Skip to main content

Research Repository

Advanced Search

Locality sensitive batch selection for triplet networks. (2020)
Conference Proceeding
MARTIN, K., WIRATUNGA, N. and SANI, S. 2020. Locality sensitive batch selection for triplet networks. In Proceedings of the 2020 Institute of Electrical and Electronics Engineers (IEEE) International joint conference on neural networks (IEEE IJCNN 2020), part of the 2020 IEEE World congress on computational intelligence (IEEE WCCI 2020) and co-located with the 2020 IEEE congress on evolutionary computation (IEEE CEC 2020) and the 2020 IEEE International fuzzy systems conference (FUZZ-IEEE 2020), 19-24 July 2020, [virtual conference]. Piscataway: IEEE [online], article ID 9207538. Available from: https://doi.org/10.1109/IJCNN48605.2020.9207538

Triplet networks are deep metric learners which learn to optimise a feature space using similarity knowledge gained from training on triplets of data simultaneously. The architecture relies on the triplet loss function to optimise its weights based u... Read More about Locality sensitive batch selection for triplet networks..

Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition. (2020)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N. and COOPER, K. 2020. Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition. In Proceedings of the 2020 Institute of Electrical and Electronics Engineers (IEEE) International joint conference on neural networks (IEEE IJCNN 2020), part of the 2020 IEEE World congress on computational intelligence (IEEE WCCI 2020) and co-located with the 2020 IEEE congress on evolutionary computation (IEEE CEC 2020) and the 2020 IEEE International fuzzy systems conference (FUZZ-IEEE 2020), 19-24 July 2020, [virtual conference]. Piscataway: IEEE [online], article ID 9206941. Available from: https://doi.org/10.1109/IJCNN48605.2020.9206941

Exercise adherence is a key component of digital behaviour change interventions for the self-management of musculoskeletal pain. Automated monitoring of exercise adherence requires sensors that can capture patients performing exercises and Machine Le... Read More about Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition..

CDSMOTE: class decomposition and synthetic minority class oversampling technique for imbalanced-data classification. (2020)
Journal Article
ELYAN, E., MORENO-GARCIA, C.F. and JAYNE, C. 2021. CDSMOTE: class decomposition and synthetic minority class oversampling technique for imbalanced-data classification. Neural computing and applications [online], 33(7), pages 2839-2851. Available from: https://doi.org/10.1007/s00521-020-05130-z

Class-imbalanced datasets are common across several domains such as health, banking, security, and others. The dominance of majority class instances (negative class) often results in biased learning models, and therefore, classifying such datasets re... Read More about CDSMOTE: class decomposition and synthetic minority class oversampling technique for imbalanced-data classification..

STEM teaching for the Internet of Things maker course: a teaching model based on the iterative loop. (2020)
Journal Article
CHEN, R., ZHENG, Y., XU, X., ZHAO, H., REN, J. and TAN, H.-Z. 2020. STEM teaching for the Internet of Things maker course: a teaching model based on the interative loop. Sustainability [online], 12(14), article 5758. Available from: https://doi.org/10.3390/su12145758

As the key technology for 5G applications in the future, the Internet of Things (IoT) is developing rapidly, and the demand for the cultivation of engineering talents in the IoT is also expanding. The rise of maker education has brought new teaching... Read More about STEM teaching for the Internet of Things maker course: a teaching model based on the iterative loop..

Improved overlap-based undersampling for imbalanced dataset classification with application to epilepsy and Parkinson's disease. (2020)
Journal Article
VUTTIPITTAYAMONGKOL, P. and ELYAN, E. 2020. Improved overlap-based undersampling for imbalanced dataset classification with application to epilepsy and Parkinson's disease. International journal of neural systems [online], 30(8), article ID 2050043. Available from: https://doi.org/10.1142/S0129065720500434

Classification of imbalanced datasets has attracted substantial research interest over the past decades. Imbalanced datasets are common in several domains such as health, finance, security and others. A wide range of solutions to handle imbalanced da... Read More about Improved overlap-based undersampling for imbalanced dataset classification with application to epilepsy and Parkinson's disease..

Sensitivity analysis applied to fuzzy inference on the value of information in the oil and gas industry. (2020)
Journal Article
VILELA, M., OLUYEMI, G. and PETROVSKI, A. 2020. Sensitivity analysis applied to fuzzy inference on the value of information in the oil and gas industry. International journal of applied decision sciences [online], 13(3), pages 344-362. Available from: https://doi.org/10.1504/IJADS.2020.10026404

Value of information is a widely accepted methodology for evaluating the need to acquire new data in the oil and gas industry. In the conventional approach to estimating the value of information, the outcomes of a project assessment relate to the dec... Read More about Sensitivity analysis applied to fuzzy inference on the value of information in the oil and gas industry..

Evolved ensemble of detectors for gross error detection. (2020)
Conference Proceeding
NGUYEN, T.T., MCCALL, J., WILSON, A., OCHEI, L., CORBETT, H. and STOCKTON, P. 2020. Evolved ensemble of detectors for gross error detection. In GECCO '20: proceedings of the Genetic and evolutionary computation conference companion (GECCO 2020), 8-12 July 2020, Cancún, Mexico. New York: ACM [online], pages 281-282. Available from: https://doi.org/10.1145/3377929.3389906

In this study, we evolve an ensemble of detectors to check the presence of gross systematic errors on measurement data. We use the Fisher method to combine the output of different detectors and then test the hypothesis about the presence of gross err... Read More about Evolved ensemble of detectors for gross error detection..

Does good ESG lead to better financial performances by firms? Machine learning and logistic regression models of public enterprises in Europe. (2020)
Journal Article
DE LUCIA, C., PAZIENZA, P. and BARTLETT, M. 2020. Does good ESG lead to better financial performances by firms? Machine learning and logistics regression models of public enterprises in Europe. Sustainability [online], 12(13), article ID 5317. Available from: https://doi.org/10.3390/su12135317

The increasing awareness of climate change and human capital issues is shifting companies towards aspects other than traditional financial earnings. In particular, the changing behaviors towards sustainability issues of the global community and the a... Read More about Does good ESG lead to better financial performances by firms? Machine learning and logistic regression models of public enterprises in Europe..

Automated anomaly recognition in real time data streams for oil and gas industry. (2020)
Thesis
MAJDANI SHABESTARI, F. 2020. Automated anomaly recognition in real time data streams for oil and gas industry. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

There is a growing demand for computer-assisted real-time anomaly detection - from the identification of suspicious activities in cyber security, to the monitoring of engineering data for various applications across the oil and gas, automotive and ot... Read More about Automated anomaly recognition in real time data streams for oil and gas industry..

ETAREE: an effective trend-aware reputation evaluation engine for wireless medical sensor networks. (2020)
Conference Proceeding
HAJAR, M.S., AL-KADRI, M.O. and KALUTARAGE, H. 2020. ETAREE: an effective trend-aware reputation evaluation engine for wireless medical sensor networks. In Proceedings of 2020 Institute of Electrical and Electronics Engineers (IEEE) Communications and network security conference (CNS 2020), 29 June - 1 July 2020, [virtual conference]. Piscataway: IEEE [online], article ID 9162325. Available from: https://doi.org/10.1109/CNS48642.2020.9162325

Wireless Medical Sensor Networks (WMSN) will play a significant role in the advancements of modern healthcare applications. Security concerns are still the main obstacle to the widespread adoption of this technology. Conventional security approaches,... Read More about ETAREE: an effective trend-aware reputation evaluation engine for wireless medical sensor networks..

Multi-layer heterogeneous ensemble with classifier and feature selection. (2020)
Conference Proceeding
NGUYEN, T.T., VAN PHAM, N., DANG, M.T., LUONG, A.V., MCCALL, J. and LIEW, A.W.C. 2020. Multi-layer heterogeneous ensemble with classifier and feature selection. In GECCO '20: proceedings of the Genetic and evolutionary computation conference (GECCO 2020), 8-12 July 2020, Cancun, Mexico. New York: ACM [online], pages 725-733. Available from: https://doi.org/10.1145/3377930.3389832

Deep Neural Networks have achieved many successes when applying to visual, text, and speech information in various domains. The crucial reasons behind these successes are the multi-layer architecture and the in-model feature transformation of deep le... Read More about Multi-layer heterogeneous ensemble with classifier and feature selection..

On-line anomaly detection with advanced independent component analysis of multi-variate residual signals from causal relation networks. (2020)
Journal Article
LUGHOFER, E., ZAVOIANU, A.-C., POLLAK, R., PRATAMA, M., MEYER-HEYE, P., ZÖRRER, H., EITZINGER, C. and RADAUER, T. 2020. On-line anomaly detection with advanced independent component analysis of multi-variate residual signals from causal relation networks. Information sciences [online], 537, 425-451. Available from: https://doi.org/10.1016/j.ins.2020.06.034

Anomaly detection in todays industrial environments is an ambitious challenge to detect possible faults/problems which may turn into severe waste during production, defects, or systems components damage, at an early stage. Data-driven anomaly detecti... Read More about On-line anomaly detection with advanced independent component analysis of multi-variate residual signals from causal relation networks..

The importance of embedding meta skills in computer science graduate apprenticeship programmes. (2020)
Conference Proceeding
YOUNG, T. 2020. The importance of embedding meta skills in computer science graduate apprenticeship programmes. In Proceedings of the 25th Association for Computing Machinery (ACM) Innovation and technology in computer science education conference 2020 (ITiCSE '20), 15-19 June 2020, Trondheim, Norway. New York: ACM [online], pages 589-590. Available from: https://doi.org/10.1145/3341525.3394010

The purpose of this proposal is to investigate the need for the increased focus on developing transferable and meta skills of Graduate Apprentice Computer Science students and how the advancements of technology can impact the need for this. The Fourt... Read More about The importance of embedding meta skills in computer science graduate apprenticeship programmes..

Through the lens: enhancing assessment with video-based presentation. (2020)
Conference Proceeding
ZARB, M. and BIRTLESKELMAN, J. 2020. Through the lens: enhancing assessment with video-based presentations. In Proceedings of the 25th Association for Computing Machinery (ACM) Innovation and technology in computer science education conference 2020 (ITiCSE '20), 15-19 June 2020, Trondheim, Norway. New York: ACM [online], pages 187-192. Available from: https://doi.org/10.1145/3341525.3387376

This paper discusses a video-based approach trialled within Robert Gordon University. Students are typically asked to formally deliver presentations (either individually, or in groups) for summative assessment. Timetabling issues, large student numbe... Read More about Through the lens: enhancing assessment with video-based presentation..

Programming heterogeneous parallel machines using refactoring and Monte–Carlo tree search. (2020)
Journal Article
BROWN, C. JANJIC, V., GOLI, M. and MCCALL, J. 2020. Programming heterogeneous parallel machines using refactoring and Monte–Carlo tree search. International journal of parallel programming [online], 48(4): high level parallel programming, pages 583-602. Available from: https://doi.org/10.1007/s10766-020-00665-z

This paper presents a new technique for introducing and tuning parallelism for heterogeneous shared-memory systems (comprising a mixture of CPUs and GPUs), using a combination of algorithmic skeletons (such as farms and pipelines), Monte–Carlo tree s... Read More about Programming heterogeneous parallel machines using refactoring and Monte–Carlo tree search..

Deep learning for symbols detection and classification in engineering drawings. (2020)
Journal Article
ELYAN, E., JAMIESON, L. and ALI-GOMBE, A. 2020. Deep learning for symbols detection and classification in engineering drawings. Neural networks [online], 129, pages 91-102. Available from: https://doi.org/10.1016/j.neunet.2020.05.025

Engineering drawings are commonly used in different industries such as Oil and Gas, construction, and other types of engineering. Digitising these drawings is becoming increasingly important. This is mainly due to the need to improve business practic... Read More about Deep learning for symbols detection and classification in engineering drawings..

Overlap-based undersampling method for classification of imbalanced medical datasets. (2020)
Conference Proceeding
VUTTIPITTAYAMONGKOL, P. and ELYAN, E. 2020. Overlap-based undersampling method for classification of imbalanced medical datasets. In Maglogiannis, I., Iliadis, L. and Pimenidis, E. (eds.) Artificial intelligence applications and innovations: AIAI 2020; proceedings of 16th International Federation for Information Processing working group (IFIP WG) 12.5 International artificial intelligence applications and innovations, 5-7 June 2020, Halkidiki, Greece. IFIP advances in information and communication technology, 584. Cham: Springer [online], pages 358-369. Available from: https://doi.org/10.1007/978-3-030-49186-4_30

Early diagnosis of some life-threatening diseases such as cancers and heart is crucial for effective treatments. Supervised machine learning has proved to be a very useful tool to serve this purpose. Historical data of patients including clinical and... Read More about Overlap-based undersampling method for classification of imbalanced medical datasets..

Towards a reliable face recognition system. (2020)
Conference Proceeding
ALI-GOMBE, A., ELYAN, E. and ZWIEGELAAR, J. 2020. Towards a reliable face recognition system. In Iliadis, L., Angelov, P.P., Jayne, C. and Pimenidis, E. (eds.) Proceedings of the 21st Engineering applications of neural networks conference 2020 (EANN 2020); proceedings of the EANN 2020, 5-7 June 2020, Halkidiki, Greece. Proceedings of the International Neural Networks Society, 2. Cham: Springer [online], pages 304-316. Available from: https://doi.org/10.1007/978-3-030-48791-1_23

Face Recognition (FR) is an important area in computer vision with many applications such as security and automated border controls. The recent advancements in this domain have pushed the performance of models to human-level accuracy. However, the va... Read More about Towards a reliable face recognition system..

Symbols in engineering drawings (SiED): an imbalanced dataset benchmarked by convolutional neural networks. (2020)
Conference Proceeding
ELYAN, E., MORENO-GARCÍA, C.F. and JOHNSTON, P. 2020. Symbols in engineering drawings (SiED): an imbalanced dataset benchmarked by convolutional neural networks. In Iliadis, L., Angelov, P.P., Jayne, C. and Pimenidis, E. (eds.) Proceedings of the 21st Engineering applications of neural networks conference 2020 (EANN 2020); proceedings of the EANN 2020, 5-7 June 2020, Halkidiki, Greece. Proceedings of the International Neural Networks Society, 2. Cham: Springer [online], pages 215-224. Available from: https://doi.org/10.1007/978-3-030-48791-1_16

Engineering drawings are common across different domains such as Oil & Gas, construction, mechanical and other domains. Automatic processing and analysis of these drawings is a challenging task. This is partly due to the complexity of these documents... Read More about Symbols in engineering drawings (SiED): an imbalanced dataset benchmarked by convolutional neural networks..

Predicting permeability based on core analysis. (2020)
Conference Proceeding
KONTOPOULOS, H., AHRIZ, H., ELYAN, E. and ARNOLD, R. 2020. Predicting permeability based on core analysis. In Iliadis, L., Angelov, P.P., Jayne, C. and Pimenidis, E. (eds.) Proceedings of the 21st Engineering applications of neural networks conference 2020 (EANN 2020); proceedings of the EANN 2020, 5-7 June 2020, Halkidiki, Greece. Proceedings of the International Neural Networks Society, vol 2. Cham: Springer [online], pages 143-154. Available from: https://doi.org/10.1007/978-3-030-48791-1_10

Knowledge of permeability, a measure of the ability of rocks to allow fluids to flow through them, is essential for building accurate models of oil and gas reservoirs. Permeability is best measured in the laboratory using special core analysis (SCAL)... Read More about Predicting permeability based on core analysis..