Skip to main content

Research Repository

Advanced Search

Improving intrusion detection through training data augmentation. (2021)
Conference Proceeding
OTOKWALA, U., PETROVSKI, A. and KALUTARAGE, H. 2021. Improving intrusion detection through training data augmentation. In Moradpoor, N., El├ži, A. and Petrovski, A. (eds.) Proceedings of 14th International conference on Security of information and networks 2021 (SIN 2021), 15-17 December 2021, [virtual conference]. Piscataway: IEEE [online], article 17. Available from: https://doi.org/10.1109/SIN54109.2021.9699293

Imbalanced classes in datasets are common problems often found in security data. Therefore, several strategies like class resampling and cost-sensitive training have been proposed to address it. In this paper, we propose a data augmentation strategy... Read More about Improving intrusion detection through training data augmentation..

Memory efficient federated deep learning for intrusion detection in IoT networks. (2021)
Conference Proceeding
ZAKARIYYA, A. KALUTARAGE, H. and AL-KADRI, M.O. 2021. Memory efficient federated deep learning for intrusion detection in IoT networks. In Sani, S. and Kalutarage, H. (eds.) AI and cybersecurity 2021 (AI-Cybersec 2021): proceedings of the Workshop on AI and Cybersecurity (AI-Cybersec 2021) co-located with 41st (British Computer Society's Specialist Group on Artificial Intelligence) SGAI international conference on artificial intelligence (SGAI 2021): [virtual conference]. Aachen: CEUR Workshop Proceedings [online], 3125, pages 85-99. Available from: http://ceur-ws.org/Vol-3125/paper7.pdf

Deep Neural Networks (DNNs) methods are widely proposed for cyber security monitoring. However, training DNNs requires a lot of computational resources. This restricts direct deployment of DNNs to resource-constrained environments like the Internet o... Read More about Memory efficient federated deep learning for intrusion detection in IoT networks..

Reasoning with counterfactual explanations for code vulnerability detection and correction. (2021)
Conference Proceeding
WIJEKOON, A. and WIRATUNGA, N. 2021. Reasoning with counterfactual explanations for code vulnerability detection and correction. In Sani, S. and Kalutarage, H. (eds.) AI and cybersecurity 2021 (AI-Cybersec 2021): proceedings of the workshop on AI and cybersecurity (AI-Cybersec 2021) co-located with 41st (British Computer Society's Specialist Group on Artificial Intelligence) SGAI international conference on artificial intelligence (SGAI 2021), 14 December 2021, Cambridge, UK: [virtual conference]. Aachen: CEUR Workshop Proceedings [online], 3125, pages 1-13. Available from: http://ceur-ws.org/Vol-3125/paper1.pdf 14 December 2021, Cambridge, UK: [virtual event]. Aachen: CEUR Workshop Proceedings [online], 3125, pages 1-13. Available from: http://ceur-ws.org/Vol-3125/paper1.pdf

Counterfactual explanations highlight "actionable knowledge" which helps the end-users to understand how a machine learning outcome could be changed to a more desirable outcome. In code vulnerability detection, understanding these "actionable" correc... Read More about Reasoning with counterfactual explanations for code vulnerability detection and correction..

TrustMod: a trust management module for NS-3 simulator. (2021)
Conference Proceeding
HAJAR, M.S., KALUTARAGE, H. and AL-KADRI, M.O. 2021. TrustMod: a trust management module for NS-3 simulator. In Zhao, L., Kumar, N., Hsu, R.C. and Zou, D. (eds.) Proceedings of 20th IEEE (Institute of Electrical and Electronics Engineers) International conference on Trust, security and privacy in computing and communications 2021 (IEEE TrustCom 2021), 20-21 October 2021, Shenyang, China: [virtual event]. Piscataway: IEEE [online], pages 51-60. Available from: https://doi.org/10.1109/TrustCom53373.2021.00025

Trust management offers a further level of defense against internal attacks in ad hoc networks. Deploying an effective trust management scheme can reinforce the overall network security. Regardless of limitations, however, security researchers often... Read More about TrustMod: a trust management module for NS-3 simulator..

Effective detection of cyber attack in a cyber-physical power grid system. (2021)
Conference Proceeding
OTOKWALA, U., PETROVSKI, A. and KALUTARAGE, H. 2021. Effective detection of cyber attack in a cyber-physical power grid system. In Arai, K. (ed) Advances in information and communication: proceedings of Future of information and communication conference (FICC 2021), 29-30 April 2021, Vancouver, Canada. Advances in intelligent systems and computing, 1363. Cham: Springer [online], 1, pages 812-829. Available from: https://doi.org/10.1007/978-3-030-73100-7_57

Advancement in technology and the adoption of smart devices in the operation of power grid systems have made it imperative to ensure adequate protection for the cyber-physical power grid system against cyber-attacks. This is because, contemporary cyb... Read More about Effective detection of cyber attack in a cyber-physical power grid system..

LTMS: a lightweight trust management system for wireless medical sensor networks. (2021)
Conference Proceeding
HAJAR, M.S., AL-KADRI, M.O. and KALUTARAGE, H. 2020. LTMS: a lightweight trust management system for wireless medical sensor networks. In Wang, G., Ko, R., Bhuiyan, M.Z.A. and Pan, Y. (eds.). Proceedings of 19th Institute of Electrical and Electronics Engineers (IEEE) Trust, security and privacy in computing and communication international conference 2020 (TrustCom 2020), 29 Dec 2020 - 1 Jan 2021, Guangzhou, China. Piscataway: IEEE [online], pages 1783-1790. Available from: https://doi.org/10.1109/TrustCom50675.2020.00245

Wireless Medical Sensor Networks (WMSNs) offer ubiquitous health applications that enhance patients' quality of life and support national health systems. Detecting internal attacks on WMSNs is still challenging since cryptographic measures can not pr... Read More about LTMS: a lightweight trust management system for wireless medical sensor networks..

Resource efficient boosting method for IoT security monitoring. (2021)
Conference Proceeding
ZAKARIYYA, I., AL-KADRI, M.O. and KALUTARAGE, H. 2021. Resource efficient boosting method for IoT security monitoring. In Proceedings of 18th Institute of Electrical and Electronics Engineers (IEEE) Consumer communications and networking conference 2021 (CCNC 2021), 9-12 January 2021, [virtual conference]. Piscataway: IEEE [online], article 9369620. Available from: https://doi.org/10.1109/ccnc49032.2021.9369620

Machine learning (ML) methods are widely proposed for security monitoring of Internet of Things (IoT). However, these methods can be computationally expensive for resource constraint IoT devices. This paper proposes an optimized resource efficient ML... Read More about Resource efficient boosting method for IoT security monitoring..