Skip to main content

Research Repository

Advanced Search

Investigation of the effects of pipe diameter of internal multiphase flow on pipe elbow vibration and resonance. [Dataset] (2022)
Dataset
ASIEGBU, N.M., HOSSAIN, M., DROUBI, G.M. and ISLAM, S.Z. 2022. Investigation of the effects of pipe diameter of internal multiphase flow on pipe elbow vibration and resonance. [Dataset]. Proceedings of the Institution of Mechanical Engineers, part E: journal of process mechanical engineering [online], Online First. Available from: https://journals.sagepub.com/doi/suppl/10.1177/09544089221115520

This output contains supplementary material of tables and figures to accompany the main article of 'Investigation of the effects of pipe diameter of internal multiphase flow on pipe elbow vibration and resonance' by Nkemjika Mirian Asiegbu, Mamdud Ho... Read More about Investigation of the effects of pipe diameter of internal multiphase flow on pipe elbow vibration and resonance. [Dataset].

Investigation of the effects of pipe diameter of internal multiphase flow on pipe elbow vibration and resonance. (2022)
Journal Article
ASIEGBU, N.M., HOSSAIN, M., DROUBI, G.M. and ISLAM, S.Z. 2022. Investigation of the effects of pipe diameter of internal multiphase flow on pipe elbow vibration and resonance. Proceedings of the Institution of Mechanical Engineers, part E: journal of process mechanical engineering [online], Online First. Available from: https://doi.org/10.1177/09544089221115520

Computational fluid dynamics modelling of internal two-phase flow induced transient forces at 90° elbows have been carried out to evaluate the effect of pipe diameter on the characteristics of multiphase flow induced vibration. Simulations of two-pha... Read More about Investigation of the effects of pipe diameter of internal multiphase flow on pipe elbow vibration and resonance..

A review of recent advancements in offshore wind turbine technology. (2022)
Journal Article
ASIM, T., ISLAM, S.Z., HEMMATI, A. and KHALID, M.S.U. 2022. A review of recent advancements in offshore wind turbine technology. Energies [online], 15(2), article 579. Available from: https://doi.org/10.3390/en15020579

Offshore wind turbines are becoming increasingly popular due to their higher wind energy harnessing capabilities and lower visual pollution. Researchers around the globe have been reporting significant scientific advancements in offshore wind turbine... Read More about A review of recent advancements in offshore wind turbine technology..

Computational fluid dynamics modelling of multi-phase flow transition in presence of solid particles. (2021)
Thesis
ALAITA, D.A. 2021. Computational fluid dynamics modelling of multi-phase flow transition in presence of solid particles. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1603672

Multi-phase flow is the type of flow common in the oil and gas industry, as oil reservoirs contain mixtures of oil, gas and water with sand particles from sandstone reservoirs. Accurate design of oil and gas production equipment greatly depends on de... Read More about Computational fluid dynamics modelling of multi-phase flow transition in presence of solid particles..

Effects of damaged rotor on wake dynamics of vertical axis wind turbines. (2021)
Journal Article
ASIM, T. and ISLAM, S.Z. 2021. Effects of damaged rotor on wake dynamics of vertical axis wind turbines. Energies [online], 14(21), article 7060. Available from: https://doi.org/10.3390/en14217060

Vertical Axis Wind Turbines (VAWTs) are omni-directional turbomachines commonly used in rural areas for small-to-medium-scale power generation. The complex flow observed in the wake region of VAWTs is affected by a number of factors, such as rotor bl... Read More about Effects of damaged rotor on wake dynamics of vertical axis wind turbines..

Computational fluid dynamics modelling of fluid flow inside fractured reservoirs. (2021)
Thesis
AL-MASHHADANIE, H.A.J. 2021. Computational fluid dynamics modelling of fluid flow inside fractured reservoirs. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1603660

Fractured media exist in most layers of the earth's crust, often dominating bulk properties of subsurface geological formations. Therefore, fractured media are involved in many key engineering sectors that impact humans living on Earth. Fractured for... Read More about Computational fluid dynamics modelling of fluid flow inside fractured reservoirs..

CFD modelling and prototype testing of a vertical axis wind turbines in planetary cluster formation. (2021)
Journal Article
DURKACZ, J., ISLAM, S., CHAN, R., FONG, E., GILLIES, H., KARNIK, A. and MULLAN, T. 2021. CFD modelling and prototype testing of a vertical axis wind turbines in planetary cluster formation. Energy reports [online], 7(Supplement 3): 6th International conference on advances on clean energy research 2021 (ICACER 2021), 15-17 April 2021, [virtual conference], pages 119-126. Available from: https://doi.org/10.1016/j.egyr.2021.06.019

This study aims to improve the applicability of Vertical Axis Wind Turbines (VAWTs) by investigating their feasibility in a novel planetary cluster configuration by observing its effect on efficiency and overall power density. Computational Fluid Dyn... Read More about CFD modelling and prototype testing of a vertical axis wind turbines in planetary cluster formation..

Computational fluid dynamics modelling to design and optimise power kites for renewable power generation. (2020)
Journal Article
PEGG, C., SURI, Y., ISLAM, S.Z., ASTHANA, A. and HOSSAIN, M. 2020. Computational fluid dynamics modelling to design and optimise power kites for renewable power generation. International journal of design engineering [online], 9(2): energy and sustainable futures, pages 81-100. Available from: https://doi.org/10.1504/IJDE.2020.113057

Power kites provide the potential rewards of obtaining the disused energy supply from high altitude wind. This paper aims to provide a design of power kite and optimise the potential for renewable power generation. The power kite was modelled using c... Read More about Computational fluid dynamics modelling to design and optimise power kites for renewable power generation..

Numerical simulation of fluid flow, proppant transport and fracture propagation in hydraulic fractures for unconventional reservoirs. (2020)
Thesis
SURI, Y. 2020. Numerical simulation of fluid flow, proppant transport and fracture propagation in hydraulic fractures for unconventional reservoirs. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://openair.rgu.ac.uk

The distribution of proppant injected in hydraulic fractures significantly affects fracture-conductivity and well-performance. The proppant transport and suspension in thin fracturing fluid used in unconventional reservoirs are considerably differe... Read More about Numerical simulation of fluid flow, proppant transport and fracture propagation in hydraulic fractures for unconventional reservoirs..

Improvement to hydrocyclone used in separating particles from produced water in the oil and gas industry. (2020)
Thesis
ADEWOYE, A.J. 2020. Improvement to hydrocyclone used in separating particles from produced water in the oil and gas industry. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1357822

Hydrocyclone is used to separate particles from produced water. It can be used in different industries, including oil and gas, water treatment and pharmaceutical (among others). The hydrocyclone can effectively separate particles larger than 10μm, bu... Read More about Improvement to hydrocyclone used in separating particles from produced water in the oil and gas industry..

Effect of fracture roughness on the hydrodynamics of proppant transport in hydraulic fractures. (2020)
Journal Article
SURI, Y. ISLAM, S.Z. and HOSSAIN, M. 2020. Effect of fracture roughness on the hydrodynamics of proppant transport in hydraulic fractures. Journal of natural gas science and engineering [online], 80, article ID 103401. Available from: https://doi.org/10.1016/j.jngse.2020.103401

The effect of fracture roughness is investigated on proppant transport in hydraulic fractures using Joint Roughness Coefficient and a three-dimensional multiphase modelling approach. The equations governing the proppant transport physics in the fract... Read More about Effect of fracture roughness on the hydrodynamics of proppant transport in hydraulic fractures..

Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. [Dataset] (2020)
Dataset
ISLAM, S., HOSSAIN, M. and SURI, Y. 2020. Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. [Dataset]. Hosted on Mendeley Data [online]. Available from: https://doi.org/10.17632/sdzxzd9krm.1

The aim of this research was to find a dynamic and integrated numerical model that uses computational fluid dynamics (CFD) technique to model the fluid flow with proppant transport and Extended finite element method (XFEM) to model the fracture propa... Read More about Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. [Dataset].

Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. (2020)
Journal Article
SURI, Y., ISLAM, S.Z. and HOSSAIN, M. 2020. Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. International journal of rock mechanics and mining sciences [online], 131, article ID 104356. Available from: https://doi.org/10.1016/j.ijrmms.2020.104356

Numerically modelling the fluid flow with proppant transport and fracture propagation together are one of the significant technical challenges in hydraulic fracturing of unconventional hydrocarbon reservoirs. The existing models either model the prop... Read More about Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach..

Numerical fluid flow modelling in multiple fractured porous reservoirs. (2020)
Journal Article
SURI, Y., ISLAM, S.Z., STEPHEN, K., DONALD, C., THOMPSON, M., DROUBI, M.G. and HOSSAIN, M. 2020. Numerical fluid flow modelling in multiple fractured porous reservoirs. Fluid dynamics and materials processing [online], 16(2), pages 245-266. Available from: https://doi.org/10.32604/fdmp.2020.06505

This paper compares the fluid flow phenomena occurring within a fractured reservoir for three different fracture models using computational fluid dynamics. The effect of the fracture-matrix interface condition is studied on the pressure and velocity... Read More about Numerical fluid flow modelling in multiple fractured porous reservoirs..

Numerical modelling of proppant transport in hydraulic fractures. (2020)
Journal Article
SURI, Y., ISLAM, S.Z. and HOSSAIN, M. 2020. Numerical modelling of proppant transport in hydraulic fractures. Fluid dynamics and materials processing [online], 16(2), pages 297-337. Available from: https://doi.org/10.32604/fdmp.2020.08421

The distribution of proppant injected in hydraulic fractures significantly affects the fracture conductivity and well performance. The proppant transport in thin fracturing fluid used during hydraulic fracturing in the unconventional reservoirs is co... Read More about Numerical modelling of proppant transport in hydraulic fractures..

CFD modelling of flow-induced vibration under multiphase flow regimes. (2020)
Thesis
ASIEGBU, N.M. 2020. CFD modelling of flow-induced vibration under multiphase flow regimes. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

Internal multiphase flow-induced vibration (MFIV) in pipe bends poses serious problems in oil and gas, nuclear and chemical flow systems. The problems include: high amplitude displacement of the pipe structure due to resonance; fatigue failure due to... Read More about CFD modelling of flow-induced vibration under multiphase flow regimes..

Petrophysical and geomechanical characterization of a marginal (Wabi) field reservoir in north-central Niger Delta. (2019)
Thesis
ZORASI, C.B. 2019. Petrophysical and geomechanical characterization of a marginal (Wabi) field reservoir in north-central Niger Delta. Robert Gordon University [online], MRes thesis. Available from: https://openair.rgu.ac.uk

The aim of this study is to evaluate marginal field petrophysical and geomechanical parameters, and to develop a model for analysis of geomechanical problems, in order to mitigate stress-related issues in drilling, development and reservoir managemen... Read More about Petrophysical and geomechanical characterization of a marginal (Wabi) field reservoir in north-central Niger Delta..

Investigation of slug-churn flow induced transient excitation forces at pipe bend. (2019)
Journal Article
HOSSAIN, M., CHINENYE-KANU, N.M., DROUBI, G.M. and ISLAM, S.Z. 2019. Investigation of slug-churn flow induced transient excitation forces at pipe bend. Journal of fluids and structures [online], 91, article ID 102733. Available from: https://doi.org/10.1016/j.jfluidstructs.2019.102733

Numerical simulations of two-phase flow induced fluctuating forces at a pipe bend have been carried out to study the characteristics of multiphase flow induced vibration (FIV). The multiphase flow patterns and turbulence were modelled using the volum... Read More about Investigation of slug-churn flow induced transient excitation forces at pipe bend..

A new CFD approach for proppant transport in unconventional hydraulic fractures. (2019)
Journal Article
SURI, Y., ISLAM, S.Z. and HOSSAIN, M. 2019. A new CFD approach for proppant transport in unconventional hydraulic fractures. Journal of natural gas science and engineering [online], 70, article number 102951. Available from: https://doi.org/10.1016/j.jngse.2019.102951

For hydraulic fracturing design in unconventional reservoirs, the existing proppant transport models ignore the fluid leak-off effect from the fracture side wall and the effect of fracture roughness. In this paper, a model is proposed using three-dim... Read More about A new CFD approach for proppant transport in unconventional hydraulic fractures..

Computational fluid dynamics study of yield power law drilling fluid flow through smooth-walled fractures. (2019)
Journal Article
AHAMMAD, F., MAHMUD, S. and ISLAM, S.Z. 2019. Computational fluid dynamics study of yield power law drilling fluid flow through smooth-walled fractures. Journal of petroleum exploration and production technology [online], 9(4), pages 2717-2727. Available from: https://doi.org/10.1007/s13202-019-0646-5

Presence of natural fractures in sub-surface makes an oil well drilling operation very challenging. As one of the major functions of drilling mud is to maintain bottomhole pressure inside a wellbore to avoid any invasion of unwanted high-pressure inf... Read More about Computational fluid dynamics study of yield power law drilling fluid flow through smooth-walled fractures..