Skip to main content

Research Repository

See what's under the surface


Multi-objective evolutionary design of antibiotic treatments. (2019)
Journal Article
OCHOA, G., CHRISTIE, L.A., BROWNLEE, A.E. and HOYLE, A. 2019. Multi-objective evolutionary design of antibiotic treatments. Artificial intelligence in medicine [online], In Press. Available from: https://doi.org/10.1016/j.artmed.2019.101759

Antibiotic resistance is one of the major challenges we face in modern times. Antibiotic use, especially their overuse, is the single most important driver of antibiotic resistance. Efforts have been made to reduce unnecessary drug prescriptions, but... Read More about Multi-objective evolutionary design of antibiotic treatments..

Towards a conversational agent for threat detection in the internet of things. (2019)
Conference Proceeding
MCDERMOTT, C.D., JEANNELLE, B. and ISAACS, J.P. 2019. Towards a conversational agent for threat detection in the internet of things. In Proceedings of the 2019 International Cyber science on cyber situational awareness, data analytics and assessment (Cyber SA): pioneering research and innovation in cyber situational awareness, 3-4 June 2019, Oxford, UK. Piscataway: IEEE [online], chapter 6. Available from: https://doi.org/10.1109/CyberSA.2019.8899580

A conversational agent to detect anomalous traffic in consumer IoT networks is presented. The agent accepts two inputs in the form of user speech received by Amazon Alexa enabled devices, and classified IDS logs stored in a DynamoDB Table. Aural anal... Read More about Towards a conversational agent for threat detection in the internet of things..

Prediction of casing critical buckling during shale gas hydraulic fracturing. (2019)
Journal Article
MOHAMMED, A.I., OYENEYIN, B., BARTLETT, M. and NJUGUNA, J. 2019. Prediction of casing critical buckling during shale gas hydraulic fracturing. Journal of petroleum science and engineering [online], In Press. Available from: https://doi.org/10.1016/j.petrol.2019.106655

Casing deformation during volume fracturing in shale gas horizontal wells is caused by both existing and induced stresses. These stresses jointly alter and compound the stress field around the casing leading to inefficient well stimulation as planned... Read More about Prediction of casing critical buckling during shale gas hydraulic fracturing..

The effects of measurement error and testing frequency on the fitness-fatigue model applied to resistance training: a simulation approach. (2019)
Journal Article
HEMINGWAY, B.H.S., BURGESS, K.E., ELYAN, E. and SWINTON, P.A. 2019. The effects of measurement error and testing frequency on the fitness-fatigue model applied to resistance training: a simulation approach. International journal of sports science and coaching [online], OnlineFirst. Available from: https://doi.org/10.1177/1747954119887721

This study investigated the effects of measurement error and testing frequency on prediction accuracy of the standard Fitness-Fatigue Model. A simulation-based approach was used to systematically assess measurement error and frequency inputs commonly... Read More about The effects of measurement error and testing frequency on the fitness-fatigue model applied to resistance training: a simulation approach..

Ensemble selection based on classifier prediction confidence. (2019)
Journal Article
NGUYEN, T.T., LUONG, A.V., DANG, M.T., LIEW, A.W.-C. and MCCALL, J. 2020. Ensemble selection based on classifier prediction confidence. Pattern recognition [online], 100, article ID 107104. Available from: https://doi.org/10.1016/j.patcog.2019.107104

Ensemble selection is one of the most studied topics in ensemble learning because a selected subset of base classifiers may perform better than the whole ensemble system. In recent years, a great many ensemble selection methods have been introduced.... Read More about Ensemble selection based on classifier prediction confidence..

Reducing computational cost in IoT cyber security: case study of artificial immune system algorithm. (2019)
Conference Proceeding
ZAKARIYYA, I., AL-KADRI, M.O., KALUTARGE, H. and PETROVSKI, A. 2019. Reducing computational cost in IoT cyber security: case study of artificial immune system algorithm. In Obaidat, M. and Samarati, P. (eds.) Proceedings of the 16th International security and cryptography conference (SECRYPT 2019), co-located with the 16th International joint conference on e-business and telecommunications (ICETE 2019), 26-28 July 2019, Prague, Czech Republic. Setúbal, Portugal: SciTePress [online], 2, pages 523-528. Available from: https://doi.org/10.5220/0008119205230528.

Using Machine Learning (ML) for Internet of Things (IoT) security monitoring is a challenge. This is due to their resource constraint nature that limits the deployment of resource-hungry monitoring algorithms. Therefore, the aim of this paper is to i... Read More about Reducing computational cost in IoT cyber security: case study of artificial immune system algorithm..

Data stream mining: methods and challenges for handling concept drift. (2019)
Journal Article
WARES, S., ISAACS, J. and ELYAN, E. 2019. Data stream mining: methods and challenges for handling concept drift. SN applied sciences [online], 1(11), article ID 1412. Available from: https://doi.org/10.1007/s42452-019-1433-0

Mining and analysing streaming data is crucial for many applications, and this area of research has gained extensive attention over the past decade. However, there are several inherent problems that continue to challenge the hardware and the state-of... Read More about Data stream mining: methods and challenges for handling concept drift..

Context-aware anomaly detector for monitoring cyber attacks on automotive CAN bus. (2019)
Conference Proceeding
KALUTARAGE, H.K., AL-KADRI, M.O., CHEAH, M. and MADZUDZO, G. 2019. Context-aware anomaly detector for monitoring cyber attacks on automotive CAN bus. In Hof, H.-J., Fritz, M., Kraub, C. and Wasenmüller, O. (eds.). Proceedings of 2019 Computer science in cars symposium (CSCS 2019), 8 October 2019, Kaiserslautern, Germany. New York: ACM [online], article number 7. Available from: https://doi.org/10.1145/3359999.3360496

Automotive electronics is rapidly expanding. An average vehicle contains million lines of software codes, running on 100 of electronic control units (ECUs), in supporting number of safety, driver assistance and infotainment functions. These ECUs are... Read More about Context-aware anomaly detector for monitoring cyber attacks on automotive CAN bus..

Multiple fake classes GAN for data augmentation in face image dataset. (2019)
Conference Proceeding
ALI-GOMBE, A., ELYAN, E. and JAYNE, C. 2019. Multiple fake classes GAN for data augmentation in face image dataset. In Proceedings of the 2019 International joint conference on neural networks (IJCNN 2019), 14-19 July 2019, Budapest, Hungary. Piscataway: IEEE [online], article ID 8851953. Available from: https://doi.org/10.1109/IJCNN.2019.8851953

Class-imbalanced datasets often contain one or more class that are under-represented in a dataset. In such a situation, learning algorithms are often biased toward the majority class instances. Therefore, some modification to the learning algorithm o... Read More about Multiple fake classes GAN for data augmentation in face image dataset..

Digitisation of assets from the oil and gas industry: challenges and opportunities. (2019)
Conference Proceeding
MORENO-GARCIA, C.F. and ELYAN, E. 2019. Digitisation of assets from the oil and gas industry: challenges and opportunities. In Proceedings of 2019 International conference on document analysis and recognition workshops (ICDARW), 22-25 September 2019, Sydney, Australia. Piscataway: IEEE [online], 7, pages 2-5. Available from: https://doi.org/10.1109/ICDARW.2019.60122

Automated processing and analysis of legacies of printed documents across the Oil & Gas industry provide a unique opportunity and at the same time pose a significant challenge. One particular example is the case of Piping and Instrumentation Diagrams... Read More about Digitisation of assets from the oil and gas industry: challenges and opportunities..

Dimensions of ‘socio’ vulnerabilities of advanced persistent threats. (2019)
Conference Proceeding
NICHO, M. and MCDERMOTT, C.D. 2019. Dimensions of ‘socio’ vulnerabilities of advanced persistent threats. In Begušić, D., Rožić, N., Radić, J. and Šarić, M. (eds.) Proceedings of the 27th International software, telecommunications and computer networks conference 2019 (SoftCOM 2019), 19-21 September 2019, Split, Croatia. Piscataway: IEEE [online], article ID 8903788. Available from: https://doi.org/10.23919/SOFTCOM.2019.8903788

Advanced Persistent Threats (APT) are highly targeted and sophisticated multi-stage attacks, utilizing zero day or near zero-day malware. Directed at internetworked computer users in the workplace, their growth and prevalence can be attributed to bot... Read More about Dimensions of ‘socio’ vulnerabilities of advanced persistent threats..

Neighbourhood-based undersampling approach for handling imbalanced and overlapped data. (2019)
Journal Article
VUTTIPITTAYAMONGKOL, P. and ELYAN, E. 2020. Neighbourhood-based undersampling approach for handling imbalanced and overlapped data. Information sciences [online], 509, pages 47-70. Available from: https://doi.org/10.1016/j.ins.2019.08.062

Class imbalanced datasets are common across different domains including health, security, banking and others. A typical supervised learning algorithm tends to be biased towards the majority class when dealing with imbalanced datasets. The learning ta... Read More about Neighbourhood-based undersampling approach for handling imbalanced and overlapped data..

Developing a catalogue of explainability methods to support expert and non-expert users. (2019)
Conference Proceeding
MARTIN, K., LIRET, A., WIRATUNGA, N., OWUSU, G. and KERN, M. [2019]. Developing a catalogue of explainability methods to support expert and non-expert users. To be presented at the 39th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) International annual conference (SGAI 2019), 17-19 December 2019, Cambridge, UK.

Organisations face growing legal requirements and ethical responsibilities to ensure that decisions made by their intelligent systems are explainable. However, provisioning of an explanation is often application dependent, causing an extended design... Read More about Developing a catalogue of explainability methods to support expert and non-expert users..

Learning to self-manage by intelligent monitoring, prediction and intervention. (2019)
Conference Proceeding
WIRATUNGA, N., CORSAR, D., MARTIN, K., WIJEKOON, A., ELYAN, E., COOPER, K., IBRAHIM, Z., CELIKTUTAN, O., DOBSON, R.J., MCKENNA, S., MORRIS, J., WALLER, A., ABD-ALHAMMED, R., QAHWAJI, R. and CHAUDHURI, R. 2019. Learning to self-manage by intelligent monitoring, prediction and intervention. In Wiratunga, N., Coenen, F. and Sani, S. (eds.) Proceedings of the 4th International workshop on knowledge discovery in healthcare data (KDH 2019), co-located with the 28th International joint conference on artificial intelligence (IJCAI-19), 10-11 August 2019, Macao, China. CEUR workshop proceedings, 2429. Aachen: CEUR-WS [online], pages 60-67. Available from: http://ceur-ws.org/Vol-2429/paper10.pdf

Despite the growing prevalence of multimorbidities, current digital self-management approaches still prioritise single conditions. The future of out-of-hospital care requires researchers to expand their horizons; integrated assistive technologies sho... Read More about Learning to self-manage by intelligent monitoring, prediction and intervention..

Sensitivity analysis applied to fuzzy inference on the value of information in the oil and gas industry. (2019)
Journal Article
VILELA, M., OLUYEMI, G. and PETROVSKI, A. [2019]. Sensitivity analysis applied to fuzzy inference on the value of information in the oil and gas industry. International journal of applied decision sciences [online], (accepted).

Value of information is a widely accepted methodology for evaluating the need to acquire new data in the oil and gas industry. In the conventional approach to estimating the value of information, the outcomes of a project assessment relate to the dec... Read More about Sensitivity analysis applied to fuzzy inference on the value of information in the oil and gas industry..

The use of machine learning algorithms for detecting advanced persistent threats. (2019)
Conference Proceeding
EKE, H.N., PETROVSKI, A. and AHRIZ, H. 2019. The use of machine learning algorithms for detecting advanced persistent threats. Presented at the 12th International on security of information and networks conference 2019 (SINCONF 2019), 12-15 September 2019, Sochi, Russia. New York: ACM [online], (accepted). Availalbe from: https://doi.org/10.1145/3357613.3357618

Advanced Persistent Threats (APTs) have been a major challenge in securing both Information Technology (IT) and Operational Technology (OT) systems. Due to their capability to navigates around defenses and to evade detection for a prolonged period of... Read More about The use of machine learning algorithms for detecting advanced persistent threats..

Human activity recognition with deep metric learners. (2019)
Conference Proceeding
MARTIN, K., WIJEKOON, A. and WIRATUNGA, N. [2019]. Human activity recognition with deep metric learners. In Workshop proceedings of the 27th International conference on case-based reasoning (ICCBR 2019), 8-12 September 2019, Otzenhausen, Germany. CEUR workshop proceedings: CEUR-WS [online], (accepted).

Establishing a strong foundation for similarity-based return is a top priority in Case-Based Reasoning (CBR) systems. Deep Metric Learners (DMLs) are a group of neural network architectures which learn to optimise case representations for similarity-... Read More about Human activity recognition with deep metric learners..

Anomaly detection in network traffic using dynamic graph mining with a sparse autoencoder. (2019)
Conference Proceeding
JIA, G., MILLER, P., HONG, X., KALUTARAGE, H. and BAN, T. 2019. Anomaly detection in network traffic using dynamic graph mining with a sparse autoencoder. In Proceedings of 18th Institution of Electrical and Electronics Engineers (IEEE) International trust, security and privacy in computing and communications conference, co-located with 13th Institution of Electrical and Electronics Engineers (IEEE) International big data science and engineering conference (TrustCom/BigDataSE), 5-8 August 2019, Rotorua, New Zealand. Piscataway: IEEE [online], pages 458-465. Available from: https://doi.org/10.1109...om/BigDataSE.2019.00068

Network based attacks on ecommerce websites can have serious economic consequences. Hence, anomaly detection in dynamic network traffic has become an increasingly important research topic in recent years. This paper proposes a novel dynamic Graph and... Read More about Anomaly detection in network traffic using dynamic graph mining with a sparse autoencoder..

Introducing the dynamic customer location-allocation problem. (2019)
Conference Proceeding
ANKRAH, R., LACROIX, B., MCCALL, J., HARDWICK, A. and CONWAY, A. 2019. Introducing the dynamic customer location-allocation problem. In Proceedings of the 2019 Institute of Electrical and Electronics Engineers (IEEE) Congress on evolutionary computation (IEEE CEC 2019), 10-13 June 2019, Wellington, NZ. Piscataway: IEEE [online], pages 3157-3164. Available from: https://doi.org/10.1109/CEC.2019.8790150.

In this paper, we introduce a new stochastic Location-Allocation Problem which assumes the movement of customers over time. We call this new problem Dynamic Customer Location-Allocation Problem (DC-LAP). The problem is based on the idea that customer... Read More about Introducing the dynamic customer location-allocation problem..

Comparative analysis of two asynchronous parallelization variants for a multi-objective coevolutionary solver. (2019)
Conference Proceeding
ZAVOIANU, A.-C., SAMINGER-PLATZ, S. and AMRHEIN, W. 2019. Comparative analysis of two asynchronous parallelization variants for a multi-objective coevolutionary solver. In Proceedings of the 2019 Institute of Electrical and Electronics Engineers (IEEE) congress on evolutionary computation (IEEE CEC 2019), 10-13 June 2019, Wellington, New Zealand. Piscataway: IEEE [online], article number 8790133, pages 3078-3085. Available from: https://doi.org/10.1109/CEC.2019.8790133

We describe and compare two steady state asynchronous parallelization variants for DECMO2++, a recently proposed multi-objective coevolutionary solver that generally displays a robust run-time convergence behavior. The two asynchronous variants were... Read More about Comparative analysis of two asynchronous parallelization variants for a multi-objective coevolutionary solver..