Skip to main content

Research Repository

Advanced Search

All Outputs (6)

Integrating KGs and ontologies with RAG for personalised summarisation in regulatory compliance. (2024)
Presentation / Conference Contribution
ARSHAD, U., CORSAR, D. and NKISI-ORJI, I. 2024. Integrating KGs and ontologies with RAG for personalised summarisation in regulatory compliance. In Martin, K., Salimi, P. and Wijayasekara, V. (eds.) 2024. SICSA REALLM workshop 2024: proceedings of the SICSA (Scottish Informatics and Computer Science Alliance) REALLM (Reasoning, explanation and applications of large language models) workshop (SICSA REALLM workshop 2024), 17 October 2024, Aberdeen, UK. CEUR workshop proceedings, 3822. Aachen: CEUR-WS [online], pages 56-61. Available from: https://ceur-ws.org/Vol-3822/short7.pdf

With the growing complexity and increased volumes, regulatory texts are fast becoming a significant challenge for organisations to remain compliant. Traditional ways of summarising legal texts need to be more accommodating of critical, domain-specifi... Read More about Integrating KGs and ontologies with RAG for personalised summarisation in regulatory compliance..

Towards improving open-box hallucination detection in large language models (LLMs). (2024)
Presentation / Conference Contribution
SURESH, M., ALJUNDI, R., NKISI-ORJI, I. and WIRATUNGA, N. 2024. Towards improving open-box hallucination detection in large language models (LLMs). In Martin, K., Salimi, P. and Wijayasekara, V. (eds.) 2024. SICSA REALLM workshop 2024: proceedings of the SICSA (Scottish Informatics and Computer Science Alliance) REALLM (Reasoning, explanation and applications of large language models) workshop (SICSA REALLM workshop 2024), 17 October 2024, Aberdeen, UK. CEUR workshop proceedings, 3822. Aachen: CEUR-WS [online], pages 1-10. Available from: https://ceur-ws.org/Vol-3822/paper1.pdf

Due to the increasing availability of Large Language Models (LLMs) through both proprietary and open-sourced releases of models, the adoption of LLMs across applications has drastically increased making them commonplace in day-to-day lives. Yet, the... Read More about Towards improving open-box hallucination detection in large language models (LLMs)..

SCaLe-QA: Sri Lankan case law embeddings for legal QA. (2024)
Presentation / Conference Contribution
JAYAWARDENA, L., WIRATUNGA, N., ABEYRATNE, R., MARTIN, K., NKISI-ORJI, I. and WEERASINGHE, R. 2024. SCaLe-QU: Sri Lankan case law embeddings for legal QA. In Martin, K., Salimi, P. and Wijayasekara, V. (eds.) 2024. SICSA REALLM workshop 2024: proceedings of the SICSA (Scottish Informatics and Computer Science Alliance) REALLM (Reasoning, explanation and applications of large language models) workshop (SICSA REALLM workshop 2024), 17 October 2024, Aberdeen, UK. CEUR workshop proceedings, 3822. Aachen: CEUR-WS [online], pages 47-55. Available from: https://ceur-ws.org/Vol-3822/short6.pdf

SCaLe-QA is a foundational system developed for Sri Lankan Legal Question Answering (LQA) by leveraging domain-specific embeddings derived from Supreme Court cases. The system is tailored to capture the unique linguistic and structural characteristic... Read More about SCaLe-QA: Sri Lankan case law embeddings for legal QA..

iSee: advancing multi-shot explainable AI using case-based recommendations. (2024)
Presentation / Conference Contribution
WIJEKOON, A., WIRATUNGA, N., CORSAR, D., MARTIN, K., NKISI-ORJI, I., PALIHAWADANA, C., CARO-MARTÍNEZ, M., DÍAZ-AGUDO, B., BRIDGE, D. and LIRET, A. 2024. iSee: advancing multi-shot explainable AI using case-based recommendations. In Endriss, U., Melo, F.S., Bach, K., et al. (eds.) ECAI 2024: proceedings of the 27th European conference on artificial intelligence, co-located with the 13th conference on Prestigious applications of intelligent systems (PAIS 2024), 19–24 October 2024, Santiago de Compostela, Spain. Frontiers in artificial intelligence and applications, 392. Amsterdam: IOS Press [online], pages 4626-4633. Available from: https://doi.org/10.3233/FAIA241057

Explainable AI (XAI) can greatly enhance user trust and satisfaction in AI-assisted decision-making processes. Recent findings suggest that a single explainer may not meet the diverse needs of multiple users in an AI system; indeed, even individual u... Read More about iSee: advancing multi-shot explainable AI using case-based recommendations..

Building personalised XAI experiences through iSee: a case-based reasoning-driven platform. (2024)
Presentation / Conference Contribution
CARO-MARTÍNEZ, M., LIRET, A., DÍAZ-AGUDO, B., RECIO-GARCÍA, J.A., DARIAS, J., WIRATUNGA, N., WIJEKOON, A., MARTIN, K., NKISI-ORJI, I., CORSAR, D., PALIHAWADANA, C., PIRIE, C., BRIDGE, D., PRADEEP, P. and FLEISCH, B. 2024. Building personalised XAI experiences through iSee: a case-based reasoning-driven platform. In Longo, L., Liu, W. and Montavon, G. (eds.) xAI-2024: LB/D/DC: joint proceedings of the xAI 2024 late-breaking work, demos and doctoral consortium, co-located with the 2nd World conference on eXplainable artificial intelligence (xAI 2024), 17-19 July 2024, Valletta, Malta. Aachen: CEUR-WS [online], 3793, pages 313-320. Available from: https://ceur-ws.org/Vol-3793/paper_40.pdf

Nowadays, eXplainable Artificial Intelligence (XAI) is well-known as an important field in Computer Science due to the necessity of understanding the increasing complexity of Artificial Intelligence (AI) systems or algorithms. This is the reason why... Read More about Building personalised XAI experiences through iSee: a case-based reasoning-driven platform..

CBR-RAG: case-based reasoning for retrieval augmented generation in LLMs for legal question answering. (2024)
Presentation / Conference Contribution
WIRATUNGA, N., ABEYRATNE, R., JAYAWARDENA, L., MARTIN, K., MASSIE, S., NKISI-ORJI, I., WEERASINGHE, R., LIRET, A. and FLEISCH, B. 2024. CBR-RAG: case-based reasoning for retrieval augmented generation in LLMs for legal question answering. In Recio-Garcia, J.A., Orozco-del-Castillo, M.G. and Bridge, D (eds.) Case-based reasoning research and development: proceedings of the 32nd International conference of case-based reasoning research and development 2024 (ICCBR 2024), 1-4 July 2024, Merida, Mexico. Lecture notes in computer science, 14775. Cham: Springer [online], pages 445-460. Available from: https://doi.org/10.1007/978-3-031-63646-2_29

Retrieval-Augmented Generation (RAG) enhances Large Language Model (LLM) output by providing prior knowledge as context to input. This is beneficial for knowledge-intensive and expert reliant tasks, including legal question-answering, which require e... Read More about CBR-RAG: case-based reasoning for retrieval augmented generation in LLMs for legal question answering..