Skip to main content

Research Repository

Advanced Search

All Outputs (80)

Modeling aerosol cloud aerodynamics during human coughing, talking, and breathing actions. (2021)
Journal Article
HOSSAIN, M. and FAISAL, N.H. 2021. Modeling aerosol cloud aerodynamics during human coughing, talking, and breathing actions. AIP advances [online], 11(4), article 045111. Available from: https://doi.org/10.1063/5.0042952

In this paper, we investigate the aerosol cloud flow physics during three respiratory actions by humans (such as coughing, talking, and breathing). With given variables (i.e., velocity, duration, particle size and number of particles, and ambient con... Read More about Modeling aerosol cloud aerodynamics during human coughing, talking, and breathing actions..

Computational fluid dynamics modelling to design and optimise power kites for renewable power generation. (2020)
Journal Article
PEGG, C., SURI, Y., ISLAM, S.Z., ASTHANA, A. and HOSSAIN, M. 2020. Computational fluid dynamics modelling to design and optimise power kites for renewable power generation. International journal of design engineering [online], 9(2): energy and sustainable futures, pages 81-100. Available from: https://doi.org/10.1504/IJDE.2020.113057

Power kites provide the potential rewards of obtaining the disused energy supply from high altitude wind. This paper aims to provide a design of power kite and optimise the potential for renewable power generation. The power kite was modelled using c... Read More about Computational fluid dynamics modelling to design and optimise power kites for renewable power generation..

Numerical simulation of fluid flow, proppant transport and fracture propagation in hydraulic fractures for unconventional reservoirs. (2020)
Thesis
SURI, Y. 2020. Numerical simulation of fluid flow, proppant transport and fracture propagation in hydraulic fractures for unconventional reservoirs. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://openair.rgu.ac.uk


The distribution of proppant injected in hydraulic fractures significantly affects fracture-conductivity and well-performance. The proppant transport and suspension in thin fracturing fluid used in unconventional reservoirs are considerably differe... Read More about Numerical simulation of fluid flow, proppant transport and fracture propagation in hydraulic fractures for unconventional reservoirs..

Laser induced fractures in porous media. (2020)
Thesis
MOSTAFA, A. 2020. Laser induced fractures in porous media. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-2271539

Hydraulic fracturing is the most effective technique to enhance well productivity in the oil and gas industry. There are many logistical, operational and environmental concerns associated with existing techniques, including the potential risk of unde... Read More about Laser induced fractures in porous media..

Developing a novel mechanistic model for four-phase oil-water-gas-sand stratified flow in a horizontal pipe. (2020)
Thesis
MORADI, B. 2020. Developing a novel mechanistic model for four-phase oil-water-gas-sand stratified flow in a horizontal pipe. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://openair.rgu.ac.uk

Presence of sand and solid particles in untreated petroleum sometime is inevitable. Although many techniques have been developed to prevent sand particles from entering the pipeline, such as downhole gravel packs, these downhole sand control devices... Read More about Developing a novel mechanistic model for four-phase oil-water-gas-sand stratified flow in a horizontal pipe..

Improvement to hydrocyclone used in separating particles from produced water in the oil and gas industry. (2020)
Thesis
ADEWOYE, A.J. 2020. Improvement to hydrocyclone used in separating particles from produced water in the oil and gas industry. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1357822

Hydrocyclone is used to separate particles from produced water. It can be used in different industries, including oil and gas, water treatment and pharmaceutical (among others). The hydrocyclone can effectively separate particles larger than 10μm, bu... Read More about Improvement to hydrocyclone used in separating particles from produced water in the oil and gas industry..

Effect of fracture roughness on the hydrodynamics of proppant transport in hydraulic fractures. (2020)
Journal Article
SURI, Y. ISLAM, S.Z. and HOSSAIN, M. 2020. Effect of fracture roughness on the hydrodynamics of proppant transport in hydraulic fractures. Journal of natural gas science and engineering [online], 80, article ID 103401. Available from: https://doi.org/10.1016/j.jngse.2020.103401

The effect of fracture roughness is investigated on proppant transport in hydraulic fractures using Joint Roughness Coefficient and a three-dimensional multiphase modelling approach. The equations governing the proppant transport physics in the fract... Read More about Effect of fracture roughness on the hydrodynamics of proppant transport in hydraulic fractures..

Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. [Dataset] (2020)
Data
ISLAM, S., HOSSAIN, M. and SURI, Y. 2020. Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. [Dataset]. Hosted on Mendeley Data [online]. Available from: https://doi.org/10.17632/sdzxzd9krm.1

The aim of this research was to find a dynamic and integrated numerical model that uses computational fluid dynamics (CFD) technique to model the fluid flow with proppant transport and Extended finite element method (XFEM) to model the fracture propa... Read More about Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. [Dataset].

Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. (2020)
Journal Article
SURI, Y., ISLAM, S.Z. and HOSSAIN, M. 2020. Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. International journal of rock mechanics and mining sciences [online], 131, article ID 104356. Available from: https://doi.org/10.1016/j.ijrmms.2020.104356

Numerically modelling the fluid flow with proppant transport and fracture propagation together are one of the significant technical challenges in hydraulic fracturing of unconventional hydrocarbon reservoirs. The existing models either model the prop... Read More about Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach..

Numerical fluid flow modelling in multiple fractured porous reservoirs. (2020)
Journal Article
SURI, Y., ISLAM, S.Z., STEPHEN, K., DONALD, C., THOMPSON, M., DROUBI, M.G. and HOSSAIN, M. 2020. Numerical fluid flow modelling in multiple fractured porous reservoirs. Fluid dynamics and materials processing [online], 16(2), pages 245-266. Available from: https://doi.org/10.32604/fdmp.2020.06505

This paper compares the fluid flow phenomena occurring within a fractured reservoir for three different fracture models using computational fluid dynamics. The effect of the fracture-matrix interface condition is studied on the pressure and velocity... Read More about Numerical fluid flow modelling in multiple fractured porous reservoirs..

Numerical modelling of proppant transport in hydraulic fractures. (2020)
Journal Article
SURI, Y., ISLAM, S.Z. and HOSSAIN, M. 2020. Numerical modelling of proppant transport in hydraulic fractures. Fluid dynamics and materials processing [online], 16(2), pages 297-337. Available from: https://doi.org/10.32604/fdmp.2020.08421

The distribution of proppant injected in hydraulic fractures significantly affects the fracture conductivity and well performance. The proppant transport in thin fracturing fluid used during hydraulic fracturing in the unconventional reservoirs is co... Read More about Numerical modelling of proppant transport in hydraulic fractures..

CFD modelling of flow-induced vibration under multiphase flow regimes. (2020)
Thesis
ASIEGBU, N.M. 2020. CFD modelling of flow-induced vibration under multiphase flow regimes. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

Internal multiphase flow-induced vibration (MFIV) in pipe bends poses serious problems in oil and gas, nuclear and chemical flow systems. The problems include: high amplitude displacement of the pipe structure due to resonance; fatigue failure due to... Read More about CFD modelling of flow-induced vibration under multiphase flow regimes..

CFD modelling of pipe erosion under multiphase flow regimes. (2020)
Thesis
OGUNSESAN, O.A. 2020. CFD modelling of pipe erosion under multiphase flow regimes. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

Pipe erosion due to sand transport can have an adverse effect on the production efficiency of pipe-lines and other related flow systems. Proper knowledge of the flow characteristics, particle behaviour and geometric effects is very important in the a... Read More about CFD modelling of pipe erosion under multiphase flow regimes..

Investigation of slug-churn flow induced transient excitation forces at pipe bend. (2019)
Journal Article
HOSSAIN, M., CHINENYE-KANU, N.M., DROUBI, G.M. and ISLAM, S.Z. 2019. Investigation of slug-churn flow induced transient excitation forces at pipe bend. Journal of fluids and structures [online], 91, article ID 102733. Available from: https://doi.org/10.1016/j.jfluidstructs.2019.102733

Numerical simulations of two-phase flow induced fluctuating forces at a pipe bend have been carried out to study the characteristics of multiphase flow induced vibration (FIV). The multiphase flow patterns and turbulence were modelled using the volum... Read More about Investigation of slug-churn flow induced transient excitation forces at pipe bend..

A new CFD approach for proppant transport in unconventional hydraulic fractures. (2019)
Journal Article
SURI, Y., ISLAM, S.Z. and HOSSAIN, M. 2019. A new CFD approach for proppant transport in unconventional hydraulic fractures. Journal of natural gas science and engineering [online], 70, article number 102951. Available from: https://doi.org/10.1016/j.jngse.2019.102951

For hydraulic fracturing design in unconventional reservoirs, the existing proppant transport models ignore the fluid leak-off effect from the fracture side wall and the effect of fracture roughness. In this paper, a model is proposed using three-dim... Read More about A new CFD approach for proppant transport in unconventional hydraulic fractures..

Numerical investigation of two-phase flow induced local fluctuations and interactions of flow properties through elbow. (2018)
Presentation / Conference Contribution
CHINENYE-KANU, N.M., HOSSAIN, M., DROUBI, M.G. and ISLAM, S.Z. 2018. Numerical investigation of two-phase flow induced local fluctuations and interactions of flow properties through elbow. In Wahab, M.A. (ed.) Proceedings of the 1st International conference on numerical modelling in engineering (NME 2018), 28-29 August 2018, Ghent, Belgium. Volume 2: numerical modelling in mechanical and materials engineering. Lecture notes in mechanical engineering. Singapore: Springer [online], pages 124-141. Available from: https://doi.org/10.1007/978-981-13-2273-0_11

The local interactions and fluctuations of multiphase flow properties present in upward slug/churn flow patterns through a 900 pipe bend has been investigated. Numerical modelling technique using the Volume of Fluid method (VOF) and Reynolds Average... Read More about Numerical investigation of two-phase flow induced local fluctuations and interactions of flow properties through elbow..

CFD modelling of pipe erosion due to sand transport. (2018)
Presentation / Conference Contribution
OGUNSESAN, O.A., HOSSAIN, M., IYI, D. and DHROUBI, M.G. 2018. CFD modelling of pipe erosion due to sand transport. In Wahab, M.A. (ed.) Proceedings of the 1st International conference on numerical modelling in engineering (NME 2018), 28-29 August 2018, Ghent, Belgium. Volume 2: numerical modelling in mechanical and materials engineering. Lecture notes in mechanical engineering. Singapore: Springer [online], pages 274-289. Available from: https://doi.org/10.1007/978-981-13-2273-0_22

Erosion caused by sand particles is a serious problem facing the oil and gas industry. Predicting pipe erosion due to sand transport is a complex process in multiphase flows due to the complex nature of the flow. Existing erosion studies are however... Read More about CFD modelling of pipe erosion due to sand transport..

Modelling multiphase flow in vertical pipe using CFD method. (2018)
Presentation / Conference Contribution
ALAITA, D., HOSSAIN, M. and ISLAM, S.Z. 2018. Modelling multiphase flow in vertical pipe using CFD method. In Wahab, M.A. (ed.) Proceedings of the 1st International conference on numerical modelling in engineering (NME 2018), 28-29 August 2018, Ghent, Belgium. Volume 2: numerical modelling in mechanical and materials engineering. Lecture notes in mechanical engineering. Singapore: Springer [online], pages 300-319. Available from: https://doi.org/10.1007/978-981-13-2273-0_24

Investigations of gas-liquid-solid flows in large diameter vertical pipes are scarce and detailed three phase flow study is still required to understand the flow interactions. Further investigation using high fidelity modelling is thus necessary due... Read More about Modelling multiphase flow in vertical pipe using CFD method..

Investigation of sand transport in an undulated pipe using computational fluid dynamics. (2017)
Journal Article
TEBOWEI, R., HOSSAIN, M., ISLAM, S.Z., DROUBI, M.G. and OLUYEMI, G. 2018. Investigation of sand transport in an undulated pipe using computational fluid dynamics. Journal of petroleum science and engineering [online], 162, pages 747-762. Available from: https://doi.org/10.1016/j.petrol.2017.11.003

A CFD model has been implemented to investigate the effects the pipe undulation on sand transport. Of particular interest of the present study is the sand deposition in small angled V-inclined bend relevant to oil and gas subsea flowlines where sand... Read More about Investigation of sand transport in an undulated pipe using computational fluid dynamics..

Computational fluid dynamics modelling of pipeline on-bottom stability. (2017)
Thesis
IYALLA, I. 2017. Computational fluid dynamics modelling of pipeline on-bottom stability. Robert Gordon University, PhD thesis.

Subsea pipelines are subjected to wave and steady current loads which cause pipeline stability problems. Current knowledge and understanding on the pipeline on-bottom stability is based on the research programmes from the 1980s such as the Pipeline S... Read More about Computational fluid dynamics modelling of pipeline on-bottom stability..