
HAJAR, M.S., KALUTARAGE, H. and AL-KADRI, M.O. 2023. DQR: a double Q learning multi agent routing protocol for wireless medical sensor network. In Li, F., Liang, K., Lin, Z. and Katsikas, S.K. (eds.) Security and privacy in communication networks: proceedings of the 18th EAI (European Alliance for Innovation) Security and privacy in communication networks 2022 (EAI SecureComm 2022), 17-19 October 2022, Kansas City, USA. Lecture notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST), 462. Cham: Springer [online], pages 611-629. Available from: https://doi.org/10.1007/978-3-031-25538-0_32

Wireless Medical Sensor Network (WMSN) offers innovative solutions in the healthcare domain. It alleviates the patients' everyday life difficulties and supports the already overloaded medical staff with continuous monitoring tools. However, widesprea... Read More about DQR: a double Q learning multi agent routing protocol for wireless medical sensor network..

RRP: a reliable reinforcement learning based routing protocol for wireless medical sensor networks. (2023)
Conference Proceeding
HAJAR, M.S., KALUTARAGE, H. and AL-KADRI, M.O. 2023. RRP: a reliable reinforcement learning based routing protocol for wireless medical sensor networks. In Proceedings of the 20th IEEE (Institute of Electrical and Electronics Engineers) Consumer communications and networking conference 2023 (CCNC 2023), 8-11 January 2023, Las Vegas, USA. Piscataway: IEEE [online], pages 781-789. Available from: https://doi.org/10.1109/CCNC51644.2023.10060225

Wireless medical sensor networks (WMSNs) offer innovative healthcare applications that improve patients' quality of life, provide timely monitoring tools for physicians, and support national healthcare systems. However, despite these benefits, widesp... Read More about RRP: a reliable reinforcement learning based routing protocol for wireless medical sensor networks..

Resource efficient federated deep learning for IoT security monitoring. (2022)
Conference Proceeding
ZAKARIYYA, I., KALUTARAGE, H. and AL-KADRI, M.O. 2022. Resource efficient federated deep learning for IoT security monitoring. In Li, W., Furnell, S. and Meng, W. (eds.) Attacks and defenses for the Internet-of-Things: revised selected papers from the 5th International workshop on Attacks and defenses for Internet-of-Things 2022 (ADIoT 2022), in conjunction with 27th European symposium on research in computer security 2022 (ESORICS 2022) 29-30 Septempber 2022, Copenhagen, Denmark. Lecture notes in computer science (LNCS), 13745. Cham: Springer [online], pages 122-142. Available from: https://doi.org/10.1007/978-3-031-21311-3_6

Federated Learning (FL) uses a distributed Machine Learning (ML) concept to build a global model using multiple local models trained on distributed edge devices. A disadvantage of the FL paradigm is the requirement of many communication rounds before... Read More about Resource efficient federated deep learning for IoT security monitoring..

A robust exploration strategy in reinforcement learning based on temporal difference error. (2022)
Conference Proceeding
HAJAR, M.S., KALUTARAGE, H. and AL-KADRI, M.O. 2022. A robust exploration strategy in reinforcement learning based on temporal difference error. In Aziz, H., Corrêa, D. and French, T. (eds.) AI 2022: advances in artificial intelligence; proceedings of the 35th Australasian joint conference 2022 (AI 2022), 5-8 December 2022, Perth, Australia. Lecture notes in computer science (LNCS), 13728. Cham: Springer [online], pages 789-799. Available from: https://doi.org/10.1007/978-3-031-22695-3_55

Exploration is a critical component in reinforcement learning algorithms. Exploration exploitation trade-off is still a fundamental dilemma in reinforcement learning. The learning agent needs to learn how to deal with a stochastic environment in orde... Read More about A robust exploration strategy in reinforcement learning based on temporal difference error..

Keep the moving vehicle secure: context-aware intrusion detection system for in-vehicle CAN bus security. (2022)
Conference Proceeding
RAJAPAKSHA, S., KALUTARAGE, H., AL-KADRI, M.O., MADZUDZO, G. and PETROVSKI, A.V. 2022. Keep the moving vehicle secure: context-aware intrusion detection system for in-vehicle CAN bus security. In Jančárková, T., Visky, G. and Winther, I. (eds.). Proceedings of 14th International conference on Cyber conflict 2022 (CyCon 2022): keep moving, 31 May - 3 June 2022, Tallinn, Estonia. Tallinn: CCDCOE, pages 309-330. Hosted on IEEE Xplore [online]. Available from: https://doi.org/10.23919/CyCon55549.2022.9811048

The growth of information technologies has driven the development of the transportation sector, including connected and autonomous vehicles. Due to its communication capabilities, the controller area network (CAN) is the most widely used in-vehicle c... Read More about Keep the moving vehicle secure: context-aware intrusion detection system for in-vehicle CAN bus security..

Developing secured android applications by mitigating code vulnerabilities with machine learning. (2022)
Conference Proceeding
SENANAYAKE, J., KALUTARAGE, H., AL-KADRI, M.O., PETROVSKI, A. and PIRAS, L. 2022. Developing secured android applications by mitigating code vulnerabilities with machine learning. In ASIA CCS '22: proceedings of the 17th ACM (Association for Computing Machinery) Asia conference on computer and communications security 2022 (ASIA CCS 2022), 30 May - 3 June 2022, Nagasaki, Japan. New York: ACM [online], pages 1255-1257. Available from: https://doi.org/10.1145/3488932.3527290

Mobile application developers sometimes might not be serious about source code security and publish apps to the marketplaces. Therefore, it is essential to have a fully automated security solutions generator to integrate security-by-design into the d... Read More about Developing secured android applications by mitigating code vulnerabilities with machine learning..

Robust, effective and resource efficient deep neural network for intrusion detection in IoT networks. (2022)
Conference Proceeding
ZAKARIYYA, I., KALUTARAGE, H. and AL-KADRI, M.O. 2022. Robust, effective and resource efficient deep neural network for intrusion detection in IoT networks. In CPPS '22: proceedings of the 8th ACM (Association for Computing Machinery) Cyber-physical system security workshop 2022 (CPSS '22), co-located with the 17th ACM (Association for Computing Machinery) Asia conference on computer and communications security 2022 (ASIACCS '22) Nagasaki, Japan (virtual event). New York: ACM [online], pages 41-51. Available from: https://doi.org/10.1145/3494107.3522772

Internet of Things (IoT) devices are becoming increasingly popular and an integral part of our everyday lives, making them a lucrative target for attackers. These devices require suitable security mechanisms that enable robust and effective detection... Read More about Robust, effective and resource efficient deep neural network for intrusion detection in IoT networks..

AI and cybersecurity 2021: proceedings of the 2021 Workshop on AI and cybersecurity (AI-Cybersec 2021) (2021)
Conference Proceeding
SANI, S. and KALUTARAGE, H. (eds.) 2021. AI and cybersecurity 2021: proceedings of the 2021 Workshop on AI and cybersecurity (AI-Cybersec 2021), co-located with the 41st Specialist Group on Artificial Intelligence international conference on artificial intelligence (SGAI 2021), 14 December 2021, [virtual event]. CEUR workshop proceedings, 3125. Aachen: CEUR-WS [online]. Available from: https://ceur-ws.org/Vol-3125/

This volume consists of the papers that were presented at the 1st International Workshop on Artificial Intelligence and Cyber Security, co-located with the 41st SGAI International Conference on Artificial Intelligence (AI-2021) on December 14th, 2021... Read More about AI and cybersecurity 2021: proceedings of the 2021 Workshop on AI and cybersecurity (AI-Cybersec 2021).

Improving intrusion detection through training data augmentation. (2021)
Conference Proceeding
OTOKWALA, U., PETROVSKI, A. and KALUTARAGE, H. 2021. Improving intrusion detection through training data augmentation. In Moradpoor, N., Elçi, A. and Petrovski, A. (eds.) Proceedings of 14th International conference on Security of information and networks 2021 (SIN 2021), 15-17 December 2021, [virtual conference]. Piscataway: IEEE [online], article 17. Available from: https://doi.org/10.1109/SIN54109.2021.9699293

Imbalanced classes in datasets are common problems often found in security data. Therefore, several strategies like class resampling and cost-sensitive training have been proposed to address it. In this paper, we propose a data augmentation strategy... Read More about Improving intrusion detection through training data augmentation..

Memory efficient federated deep learning for intrusion detection in IoT networks. (2021)
Conference Proceeding
ZAKARIYYA, A. KALUTARAGE, H. and AL-KADRI, M.O. 2021. Memory efficient federated deep learning for intrusion detection in IoT networks. In Sani, S. and Kalutarage, H. (eds.) AI and cybersecurity 2021: proceedings of the 2021 Workshop on AI and cybersecurity (AI-Cybersec 2021), co-located with the 41st Specialist Group on Artificial Intelligence international conference on artificial intelligence (SGAI 2021), 14 December 2021, [virtual event]. CEUR workshop proceedings, 3125. Aachen: CEUR-WS [online], pages 85-99. Available from: http://ceur-ws.org/Vol-3125/paper7.pdf

Deep Neural Networks (DNNs) methods are widely proposed for cyber security monitoring. However, training DNNs requires a lot of computational resources. This restricts direct deployment of DNNs to resource-constrained environments like the Internet o... Read More about Memory efficient federated deep learning for intrusion detection in IoT networks..

Reasoning with counterfactual explanations for code vulnerability detection and correction. (2021)
Conference Proceeding
WIJEKOON, A. and WIRATUNGA, N. 2021. Reasoning with counterfactual explanations for code vulnerability detection and correction. In Sani, S. and Kalutarage, H. (eds.) AI and cybersecurity 2021: proceedings of the 2021 Workshop on AI and cybersecurity (AI-Cybersec 2021), co-located with the 41st Specialist Group on Artificial Intelligence international conference on artificial intelligence (SGAI 2021), 14 December 2021, [virtual event]. CEUR workshop proceedings, 3125. Aachen: CEUR-WS [online], pages 1-13. Available from: http://ceur-ws.org/Vol-3125/paper1.pdf

Counterfactual explanations highlight "actionable knowledge" which helps the end-users to understand how a machine learning outcome could be changed to a more desirable outcome. In code vulnerability detection, understanding these "actionable" correc... Read More about Reasoning with counterfactual explanations for code vulnerability detection and correction..

TrustMod: a trust management module for NS-3 simulator. (2021)
Conference Proceeding
HAJAR, M.S., KALUTARAGE, H. and AL-KADRI, M.O. 2021. TrustMod: a trust management module for NS-3 simulator. In Zhao, L., Kumar, N., Hsu, R.C. and Zou, D. (eds.) Proceedings of 20th IEEE (Institute of Electrical and Electronics Engineers) International conference on Trust, security and privacy in computing and communications 2021 (IEEE TrustCom 2021), 20-21 October 2021, Shenyang, China: [virtual event]. Piscataway: IEEE [online], pages 51-60. Available from: https://doi.org/10.1109/TrustCom53373.2021.00025

Trust management offers a further level of defense against internal attacks in ad hoc networks. Deploying an effective trust management scheme can reinforce the overall network security. Regardless of limitations, however, security researchers often... Read More about TrustMod: a trust management module for NS-3 simulator..