Skip to main content

Research Repository

Advanced Search

Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. [Dataset] (2021)
Dataset
SANDAL, L.F., BACH, K., ØVERÅS, C.K., WIRATUNGA, N., COOPER, K, et al. 2021. Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. [Dataset]. JAMA internal medicine [online], 181(10), pages 1288-1296. Available from: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2782459#supplemental-tab

SELFBACK is an evidence-based decision support system that supports self-management of nonspecific low back pain. In specific, SELFBACK provides the user with evidence-based advice on physical activity level, strength/ flexibility exercises, and educ... Read More about Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. [Dataset].

Detection of morphological changes caused by chemical stress in the cyanobacterium Planktothrix agardhii using convolutional neural networks. [Dataset] (2021)
Dataset
CARLOTO, I., JOHNSTON, P., PESTANA, C.J. and LAWTON, L.A. 2021. Detection of morphological changes caused by chemical stress in the cyanobacterium Planktothrix agardhii using convolutional neural networks. [Dataset]. Science of the total environment [online], 784, article 146956. Available from: https://www.sciencedirect.com/science/article/pii/S004896972102026X#s0105

The presence of harmful algal bloom in many reservoirs around the world, alongside the lack of sanitation law/ordinance regarding cyanotoxin monitoring (particularly in developing countries), create a scenario in which the local population could pote... Read More about Detection of morphological changes caused by chemical stress in the cyanobacterium Planktothrix agardhii using convolutional neural networks. [Dataset].

Heterogeneous ensemble selection for evolving data streams. [Dataset] (2020)
Dataset
LUONG, A.V., NGUYEN, T.T., LIEW, A.W.-C. and WANG, S. 2021. Heterogeneous ensemble selection for evolving data streams. [Dataset]. Pattern recognition [online], 112, article ID 107743. Available from: https://www.sciencedirect.com/science/article/pii/S003132032030546X#sec0023

Ensemble learning has been widely applied to both batch data classification and streaming data classification. For the latter setting, most existing ensemble systems are homogenous, which means they are generated from only one type of learning model.... Read More about Heterogeneous ensemble selection for evolving data streams. [Dataset].

Identifying and analyzing novel epilepsy-related genes using random walk with restart algorithm. [Dataset] (2017)
Dataset
GUO, W., SHANG, D.-M., CAO, J.-H., FENG, K., HE., Y.-C., JIANG, Y., WANG, S.P. and GAO, Y.-F. 2017. Identifying and analyzing novel epilepsy-related genes using random walk with restart algorithm. [Dataset]. BioMed research international [online], 2017: computational molecular networks and network pharmacology, article ID 6132436. Available from: https://www.hindawi.com/journals/bmri/2017/6132436/#supplementary-materials

As a classical neurological condition that may suddenly interrupt normal life activities and result in physical injury, epilepsy has been widely used to describe a group of epileptic seizure associated diseases. Epileptic seizures are the typical sym... Read More about Identifying and analyzing novel epilepsy-related genes using random walk with restart algorithm. [Dataset].

Walsh families of all rank-invariant classes of 3-bit pseudo-Boolean functions. [Dataset] (2016)
Dataset
CHRISTIE, L.A. 2016. Walsh families of all rank-invariant classes of 3-bit pseudo-Boolean functions. [Dataset]

This dataset was compiled as part of the following PhD thesis: CHRISTIE, L.A. 2016. The role of Walsh structure and ordinal linkage in the optimisation of pseudo-Boolean functions under monotonicity invariance. Robert Gordon University, PhD thesis. H... Read More about Walsh families of all rank-invariant classes of 3-bit pseudo-Boolean functions. [Dataset].

Generating easy and hard problems using the proximate optimality principle. [Dataset] (2015)
Dataset
MCCALL, J.A.W., CHRISTIE, L.A. and BROWNLEE, A.E.I. 2015. Generating easy and hard problems using the proximate optimality principle. [Dataset]

These data were gathered to investigate the hypothesis that coherent functions will be easy and anti-coherent functions will be hard for a hillclimber. We generated 10 coherent functions for each length on bit-strings of length 6-100 and the same num... Read More about Generating easy and hard problems using the proximate optimality principle. [Dataset].