Skip to main content

Research Repository

Advanced Search

All Outputs (8)

Aging microplastics enhances the adsorption of pharmaceuticals in freshwater. (2023)
Journal Article
MOURA, D.S., PESTANA, C.J., MOFFAT, C.F., GKOULEMANI, N., HUI, J., IRVINE, J.T.S. and LAWTON, L.A. 2024. Aging microplastics enhances the adsorption of pharmaceuticals in freshwater. Science of the total environment [online], 912, article number 169467. Available from: https://doi.org/10.1016/j.scitotenv.2023.169467

Plastic pollution is an increasing environmental concern. Pollutants such as microplastics (< 5 mm) and pharmaceuticals often co-exist in the aquatic environment. The current study aimed to elucidate the interaction of pharmaceuticals with microplast... Read More about Aging microplastics enhances the adsorption of pharmaceuticals in freshwater..

Photocatalytic conversion of cellulose into C5 oligosaccharides. (2023)
Journal Article
SKILLEN, N., WELGAMAGE, A., ROBERTSON, P.K.J., IRVINE, J.T.S. and LAWTON, L.A. 2023. Photocatalytic conversion of cellulose into C5 oligosaccharides. Journal of physics: energy [online], 6(1), article number 015002. Available from: https://doi.org/10.1088/2515-7655/ad04f1

Cellulose is made up of linear polymers of glucose monomers that could be a crucial source for valuable chemicals and sustainable liquid fuels. Cellulose is however, very stable and its conversion to a useful fuel or platform chemical products remain... Read More about Photocatalytic conversion of cellulose into C5 oligosaccharides..

Nature-based solution to eliminate cyanotoxins in water using biologically enhanced biochar. (2023)
Journal Article
MOORE, J., JAYAKUMAR, A., SOLDATOU, S., MAŠEK, O., LAWTON, L.A. and EDWARDS, C. 2023. Nature-based solution to eliminate cyanotoxins in water using biologically enhanced biochar. Environmental science and technology [online], 57(43), pages 16372-16385. Available from: https://doi.org/10.1021/acs.est.3c05298

Climate change and high eutrophication levels of freshwater sources are increasing the occurrence and intensity of toxic cyanobacterial blooms in drinking water supplies. Conventional water treatment struggles to eliminate cyanobacteria/cyanotoxins a... Read More about Nature-based solution to eliminate cyanotoxins in water using biologically enhanced biochar..

Bio-based sustainable polymers and materials: from processing to biodegradation. (2023)
Journal Article
OKOLIE, O., KUMAR, A., EDWARDS, C., LAWTON, L.A., OKE, A., MCDONALD, S., THAKUR, V.K. and NJUGUNA, J. 2023. Bio-based sustainable polymers and materials: from processing to biodegradation. Journal of composites science [online], 7(6), article 213. Available from: https://doi.org/10.3390/jcs7060213

In the life cycle of a material, there will be either chemical or physical change due to varying environmental factors such as biological activity, light, heat, moisture, and chemical conditions. This process leads to polymer property change as perta... Read More about Bio-based sustainable polymers and materials: from processing to biodegradation..

In situ H2O2 treatment of blue-green algae contaminated reservoirs causes significant improvement in drinking water treatability. (2023)
Journal Article
MELO ROCHA, M.A., CLEMENTE, A., AMORIM SANTOS, A., DA SILVA MELO, J., PESTANA, C.J., LAWTON, L.A. and CAPELO-NETO, J. 2023. In situ H2O2 treatment of blue-green algae contaminated reservoirs causes significant improvement in drinking water treatability. Chemosphere [online], 333, article 138895. Available from: https://doi.org/10.1016/j.chemosphere.2023.138895

The evaluation of water quality improvement brought about by in situ treatment of eutrophic water bodies, especially those used for human supply, is a challenging task since each water system responds differently. To overcome this challenge, we appli... Read More about In situ H2O2 treatment of blue-green algae contaminated reservoirs causes significant improvement in drinking water treatability..

Systematic evaluation of pyrolysis processes and biochar quality in the operation of low-cost flame curtain pyrolysis kiln for sustainable biochar production. (2023)
Journal Article
JAYAKUMAR, A., MORRISSET, D., KOUTSOMARKOS, V., WURZER, C., HADDEN, R.M., LAWTON, L., EDWARDS, C. and MAŠEK, O. 2023. Systematic evaluation of pyrolysis processes and biochar quality in the operation of low-cost flame curtain pyrolysis kiln for sustainable biochar production. Current research in environmental sustainability [online], 5, article 100213. Available from: https://doi.org/10.1016/j.crsust.2023.100213

Low-cost pyrolysis units such as flame curtain pyrolysis kilns are gaining popularity for biochar production. However, the processes that govern the working of such units are not well understood. Here, emissions, temperatures and mass loss are monito... Read More about Systematic evaluation of pyrolysis processes and biochar quality in the operation of low-cost flame curtain pyrolysis kiln for sustainable biochar production..

Chiral pharmaceutical drug adsorption to natural and synthetic particulates in water and their desorption in simulated gastric fluid. (2023)
Journal Article
PETRIE, B., MOURA, D.S., LAWTON, L.A. and SANGANYADO, E. 2023. Chiral pharmaceutical drug adsorption to natural and synthetic particulates in water and their desorption in simulated gastric fluid. Journal of hazardous materials advances [online], 9, article 100241. Available from: https://doi.org/10.1016/j.hazadv.2023.100241

Natural and synthetic particulates in aquatic environments can act as a vector for chiral pharmaceutical drugs. Understanding enantiomer enrichment in the particulate phase of water matrices is essential considering the enantiospecific effects that c... Read More about Chiral pharmaceutical drug adsorption to natural and synthetic particulates in water and their desorption in simulated gastric fluid..