Skip to main content

Research Repository

Advanced Search

Using contact angle measurements for determination of the surface free energy of the ceramic membranes. (2022)
Conference Proceeding
HASHIM, I.A., AISUENI, F., OGUNLUDE, P., RAMALAN, M., OGOUN, E., HUSSAINI, M. and GOBINA, E. 2022. Using contact angle measurements for determination of the surface free energy of the ceramic membranes. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 5-8. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/177.pdf

The surface free energy is one of the factors that characterises the surfaces of materials. The sessile drop method is the most popular method for determining its value. A contact angle between the surface and the edge of liquid droplets is measured... Read More about Using contact angle measurements for determination of the surface free energy of the ceramic membranes..

The quantitative effect of flow direction on gas permeation in ceramic membrane. (2022)
Conference Proceeding
RAMALAN, M.M., PRABHU, R., HASHIM, I., OGUNLUDE, P., OGOUN, E., AISUENI, F., ABUNOMAH, O., GIWA, A. and GOBINA, E. 2022. The quantitative effect of flow direction on gas permeation in ceramic membrane. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 55-58. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/358.pdf

The effect of flow direction in radial porous ceramic membrane has been extensively studied. Understanding fluid flow through membrane has offered utility to a number of industrial processes such as gas separation, catalytic reactions, enhanced oil r... Read More about The quantitative effect of flow direction on gas permeation in ceramic membrane..

Effect of pore size and porosity on contact angle of ceramic membrane for oil-in-water emulsion separation. (2022)
Conference Proceeding
AISUENI, F., ABUNUMAH, O., HASHIM, I., RAMALAN, M., OGOUN, E., PRABHU, R., GIWA, A. and GOBINA, E. 2022. Effect of pore size and porosity on contact angle of ceramic membrane for oil-in-water emulsion separation. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 59-62. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/174.pdf

The main objective of this work is to study the effect of pore size and porosity on contact angle of ceramic membrane (CM) for Oil-in-water (O/W) emulsion separation. This would include using commercially produced unmodified CM pore size 6000nm and 1... Read More about Effect of pore size and porosity on contact angle of ceramic membrane for oil-in-water emulsion separation..

Using nanoporous core-samples to mimic the effect of petrophysical parameters on natural gas flowrate in an unconventional gas reservoir. (2022)
Conference Proceeding
OGOUN, E., ABUNUMAH, O., AISUENI, F., HOSSAIN, M., GIWA, A. and GOBINA, E. 2022. Using nanoporous core-samples to mimic the effect of petrophysical parameters on natural gas flowrate in an unconventional gas reservoir. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 67-70. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/352.pdf

Natural gas was for quite a long time regarded as an unwanted by-product of oil exploration and production that was mostly flared to the atmosphere. This happened because there was no feasible economic means of bringing it to the market. In this work... Read More about Using nanoporous core-samples to mimic the effect of petrophysical parameters on natural gas flowrate in an unconventional gas reservoir..

Development of dense membranes for high-density hydrogen production from ammonia catalytic decomposition (cracking) for PEM fuel cells power in long-haul passenger aircraft transportation. (2022)
Conference Proceeding
SHEHU, H., ORAKWE, I., ABUNOMAH, O., OGUNLUDE, P., OGOUN, E., RAMALAN, M., AISUENI, F., OKO, E., IBHADON, A., GAD-BRIGGS, A., GIANNOPOULOS, I., GIWA, A. and GOBINA, E. 2022. Development of dense membranes for high-density hydrogen production from ammonia catalytic decomposition (cracking) for PEM fuel cells power in long-haul passenger aircraft transportation. Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 134-137. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/310.pdf

Aviation is a major greenhouse gas contributor responsible for around 3.2% of global CO2 emissions to the atmosphere. That corresponds to over than 1 billion metric tons of carbon (A metric ton is slightly smaller than the American imperial ton—but t... Read More about Development of dense membranes for high-density hydrogen production from ammonia catalytic decomposition (cracking) for PEM fuel cells power in long-haul passenger aircraft transportation..

Characterization of membranes for advanced direct carbon capture. (2022)
Conference Proceeding
HASHIM, I.A., AISUENI, F., ABUNOMAH, O., OGUNLUDE, P., RAMALAN, M., OGOUN, E. and GOBINA, E. 2022. Characterization of membranes for advanced direct air carbon capture. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 148-151. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/386.pdf

Carbon capture is essential for lowering anthropogenic carbon emissions and, as a result, limiting global warming. Membrane technology has a lot of potential for extremely efficient carbon capture because of its energy-efficient and environmentally f... Read More about Characterization of membranes for advanced direct carbon capture..

Effect of reservoir structural rhythm on carbon capture and sequestration (CCS) performance. (2022)
Journal Article
ABUNUMAH, O., OGUNLUDE, P., OGOUN, E., RAMALAN, M., ANTWI, S., AISUENI, F., HASHIM, I. and GOBINA, E. 2022. Effect of reservoir structural rhythm on carbon capture and sequestration (CCS) performance. International journal on engineering, science and technology [online], 4(1), pages 41-53. Available from: https://doi.org/10.46328/ijonest.72

In addition to the evolution of green and nano energy, sequestration of CO2 is also an evolving method to control the global CO2 footprint and greenhouse effect. Carbon Capture and Sequestration (CCS) is an established technique to capture carbon fro... Read More about Effect of reservoir structural rhythm on carbon capture and sequestration (CCS) performance..

Mass transfer characteristics through alumina membranes with different pores sizes and porosity. (2022)
Journal Article
OGUNLUDE, P., ABUNOMAH, O., HASHIM, I., AISUENI, F., OGOUN, E., ANTWI, S., RAMALAN, M., WILLIAMWEST, T., SUKKI, F.M. and GOBINA, E. 2022. Mass transfer characteristics through alumina membranes with different pores sizes and porosity. International journal of engineering, science and technology [online], 4(1), pages 99-123. Available from: https://doi.org/10.46328/ijonest.71

Different membranes covering the macroporous to nano-pororous range and having different porosities have been used to study the mass transfer of methane and carbon dioxide single gases. The effect of flow parameters on the transport mechanisms throug... Read More about Mass transfer characteristics through alumina membranes with different pores sizes and porosity..

Characterization and hydrodynamic evaluation of the relationship between permeability and microstructure parameters ceramic membranes for the separation of oil-in-water emulsion. (2022)
Journal Article
AISUENI, F., GOBINA, E., HASHIM, I. and OGOUN, E. 2022. Characterization and hydrodynamic evaluation of the relationship between permeability and microstructure parameters ceramic membranes for the separation of oil-in-water emulsion. International journal of engineering, science and technology [online], 4(1), pages 14-20. Available from: https://doi.org/10.46328/ijonest.69

Ceramic membranes for wastewater treatment are usually fine filters prepared by sintering of alumina, titania or zirconia powders at ultra-high temperatures and have an asymmetric cross-section using the same material or a combination of the three gi... Read More about Characterization and hydrodynamic evaluation of the relationship between permeability and microstructure parameters ceramic membranes for the separation of oil-in-water emulsion..

Gas flow mechanisms in fractured low permeability reservoirs. (2021)
Presentation / Conference
OGOUN, E., AISUENI, F., OGUNLUDE, P. and GOBINA, E. 2021. Gas flow mechanisms in fractured low permeability reservoirs. Presented at 2021 International congress of Scientific Advances (ICONSAD'21), 22-25 December 2021, [virtual conference].

The exploration and production of unconventional natural gas reservoirs has enhanced the gateway to the diversification of economic activities from oil. However, the gas industry faces some major variations in the storyline in different parts of the... Read More about Gas flow mechanisms in fractured low permeability reservoirs..

Effect of hydrodynamic and microstructural parameters on ceramic membrane for oil-in-water separation. (2021)
Presentation / Conference
AISUENI, F. and GOBINA, E. 2021. Effect of hydrodynamic and microstructural parameters on ceramic membrane for oil-in-water separation. Presented at 2021 International congress of Scientific Advances (ICONSAD'21), 22-25 December 2021, [virtual conference].

The main objective of this work is to study the effect of hydrodynamics and microstructure parameters which includes characterization and crossflow filtrations on ceramic membrane for the separation of oil -in-water emulsion. Firstly, the 6000nm unmo... Read More about Effect of hydrodynamic and microstructural parameters on ceramic membrane for oil-in-water separation..

Characterization and evaluation of nanoparticles ceramic membrane for the separation of oil-in-water emulsion. (2021)
Conference Proceeding
AISUENI, F.A., OGUON, E., HASHIM, I. and GOBINA, E. 2021. Characterization and evaluation of nanoparticles ceramic membrane for the separation of oil-in-water emulsion. In Proceedings of the ICANM 2021: 8th International conference and exhibition on advanced and nanomaterials 2021 (ICANM 2021), 9-11 August 2021, [virtual conference]. Ontario: ICANM, pages 17-26.

The mixture of oil with water from industrial activities creates an emulsion which is now termed as Oil-in-Water (O/W) emulsion. Several chemical and physical methods have been successfully used for the separation of O/W emulsions; however, the trace... Read More about Characterization and evaluation of nanoparticles ceramic membrane for the separation of oil-in-water emulsion..

Comparattive [sic] evaluation of oil-in-water emulsion separation with aluminium oxide and zinc oxide nanoparticles ceramic membrane. (2021)
Presentation / Conference
AISUENI, F., HASHIM, I., OGOUN, E. and GOBINA, E. 2021. Comparattive [sic] evaluation of oil-in-water emulsion separation with aluminium oxide and zinc oxide nanoparticles ceramic membrane. Presented to 2021 TUBA (Turkish Academy of Science) World conference on energy science and technology (TUBA WCEST-2021), 8-12 August 2021, [virtual conference].

This research aims at comparing two nanoparticles (Aluminium oxide and zinc oxide) coated ceramic membrane with self-cleaning ability for the effectively separation of low concentration ([less than] 250mg/L) Oil-in-Water O/W Emulsion. Preliminary exp... Read More about Comparattive [sic] evaluation of oil-in-water emulsion separation with aluminium oxide and zinc oxide nanoparticles ceramic membrane..