Skip to main content

Research Repository

Advanced Search

On discovering optimal trade-offs when introducing new routes in existing multi-modal public transport systems. (2022)
Conference Proceeding
HAN, K., CHRISTIE, L.A., ZAVOIANU, A.-C. and MCCALL, J. 2022. On discovering optimal trade-offs when introducing new routes in existing multi-modal public transport systems. In Moreno-Díaz, R., Pichler, F. and Quesada-Arencibia, A. (eds.) Computer aided systems theory: Eurocast 2022; revised selected papers from the 18th International conference on computer aided systems theory (Eurocast 2022), 20-25 February 2022, Las Palmas, Spain. Lecture notes in computer science, 13789. Cham: Springer [online], pages 104-111. Available from: https://doi.org/10.1007/978-3-031-25312-6_12

While self-driving technology is still being perfected, public transport authorities are increasingly interested in the ability to model and optimise the benefits of adding connected and autonomous vehicles (CAVs) to existing multi-modal transport sy... Read More about On discovering optimal trade-offs when introducing new routes in existing multi-modal public transport systems..

Lightweight interpolation-based surrogate modelling for multi-objective continuous optimisation. (2022)
Conference Proceeding
ZAVOIANU, A.-C., LACROIX, B. and MCCALL, J. 2022. Lightweight Interpolation-based surrogate modelling for multiobjective continuous optimisation. In Moreno-Díaz, R., Pichler, F. and Quesada-Arencibia, A. (eds.) Computer aided systems theory: Eurocast 2022; revised selected papers from the 18th International conference on computer aided systems theory (Eurocast 2022), 20-25 February 2022, Las Palmas, Spain. Lecture notes in computer science, 13789. Cham: Springer [online], pages 53-60. Available from: https://doi.org/10.1007/978-3-031-25312-6_6

We propose two surrogate-based strategies for increasing the convergence speed of multi-objective evolutionary algorithms (MOEAs) by stimulating the creation of high-quality individuals early in the run. Both offspring generation strategies are desig... Read More about Lightweight interpolation-based surrogate modelling for multi-objective continuous optimisation..

Landscape features and automated algorithm selection for multi-objective interpolated continuous optimisation problems. (2021)
Conference Proceeding
LIEFOOGHE, A., VEREL, S., LACROIX, B., Z?VOIANU, A.-C. and MCCALL, J. 2021. Landscape features and automated algorithm selection for multi-objective interpolated continuous optimisation problems. In Chicano, F. (ed) Proceedings of 2021 Genetic and evolutionary computation conference (GECCO 2021), 10-14 July 2021, [virtual conference]. New York: ACM [online], pages 421-429. Available from: https://doi.org/10.1145/3449639.3459353

In this paper, we demonstrate the application of features from landscape analysis, initially proposed for multi-objective combinatorial optimisation, to a benchmark set of 1 200 randomly-generated multiobjective interpolated continuous optimisation p... Read More about Landscape features and automated algorithm selection for multi-objective interpolated continuous optimisation problems..

Comparative run-time performance of evolutionary algorithms on multi-objective interpolated continuous optimisation problems. (2020)
Conference Proceeding
ZAVOIANU, A.-C., LACROIX, B. and MCCALL, J. 2020. Comparative run-time performance of evolutionary algorithms on multi-objective interpolated continuous optimisation problems. In Bäck, T., Preuss, M., Deutz, A., Wang, H., Doerr, C., Emmerich, M. and Trautmann, H. (eds.) Parallel problem solving from nature: PPSN XVI: proceedings of the 16th Parallel problem solving from nature international conference (PPSN 2020), 5-9 September 2020, Leiden, The Netherlands. Lecture notes in computer science, 12269. Cham; Springer, part 1, pages 287-300. Available from: https://doi.org/10.1007/978-3-030-58112-1_20

We propose a new class of multi-objective benchmark problems on which we analyse the performance of four well established multi-objective evolutionary algorithms (MOEAs) – each implementing a different search paradigm – by comparing run-time converge... Read More about Comparative run-time performance of evolutionary algorithms on multi-objective interpolated continuous optimisation problems..

Critical analysis of the suitability of surrogate models for finite element method application in catalog-based suspension bushing design. (2020)
Conference Proceeding
CERNUDA, C., LLAVORI, I., ZAVOIANU, A.-C., AGUIRRE, A., ZABALA, A. and PLAZA, J. 2020. Critical analysis of the suitability of surrogate models for finite element method application in catalog-based suspension bushing design. In Proceedings of 25th Institute of Electrical and Electronics Engineers (IEEE) Emerging technologies and factory automation international conference 2020 (ETFA 2020), 8-11 September 2020, Vienna, Austria. Piscataway: IEEE [online], article ID 9212166, pages 829-836. Available from: https://doi.org/10.1109/ETFA46521.2020.9212166

This work presents a critical analysis of the suitability of surrogate models for finite element method application. A case study of a finite element method (FEM) structural problem was selected in order to test the performance of surrogate algorithm... Read More about Critical analysis of the suitability of surrogate models for finite element method application in catalog-based suspension bushing design..

On modeling the dynamic thermal behavior of electrical machines using genetic programming and artificial neural networks. (2020)
Conference Proceeding
ZAVOIANU, A.-C., KITZBERGER, M., BRAMERDORFER, G. and SAMINGER-PLATZ, S. 2020. On modeling the dynamic thermal behavior of electrical machines using genetic programming and artificial neural networks. In Moreno-Díaz, R., Pichler, F. and Quesada-Arencibia, A. (eds.) Computer aided systems theory: EUROCAST 2019: revised selected papers from the proceedings of the 17th International conference on computer aided systems theory (EUROCAST 2019), 17-22 February 2019, Las Palmas de Gran Canaria, Spain. Lecture notes in computer science, 12013. Cham: Springer [online], part 1, pages 319-326. Available from: https://doi.org/10.1007/978-3-030-45093-9_39

We describe initial attempts to model the dynamic thermal behavior of electrical machines by evaluating the ability of linear and non-linear (regression) modeling techniques to replicate the performance of simulations carried out using a lumped param... Read More about On modeling the dynamic thermal behavior of electrical machines using genetic programming and artificial neural networks..

Comparative analysis of two asynchronous parallelization variants for a multi-objective coevolutionary solver. (2019)
Conference Proceeding
ZAVOIANU, A.-C., SAMINGER-PLATZ, S. and AMRHEIN, W. 2019. Comparative analysis of two asynchronous parallelization variants for a multi-objective coevolutionary solver. In Proceedings of the 2019 Institute of Electrical and Electronics Engineers (IEEE) congress on evolutionary computation (IEEE CEC 2019), 10-13 June 2019, Wellington, New Zealand. Piscataway: IEEE [online], article number 8790133, pages 3078-3085. Available from: https://doi.org/10.1109/CEC.2019.8790133

We describe and compare two steady state asynchronous parallelization variants for DECMO2++, a recently proposed multi-objective coevolutionary solver that generally displays a robust run-time convergence behavior. The two asynchronous variants were... Read More about Comparative analysis of two asynchronous parallelization variants for a multi-objective coevolutionary solver..

Two enhancements for improving the convergence speed of a robust multi-objective coevolutionary algorithm. (2018)
Conference Proceeding
ZAVOIANU, A.-C., SAMINGER-PLATZ, S., LUGHOFER, E. and AMRHEIN, W. 2018. Two enhancements for improving the convergence speed of a robust multi-objective coevolutionary algorithm. In Aguirre, H. (ed.) Proceedings of the 2018 Genetic and evolutionary computation conference (GECCO'18), 15-19 July 2018, Kyoto, Japan. New York: Association for Computing Machinery [online], pages 793-800. Available from: https://doi.org/10.1145/3205455.3205549

We describe two enhancements that significantly improve the rapid convergence behavior of DECM02 - a previously proposed robust coevolutionary algorithm that integrates three different multi-objective space exploration paradigms: differential evoluti... Read More about Two enhancements for improving the convergence speed of a robust multi-objective coevolutionary algorithm..