Skip to main content

Research Repository

Advanced Search

Symbols in engineering drawings (SiED): an imbalanced dataset benchmarked by convolutional neural networks. (2020)
Conference Proceeding
ELYAN, E., MORENO-GARC√ćA, C.F. and JOHNSTON, P. 2020. Symbols in engineering drawings (SiED): an imbalanced dataset benchmarked by convolutional neural networks. In Iliadis, L., Angelov, P.P., Jayne, C. and Pimenidis, E. (eds.) Proceedings of the 21st Engineering applications of neural networks conference 2020 (EANN 2020); proceedings of the EANN 2020, 5-7 June 2020, Halkidiki, Greece. Proceedings of the International Neural Networks Society, 2. Cham: Springer [online], pages 215-224. Available from: https://doi.org/10.1007/978-3-030-48791-1_16

Engineering drawings are common across different domains such as Oil & Gas, construction, mechanical and other domains. Automatic processing and analysis of these drawings is a challenging task. This is partly due to the complexity of these documents... Read More about Symbols in engineering drawings (SiED): an imbalanced dataset benchmarked by convolutional neural networks..

A review of digital video tampering: from simple editing to full synthesis. (2019)
Journal Article
JOHNSTON, P. and ELYAN, E. 2019. A review of digital video tampering: from simple editing to full synthesis. Digital investigation [online], 29, pages 67-81. Available from: https://doi.org/10.1016/j.diin.2019.03.006

Video tampering methods have witnessed considerable progress in recent years. This is partly due to the rapid development of advanced deep learning methods, and also due to the large volume of video footage that is now in the public domain. Historica... Read More about A review of digital video tampering: from simple editing to full synthesis..


;