Skip to main content

Research Repository

Advanced Search

All Outputs (12)

Proceedings of the 6th International workshop on knowledge discovery from healthcare data (KDH@IJCAI 2023) (2023)
Presentation / Conference Contribution
IBRAHIM, Z., WU, H. and WIRATUNGA, N. (eds.) 2023. Proceedings of the 6th International workshop on knowledge discovery from healthcare data (KDH@IJCAI 2023), co-located with the 32nd International joint conference on artificial intelligence (IJCAI 2023), 20 August 2023, Macao, China. CEUR workshop proceedings, 3479. Aachen: CEUR-WS [online]. Available from: https://ceur-ws.org/Vol-3479/

This workshop is centred around novel AI methodologies that aim to solve some of the grand challenges associated with medical data. Held in conjunction with the International Joint Conference on Artificial Intelligence (IJCAI 2023), this year's works... Read More about Proceedings of the 6th International workshop on knowledge discovery from healthcare data (KDH@IJCAI 2023).

Adapting semantic similarity methods for case-based reasoning in the Cloud. (2022)
Presentation / Conference Contribution
NKISI-ORJI, I., PALIHAWADANA, C., WIRATUNGA, N., CORSAR, D. and WIJEKOON, A. 2022. Adapting semantic similarity methods for case-based reasoning in the Cloud. In Keane, M.T. and Wiratunga, N. (eds.) Case-based reasoning research and development: proceedings of the 30th International conference on case-based reasoning (ICCBR 2022), 12-15 September 2022, Nancy, France. Lecture notes in computer science, 13405. Cham: Springer [online], pages 125-139. Available from: https://doi.org/10.1007/978-3-031-14923-8_9

CLOOD is a cloud-based CBR framework based on a microservices architecture, which facilitates the design and deployment of case-based reasoning applications of various sizes. This paper presents advances to the similarity module of CLOOD through the... Read More about Adapting semantic similarity methods for case-based reasoning in the Cloud..

How close is too close? Role of feature attributions in discovering counterfactual explanations. (2022)
Presentation / Conference Contribution
WIJEKOON, A., WIRATUNGA, N., NKISI-ORJI, I., PALIHAWADANA, C., CORSAR, D. and MARTIN, K. 2022. How close is too close? Role of feature attributions in discovering counterfactual explanations. In Keane, M.T. and Wiratunga, N. (eds.) Case-based reasoning research and development: proceedings of the 30th International conference on case-based reasoning (ICCBR 2022), 12-15 September 2022, Nancy, France. Lecture notes in computer science, 13405. Cham: Springer [online], pages 33-47. Available from: https://doi.org/10.1007/978-3-031-14923-8_3

Counterfactual explanations describe how an outcome can be changed to a more desirable one. In XAI, counterfactuals are "actionable" explanations that help users to understand how model decisions can be changed by adapting features of an input. A cas... Read More about How close is too close? Role of feature attributions in discovering counterfactual explanations..

A case-based approach for content planning in data-to-text generation. (2022)
Presentation / Conference Contribution
UPADHYAY, A. and MASSIE, S. 2022. A case-based approach for content planning in data-to-text generation. In Keane, M.T. and Wiratunga, N. (eds.) Case-based reasoning research and development: proceedings of the 30th International conference on case-based reasoning (ICCBR 2022), 12-15 September 2022, Nancy, France. Lecture notes in computer science, 13405. Cham: Springer [online], pages 380-394. Available from: https://doi.org/10.1007/978-3-031-14923-8_25

The problem of Data-to-Text Generation (D2T) is usually solved using a modular approach by breaking the generation process into some variant of planning and realisation phases. Traditional methods have been very good at producing high quality texts b... Read More about A case-based approach for content planning in data-to-text generation..

Case-based reasoning research and development: proceedings of the 30th International conference on case-based reasoning (ICCBR 2022). (2022)
Presentation / Conference Contribution
KEANE, M.T. and WIRATUNGA, N. (eds.) 2022. Case-based reasoning research and development: proceedings of the 30th International conference on case-based reasoning (ICCBR 2022), 12-15 September 2022, Nancy, France. Lecture notes in computer science, 13405. Cham: Springer [online]. Available from: https://doi.org/10.1007/978-3-031-14923-8

This volume contains the papers presented at the 30th International Conference on Case-Based Reasoning (ICCBR 2022), which was held during September 12–15, 2022, at LORIA in Nancy, France. ICCBR is the premier annual meeting of the Case-Based Reasoni... Read More about Case-based reasoning research and development: proceedings of the 30th International conference on case-based reasoning (ICCBR 2022)..

Proceedings of the 2021 SICSA explainable artificial intelligence workshop (SICSA XAI 2021) (2021)
Presentation / Conference Contribution
MARTIN, K., WIRATUNGA, N. and WIJEKOON, A. (eds.) 2021. Proceedings of the 2021 SICSA explainable artificial intelligence workshop (SICSA XAI 2021), 1 June 2021, Aberdeen, UK. CEUR workshop proceedings, 2894. Aachen: CEUR-WS [online]. Available from: https://ceur-ws.org/Vol-2894/

The SICSA Workshop 2021 was designed to present a forum for the dissemination of ideas on domains relating to the explainability of Artificial Intelligence and Machine Learning methods. The event was organised into several themed sessions: Session 1... Read More about Proceedings of the 2021 SICSA explainable artificial intelligence workshop (SICSA XAI 2021).

Counterfactual explanations for student outcome prediction with Moodle footprints. (2021)
Presentation / Conference Contribution
WIJEKOON, A., WIRATUNGA, N., NKILSI-ORJI, I., MARTIN, K., PALIHAWADANA, C. and CORSAR, D. 2021. Counterfactual explanations for student outcome prediction with Moodle footprints. In Martin, K., Wiratunga, N. and Wijekoon, A. (eds.) SICSA XAI workshop 2021: proceedings of 2021 SICSA (Scottish Informatics and Computer Science Alliance) eXplainable artificial intelligence workshop (SICSA XAI 2021), 1st June 2021, [virtual conference]. CEUR workshop proceedings, 2894. Aachen: CEUR-WS [online], session 1, pages 1-8. Available from: http://ceur-ws.org/Vol-2894/short1.pdf

Counterfactual explanations focus on “actionable knowledge” to help end-users understand how a machine learning outcome could be changed to one that is more desirable. For this purpose a counterfactual explainer needs to be able to reason with simila... Read More about Counterfactual explanations for student outcome prediction with Moodle footprints..

Non-deterministic solvers and explainable AI through trajectory mining. (2021)
Presentation / Conference Contribution
FYVIE, M., MCCALL, J.A.W. and CHRISTIE, L.A. 2021. Non-deterministic solvers and explainable AI through trajectory mining. In Martin, K., Wiratunga, N. and Wijekoon, A. (eds.) SICSA XAI workshop 2021: proceedings of 2021 SICSA (Scottish Informatics and Computer Science Alliance) eXplainable artificial intelligence workshop (SICSA XAI 2021), 1st June 2021, [virtual conference]. CEUR workshop proceedings, 2894. Aachen: CEUR-WS [online], session 4, pages 75-78. Available from: http://ceur-ws.org/Vol-2894/poster2.pdf

Traditional methods of creating explanations from complex systems involving the use of AI have resulted in a wide variety of tools available to users to generate explanations regarding algorithm and network designs. This however has traditionally bee... Read More about Non-deterministic solvers and explainable AI through trajectory mining..

Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection. (2020)
Presentation / Conference Contribution
MORENO-GARCÍA, C.F., DANG, T., MARTIN, K., PATEL, M., THOMPSON, A., LEISHMAN, L. and WIRATUNGA, N. 2020. Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection. In Bach, K., Bunescu, R., Marling, C. and Wiratunga, N. (eds.) Knowledge discovery in healthcare data 2020: proceedings of the 5th Knowledge discovery in healthcare data international workshop 2020 (KDH 2020), co-located with 24th European Artificial intelligence conference (ECAI 2020), 29-30 August 2020, [virtual conference]. CEUR workshop proceedings, 2675. Aachen: CEUR-WS [online], pages 63-70. Available from: http://ceur-ws.org/Vol-2675/paper10.pdf

Fracture detection has been a long-standingparadigm on the medical imaging community. Many algo-rithms and systems have been presented to accurately detectand classify images in terms of the presence and absence offractures in different parts of the... Read More about Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection..

Matching networks for personalised human activity recognition. (2018)
Presentation / Conference Contribution
SANI, S., WIRATUNGA, N., MASSIE, S. and COOPER, K. 2018. Matching networks for personalised human activity recognition. In Bichindaritz, I., Guttmann, C., Herrero, P., Koch, F., Koster, A., Lenz, R., López Ibáñez, B., Marling, C., Martin, C., Montagna, S., Montani, S., Reichert, M., Riaño, D., Schumacher, M.I., ten Teije, A. and Wiratunga, N. (eds.) Proceedings of the 1st Joint workshop on artificial intelligence in health, organized as part of the Federated AI meeting (FAIM 2018), co-located with the 17th International conference on autonomous agents and multiagent systems (AAMAS 2018), the 35th International conference on machine learning (ICML 2018), the 27th International joint conference on artificial intelligence (IJCAI 2018), and the 26th International conference on case-based reasoning (ICCBR 2018), 13-19 July 2018, Stockholm, Sweden. CEUR workshop proceedings, 2142. Aachen: CEUR-WS [online], pages 61-64. Available from: http://ceur-ws.org/Vol-2142/short4.pdf

Human Activity Recognition (HAR) has many important applications in health care which include management of chronic conditions and patient rehabilitation. An important consideration when training HAR models is whether to use training data from a gene... Read More about Matching networks for personalised human activity recognition..

Zero-shot learning with matching networks for open-ended human activity recognition. (2018)
Presentation / Conference Contribution
WIJEKOON, A., WIRATUNGA, N. and SANI, S. 2018. Zero-shot learning with matching networks for open-ended human activity recognition. In Martin, K., Wiratunga, N. and Smith, L.S. (eds.) Proceedings of the 2018 Scottish Informatics and Computer Science Alliance (SCISA) workshop on reasoning, learning and explainability (ReaLX 2018), 27 June 2018, Aberdeen, UK. CEUR workshop proceedings, 2151. Aachen: CEUR-WS [online], session 2, paper 4. Available from: http://ceur-ws.org/Vol-2151/Paper_S9.pdf

A real-world solution for Human Activity Recognition (HAR) should cover a variety of activities. However training a model to cover each and every possible activity is not practical. Instead we need a solution that can adapt its learning to unseen act... Read More about Zero-shot learning with matching networks for open-ended human activity recognition..

Digital interpretation of sensor-equipment diagrams. (2018)
Presentation / Conference Contribution
MORENO-GARCÍA, C.F. 2018. Digital interpretation of sensor-equipment diagrams. In Martin, K., Wiratunga, N. and Smith, L.S. (eds.) Proceedings of the 2018 Scottish Informatics and Computer Science Alliance (SCISA) workshop on reasoning, learning and explainability (ReaLX 2018), 27 June 2018, Aberdeen, UK. CEUR workshop proceedings, 2151. Aachen: CEUR-WS [online], session 2, paper 1. Available from: http://ceur-ws.org/Vol-2151/Paper_s2.pdf

A sensor-equipment diagram is a type of engineering drawing used in the industrial practice that depicts the interconnectivity between a group of sensors and a portion of an Oil & Gas facility. The interpretation of these documents is not a straightf... Read More about Digital interpretation of sensor-equipment diagrams..